We consider a fractional-order model of glucose and insulin interaction based on the intra-venous glucose tolerance test (IVGTT). We show the existence of the model's solution, uniqueness, non-negativity, and boundadness. In addition, for the proposed fractional-order model, we establish sufficient conditions for stability or instability. Some conditions for bifurcation in the proposed model are presented using bifurcation theory. Further, in the case of first order the model is discretized by applying the forward Euler scheme. We investigate how small the time step size must be chosen to guarantee that the steady state solution is an attractive fixed point of the discretized model. Numerical simulations that we provided support the analytical results.
Citation: Ghada A. Ahmed. On the fractional-order glucose-insulin interaction[J]. AIMS Mathematics, 2023, 8(7): 15824-15843. doi: 10.3934/math.2023808
We consider a fractional-order model of glucose and insulin interaction based on the intra-venous glucose tolerance test (IVGTT). We show the existence of the model's solution, uniqueness, non-negativity, and boundadness. In addition, for the proposed fractional-order model, we establish sufficient conditions for stability or instability. Some conditions for bifurcation in the proposed model are presented using bifurcation theory. Further, in the case of first order the model is discretized by applying the forward Euler scheme. We investigate how small the time step size must be chosen to guarantee that the steady state solution is an attractive fixed point of the discretized model. Numerical simulations that we provided support the analytical results.
[1] | A. Abbes, A. Ouannas, N. Shawagfeh, A. A. Khennaoui, Incommensurate fractional discrete neural network: chaos and complexity, Eur. Phys. J. Plus, 137 (2022), 235. https://doi.org/10.1140/epjp/s13360-022-02472-6 doi: 10.1140/epjp/s13360-022-02472-6 |
[2] | A. Abbes, A. Ouannas, N. Shawagfeh, The incommensurate fractional discrete macroeconomic system: bifurcation, chaos and complexity, Chinese Phys. B, 32 (2022), 030203. https://doi.org/10.1088/1674-1056/ac7296 doi: 10.1088/1674-1056/ac7296 |
[3] | A. Abbes, A. Ouannas, N. Shawagfeh, H. Jahanshahi, The fractional-order discrete COVID-19 pandemic model: stability and chaos, Nonlinear Dyn., 111 (2023), 965–983. https://doi.org/10.1007/s11071-022-07766-z doi: 10.1007/s11071-022-07766-z |
[4] | E. Ackerman, J. W. Rosevear, W. F. McGuckin, A mathematical model of the glucose tolerance test, Phys. Med. Biol., 9 (1964), 203. https://doi.org/10.1088/0031-9155/9/2/307 doi: 10.1088/0031-9155/9/2/307 |
[5] | E. Ackerman, L. C. Gatewood, J. W. Rosevear, G. D. Molnar, Model studies of blood-glucose regulation, Bulletin of Mathematical Biophysics, 27 (1965), 21–37. https://doi.org/10.1007/BF02477259 doi: 10.1007/BF02477259 |
[6] | A. Alalyani, S. Saber, Stability analysis and numerical simulations of the fractional COVID-19 pandemic model, Int. J. Nonlin. Sci. Num., 2022 (2022), 1–14. https://doi.org/10.1515/ijnsns-2021-0042 doi: 10.1515/ijnsns-2021-0042 |
[7] | E. Ahmed, A. S. Elgazzar, On fractional-order differential equations model for nonlocal epidemics, Physica A, 379 (2007), 607–614. https://doi.org/10.1016/j.physa.2007.01.010 doi: 10.1016/j.physa.2007.01.010 |
[8] | E. Ahmed, H. A. A. El-Saka, On fractional-order models for Hepatitis C, Nonlinear Biomedical Physics, 4 (2010), 1. https://doi.org/10.1186/1753-4631-4-1 doi: 10.1186/1753-4631-4-1 |
