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Abstract: We consider a fractional-order model of glucose and insulin interaction based on the intra-
venous glucose tolerance test (IVGTT). We show the existence of the model’s solution, uniqueness,
non-negativity, and boundadness. In addition, for the proposed fractional-order model, we establish
sufficient conditions for stability or instability. Some conditions for bifurcation in the proposed model
are presented using bifurcation theory. Further, in the case of first order the model is discretized by
applying the forward Euler scheme. We investigate how small the time step size must be chosen to
guarantee that the steady state solution is an attractive fixed point of the discretized model. Numerical
simulations that we provided support the analytical results.

Keywords: diabetes disease; minimal model; mathematical modeling; stability analysis;
computational simulation
Mathematics Subject Classification: 34C60, 92C42, 92D25, 92D30

1. Introduction and statement of main results

The complex glucose-insulin relationship has been studied; see [13,14,16,37,44,48–50,54]. These
models consist of simply linear ordinary differential equations and were considered unacceptable for
different reasons, such as parameters have poor fits to experimental data or are not identifiable [33].
Bolie [15], Ackerman et al. [4, 5], Gatewood et al. [27], Bergman et al. [14], Steil et al. [52],
Caumo et al. [18], Gaetano and Arino [26], Gresl et al. [28] offered the glucose-insulin linear models
homeostasis based on Intra-Venous Glucose Tolerance Test (IVGTT) method. The “Minimal Model”
was proposed in 1980 by Bergman et al. [13, 14], and was updated in 1986. This model, which
describes IVGTT experimental data well with the smallest collection of [13,14,44,54] identifiable and
meaningful parameters, can be considered to be the most famous model used in glucose metabolism
physiological research.

Fractional calculus has shown to be a valuable tool for mathematical modeling of various open
issues in mathematics, physics, biology, epidemiology and other scientific fields. Many scientists have
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modeled them using fractional calculus; See [21–46]. There is significant potential for the principle of
fractional calculus to transform the way we see the model and regulate the environment around us. It is
naturally that the fractional order differential equations are used because they relate to memory systems
Which exist in most biological systems [53]. Also they are, at least, as Stable as their integer-order
counterpart [23, 36]. Discrete numerical calculus has attracted many scholars in recent years [10].
Scientists have been increasingly concerned about its applications in secure communication, neural
networks, biology and other fields. Recently various complex dynamics reside in fractional-order
iterated map, such as chaos, hyperchaos and coexisting attractors [11–14]. In epidemiology, fractional-
order operators have been widely employed [47–50]. Meanwhile, the discrete mathematical model of
COVID-19 has been analyzed in [3]. In this paper, analytical studies of a Caputo fractional-order
glucose-insulin model (2.3) and its discretization are presented here. We show that the model (2.3)
possesses an existence, uniqueness, nonnegative properties, and boundedness properties. We also prove
that the proposed model possesses an existence, uniqueness, non-negativeness, as well as boundedness.
We also carried out systematic studies on the stability of Caputo’s fractional. Numerical solutions
to the Caputo fractional model are obtained using the Euler-type method for fractional derivatives.
Also, numerical simulations of the discretization fractional derivative order model are used to support
analytical results.

2. The description of the model

In [26, 34], Gaetano, Arino and Li et al. had reinvestigated the dynamical behavior of the
“Minimal Model” in both modeling and physiological aspect to understanding blood glucose regulatory
system:

dG(t)
dt
= −p1G(t) −

p4I(t)G(t)
βG(t) + 1

+ p7, G(0) = Gb + p0,

dI(t)
dt
= p6G(t) − b2I(t), I(0) = Ib + p0 p3.

(2.1)

with Gi = Gb, for t ∈ [−p5, 0), where G(t) [mg/dL], I(t) [mU/L] are the concentration of blood glucose
and insulin, Gb [mg/dL] is the concentration of basal blood glucose, Ib [mU/L] is the concentration of
basal blood insulin, p0 [mg/dl] is the theoretical glycemia after the instantaneous intake of glucose
bolus at time 0, p1 [1/min] is the insulin independent glucose clearance rate, p2 [1/min] is the
active insulin clearance rate (upt. decrease), p3 [L/(min2mU)] is the increase caused by insulin in
uptake ability, p4 [1/min] is the destroy rate of blood insulin, p5 [mg/dL] is the aim glucose level,
p6 [mUdL/Lmgmin] is the Pancreatic free rate after glucose bolus, and p7 (mg/dl)[1/min] is the
concentration at time 0 of the Plasma insulin, above basal insulinemia, immediately after the glucose
bolus intake.

First, we consider the initial value problems for fractional differential equations in the form ofDqX(t) = f (X(t)),

X(k)(t0) = X(k)
0 .

(2.2)

where the fractional derivative Dq is in the sense of Caputo’s definition, the function f (X(t)) : R ×
Rd −→ Rd is called vector field, and the dimension d ≥ 1. Particularly, Rd endowed a proper norm ∥ . ∥
becomes a complete metric space. Denote by R+ the set of all non-negative real numbers.
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Definition 1. ( [45]) If q ∈ R+ is a non integer order, the fractional integral Jq f (t) of the function f (t)
with m ≥ 0 is defined as

Jq
m f (t) =

1
Γ(q)

∫ t

m
(t − τ)q−1 f (τ)dτ, t > m

where Γ(z) =
∫ ∞

0
e−ttz−1dt is the Euler gamma function.