[9] | E. Ahmed, A. E. Matouk, Complex dynamics of some models of antimicrobial resistance on complex networks, Math. Method. Appl. Sci., 44 (2021), 1896–1912. https://doi.org/10.1002/mma.6889 doi: 10.1002/mma.6889 |
[10] | M. H. Alshehri, F. Z. Duraihem, A. Alalyani, S. Saber, A Caputo (discretization) fractional-order model of glucose-insulin interaction: numerical solution and comparisons with experimental data, J. Taibah Univ. Sci., 15 (2021), 26–36. https://doi.org/10.1080/16583655.2021.1872197 doi: 10.1080/16583655.2021.1872197 |
[11] | R. Asheghi, Bifurcations and dynamics of a discrete predator-prey system, J. Biol. Dynam., 8 (2014), 161–186. https://doi.org/10.1080/17513758.2014.927596 doi: 10.1080/17513758.2014.927596 |
[12] | N. Bairagi, M. Biswas, A predator-prey model with Beddington-DeAngelis functional response: a non-standard finite-difference method, J. Differ. Equ. Appl., 22 (2016), 581–593. https://doi.org/10.1080/10236198.2015.1111345 doi: 10.1080/10236198.2015.1111345 |
[13] | R. N. Bergman, C. Cobelli, Minimal modelling, partition analysis and the estimation of insulin sensitivity, Fed. Proc., 39 (1980), 110–115. |
[14] | R. N. Bergman, Y. Z. Ider, C. R. Bowden, C. Cobelli, Quantitative estimation of insulin sensitivity, Am. J. Physiol., 236 (1979), 667–677. https://doi.org/10.1152/ajpendo.1979.236.6.E667 doi: 10.1152/ajpendo.1979.236.6.E667 |
[15] | V. W. Bolie, Coefficients of normal blood glucose regulation, J. Appl. Physiol., 16 (1961), 783–788. https://doi.org/10.1152/jappl.1961.16.5.783 doi: 10.1152/jappl.1961.16.5.783 |
[16] | A. Boutayeb, A. Chetouani, A critical review of mathematical models and data used in diabetology, Biomed. Eng. Online, 5 (2006), 43. https://doi.org/10.1186/1475-925X-5-43 doi: 10.1186/1475-925X-5-43 |
[17] | M. Caputo, Linear models of dissipation whose Q is almost frequency independent-II, Geophys. J. Int., 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x doi: 10.1111/j.1365-246X.1967.tb02303.x |
[18] | A. Caumo, R. N. Bergman, C. Cobelli, Insulin sensitivity from meal tolerance tests in normal subjects: a minimal model index, The Journal of Clinical Endocrinology and Metabolism, 85 (2000), 4396–4402. |
[19] | V. B. L. Chaurasia, R. S. Dubey, Analytical solution for the differential equation containing generalized fractional derivative operators and Mittag-Leffler-type function, International Scholarly Research Notices, 2011 (2011), 682381. https://doi.org/10.5402/2011/682381 doi: 10.5402/2011/682381 |
[20] | V. B. L. Chaurasia, R. S. Dubey, Analytical solution for the generalized time-fractional telegraph equation, Fractional Differential Calculus, 3 (2013), 21–29. https://doi.org/10.7153/fdc-03-02 doi: 10.7153/fdc-03-02 |
[21] | M. Dalir, M. Bashour, Applications of fractional calculus, Appl. Math. Sci., 4 (2010), 1021–1032. |
[22] | V. Daftardar-Gejji, H. Jafari, Analysis of a system of non autonomous fractional differential equations involving Caputo derivatives, J. Math. Anal. Appl., 328 (2007), 1026–1033. https://doi.org/10.1016/j.jmaa.2006.06.007 doi: 10.1016/j.jmaa.2006.06.007 |
[23] | W. H. Deng, Smoothness and stability of the solutions for nonlinear fractional differential equations, Nonlinear Anal. Theor., 72 (2010), 1768–1777. https://doi.org/10.1016/j.na.2009.09.018 doi: 10.1016/j.na.2009.09.018 |
[24] | S. N. Elaydi, Discrete chaos: with applications in science and engineering, Boca Raton: Chapman and Hall/CRC, 2008. |
[25] | A. A. Elsadany, A. E. Matouk, Dynamical behaviors of fractional-order Lotka Volterra predator-prey model and its discretization, J. Appl. Math. Comput., 49 (2015), 269–283. https://doi.org/10.1007/s12190-014-0838-6 doi: 10.1007/s12190-014-0838-6 |
[26] | A. D. Gaetano, O. Arino, Mathematical model-ling of the intravenous glucose tolerance test, J. Math. Biol., 40 (2000), 136–168. https://doi.org/10.1007/s002850050007 doi: 10.1007/s002850050007 |
[27] | L. C. Gatewood, E. Ackerman, J. W. Rosevear, G. D. Molnar, Test of a mathematical model of the blood-glucose regulatory system, Computers and Biomedical Research, 2 (1968), 1–14. https://doi.org/10.1016/0010-4809(68)90003-7 doi: 10.1016/0010-4809(68)90003-7 |
[28] | T. A. Gresl, R. J. Colman, T. C. Havighurst, L. O. Byerley, D. B. Allison, D. A. Schoeller, et al., Insulin sensitivity and glucose effectiveness from three minimal models: effects of energy restriction and body fat in adult male rhesus monkeys, Am. J. Physiol. Regul. Integr. Comp. Physiol., 285 (2003), 1340–1354. https://doi.org/10.1152/ajpregu.00651.2002 doi: 10.1152/ajpregu.00651.2002 |
[29] | F. Hadjabi, A. Ouannas, N. Shawagfeh, A. Khennaoui, G. Grassi, On two-dimensional fractional chaotic maps with symmetries, Symmetry, 12 (2020), 756. https://doi.org/10.3390/sym12050756 doi: 10.3390/sym12050756 |
[30] | H. L. Li, L. Zhang, C. Hu, Y. L. Jiang, Z. D. Teng, Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge, J. Appl. Math. Comput., 54 (2017), 435–449. https://doi.org/10.1007/s12190-016-1017-8 doi: 10.1007/s12190-016-1017-8 |
[31] | J. Huo, H. Zhao, L. Zhu, The effect of vaccines on backward bifurcation in a fractional order HIV model, Nonlinear Anal. Real, 26 (2015), 289–305. https://doi.org/10.1016/j.nonrwa.2015.05.014 doi: 10.1016/j.nonrwa.2015.05.014 |
[32] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006. |
[33] | L. Li, W. X. Zheng, Global stability of a delay model of glucose-insulin interaction, Math. Comput. Model., 52 (2010), 472–480. https://doi.org/10.1016/j.mcm.2010.03.044 doi: 10.1016/j.mcm.2010.03.044 |
[34] | J. Li, Y. Kuang, B. Li, Analysis of IVGTT glucose-insulin interaction models with time delay, Discrete Cont. Dyn. B, 1 (2001), 103–124. |
[35] | W. Lin, Global existence theory and chaos control of fractional differential equations, J. Math. Anal. Appl., 332 (2007), 709–726. https://doi.org/10.1016/j.jmaa.2006.10.040 doi: 10.1016/j.jmaa.2006.10.040 |
[36] | C. P. Li, F. R. Zhang, A survey on the stability of fractional differential equations, Eur. Phys. J. Spec. Top., 193 (2011), 27–47. https://doi.org/10.1140/epjst/e2011-01379-1 doi: 10.1140/epjst/e2011-01379-1 |
[37] | A. Makroglou, J. Li, Y. Kuang, Mathematical models and software tools for the glucose-insulin regulatory system and diabetes: an overview, Appl. Numer. Math., 56 (2006), 559–573. https://doi.org/10.1016/j.apnum.2005.04.023 doi: 10.1016/j.apnum.2005.04.023 |
[38] | A. E. Matouk, Chaotic attractors that exist only in fractional-order case, J. Adv. Res., 45 (2023), 183–192. https://doi.org/10.1016/j.jare.2022.03.008 doi: 10.1016/j.jare.2022.03.008 |
[39] | A. E. Matouk, B. Lahcene, Chaotic dynamics in some fractional predator-prey models via a new Caputo operator based on the generalised Gamma function, Chaos Soliton. Fract., 166 (2023), 112946. https://doi.org/10.1016/j.chaos.2022.112946 doi: 10.1016/j.chaos.2022.112946 |
[40] | A. E. Matouk, A. A. Elsadany, Dynamical analysis, stabilization and discretization of a chaotic fractional-order GLV model, Nonlinear Dyn., 85 (2016), 1597–1612. https://doi.org/10.1007/s11071-016-2781-6 doi: 10.1007/s11071-016-2781-6 |
[41] | A. E. Matouk, Chaos, feedback control and synchronization of a fractional-order modified autonomous Van der Pol-Duffing circuit, Commun. Nonlinear Sci., 16 (2016), 975–986. https://doi.org/10.1016/j.cnsns.2010.04.027 doi: 10.1016/j.cnsns.2010.04.027 |
[42] | M. H. Alshehri, F. Z. Duraihem, S. Saber, Dynamical analysis of fractional-order of IVGTT glucose-insulin interaction, Int. J. Nonlin. Sci. Num., 2021 (2021), 1565–1339. https://doi.org/10.1515/ijnsns-2020-0201 doi: 10.1515/ijnsns-2020-0201 |
[43] | A. Ouannas, A. Khennaoui, Z. Odibat, V. Pham, G. Grassi, On the dynamics, control and synchronization of fractional-order Ikeda map, Chaos Soliton. Fract., 123 (2019), 108–115. https://doi.org/10.1016/j.chaos.2019.04.002 doi: 10.1016/j.chaos.2019.04.002 |
[44] | G. Pacini, R. N. Bergman, MINMOD: a computer program to calculate insulin sensitivity and pancreatic responsevity from the frequently sampled intravenous tolerance test, Comput Methods Programs Biomed, 23 (1986), 113–122. https://doi.org/10.1016/0169-2607(86)90106-9 doi: 10.1016/0169-2607(86)90106-9 |
[45] | I. Podlubny, Fractional differential equations, New York: Academic Press, 1999. |
[46] | S. Saber, A. M. Alghamdi, G. A. Ahmed, K. M. Alshehri, Mathematical modelling and optimal control of pneumonia disease in sheep and goats in Al-Baha region with cost-effective strategies, AIMS Mathematics, 7 (2022), 12011–12049. https://doi.org/10.3934/math.2022669 doi: 10.3934/math.2022669 |
[47] | S. Al-Zahrani, F. E. I. Elsmih, K. Al-Zahrani, S. Saber, A fractional order SITR model for forecasting of transmission of COVID-19: sensitivity statistical analysis, Malays. J. Math. Sci., 16 (2022), 517–536. https://doi.org/10.47836/mjms.16.3.08 doi: 10.47836/mjms.16.3.08 |
[48] | S. Sayed, S. M. Alzahrani, Stability analysis of a fractional order delayed glucose-insulin model, Albaha University Journal of Basic and Applied Sciences, 3 (2019), 7–14. |
[49] | S. Sayed, S. M. Alzahrani, Hopf bifurcation on fractional ordered glucose-insulin system with time-delay, Albaha University Journal of Basic and Applied Sciences, 3 (2019), 27–34. |
[50] | S. Sayed, E. B. M. Bashier, S. M. Alzahrani, I. A. Noaman, A mathematical model of glucose-insulin interaction with time delay, Journal of Applied and Computational Mathematics, 7 (2018), 416. https://doi.org/10.4172/2168-9679.1000416 doi: 10.4172/2168-9679.1000416 |
[51] | J. P. C. dos Santos, E. Monteiro, J. B. Valverde, Global stability of fractional SIR epidemic model, Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, 5 (2017), 010019. https://doi.org/10.5540/03.2017.005.01.0019 doi: 10.5540/03.2017.005.01.0019 |
[52] | G. M. Steil, A. Volund, S. E. Kahn, R. N. Bergman, Reduced sample number for calculation of insulin sensitivity and glucose effectiveness from the minimal model, Diabetes, 42 (1993), 250–756. https://doi.org/10.2337/diab.42.2.250 doi: 10.2337/diab.42.2.250 |
[53] | V. S. Ertrk, Z. M. Odibat, S. Momani, An approximate solution of a fractionalorder differential equation model of human T-cell lymphotropic virus I (HTLV-I) infection of CD4+T-cells, Comput. Math. Appl., 62 (2011), 996–1002. https://doi.org/10.1016/j.camwa.2011.03.091 doi: 10.1016/j.camwa.2011.03.091 |
[54] | G. Toffolo, R. N. Bergman, D. T. Finegood, C. R. Bowden, C. Cobelli, Quantitative estimation of beta cell sensitivity to glucose in the intact organism, Diabetes, 29 (1980), 979–990. https://doi.org/10.2337/diab.29.12.979 doi: 10.2337/diab.29.12.979 |
[55] | C. Vargas-De-León, Volterra-type Lyapunov functions for fractional-order epidemic systems, Commun. Nonlinear Sci., 24 (2015), 75–85. https://doi.org/10.1016/j.cnsns.2014.12.013 doi: 10.1016/j.cnsns.2014.12.013 |