Definition 2. ( [45]) The Caputo fractional derivative Dq f (t) of order q > 0, n − 1 < q < n, n ∈ N is
defined as

Dq f (t) =


1

Γ(n−q)

∫ t

0
f (n)(τ)

(t−τ)q+1−n dτ, n − 1 < q < n,
dn

dtn f (t), q = n.

Hence, we suggest to establish a system of fractional glucose-insulin for modeling (2.1), based on
the model presented in [34]:

DqG(t) = −p1G(t) −
p4I(t)G(t)
βG(t) + 1

+ p7,

DqI(t) = p6G(t) − p2I(t),
(2.3)

with G(0) = Gb + p0, I(0) = Ib + p0 p3, Gi = Gb, for t ∈ [−p5, 0).
Fractional derivatives describe dynamical systems better than classical calculus, where they

reflect memory effects. This paper shows the effect of control on fractional models, representing
epidemiological and biomedicine problems. Therefore, health organizations need a solution to such
models.

We are also interested in applying the forward Euler scheme to discretize the system (2.1) in order
to obtain the following system:

Gn+1 = Gn + h
[
− p1Gn −

p4InGn

βGn + 1
+ p7

]
,

In+1 = In + h[p6Gn − p2In],
(2.4)

where 0 < h < 1 is the step size.

3. Preliminaries and known results

The supremumnorm is defined as
∥ ϕ ∥= sup

t∈(0,T ]
|ϕ(t)|,

and norm of the matrix is
∥ M ∥=

∑
i, j

sup
t∈(0,T ]
|Mi, j|.

Denote by

J = [t0 − a, t0 + a], B = {X ∈ Rd :∥ X − X0 ∥≤ b},

D = {(t, X) ∈ R × Rd : t ∈ J , X ∈ B}.
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Theorem 1. ( [35], Theorem 2.1, see also [22]) Assume that the function f : D −→ Rd satisfies the
following conditions:

(1) f (X(t)) is Lebesgue measurable with respect to t on J ;
(2) f (X(t)) is continuous with respect to X on B;
(3) there exists a real-valued function g(t) ∈ L2(J) such that

∥ f (X(t)) ∥≤ g(t);

for almost every t ∈ J , X ∈ B. Then, for q > 1
2 , there at least exists a solution of the initial value

problem (2.3) on the interval [t0 − ε, t0 + ε] for some positive number ε.

Theorem 2. ( [35], Theorem 2.2, see also [22]) Assume that all the assumptions of Theorem 2.3 hold
and that there exists a real-valued function µ(t) ∈ L4(J) such that

∥ f (X(t)) − f (Y(t)) ∥≤ µ(t) ∥ X(t) − Y(t) ∥, (3.1)

for almost every t ∈ J and all X ∈ B. Then there exists a unique solution of the initial value
problem (2.1) on [t0 − ε, t0 + ε] for some positive number ε.

Theorem 3. ( [35], Theorem 3.1) Assume that the vector field function f (X(t)) satisfies the first two
condition of theorem 2.3 in the global space and

∥ f (X(t)) ∥≤ ω + λ ∥ X ∥,

for almost every t ∈ R, and all X ∈ Rd. Here, ω, λ are two positive constants. Then, there exists a
unique function X(t) on (−∞,+∞) solving the initial value problem (2.2).

Remark 1. ( [35], Remark 3.2) Besides the hypotheses made in Theorem 2.5, if ∂ f (X(t))
∂X is further

assumed to be continuous with respect to X. Then, the solution X(t) on (−∞,+∞) solving the initial
value problem (2.2) is not only existent but also unique.

Lemma 1. ( [55]) Let u(t) ∈ R+ be a continuous and derivable function. Thus, for any time instant
t ≥ t0,

Dq
(
u(t) − u∗ − u∗ ln

u(t)
u∗

)
≤

(
1 −

u∗

u(t)

)
Dqu(t), u∗ ∈ R+.

Lemma 2. ( [30], Lemma 3) Let u(t) be a continuous function on [t0,+∞) and satisfying

Dqu(t) + λu(t) ≤ µ,

where 0 < q ≤ 1, (λ, ξ) ∈ R2 and λ , 0 and t0 ≥ 0 is the initial time. Then

u(t) ≤
(
u(t0) −

ξ

λ

)
Eq

[
− λ(t − t0)q

]
+
ξ

λ
,

where Eq is the Mittag-Leffler function.
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Lemma 3. ( [41]) The equilibrium point (x∗, y∗) of the fractional differential system.

Dαx(t) = f1(x, y), x(0) = x0

Dαy(t) = f2(x, y), y(0) = y0, q ∈ (0, 1]

is locally asymptotically stable if and only if all eigenvalues ηi of the Jacobian matrix

J =

∂ f1
∂x

∂ f1
∂y

∂ f2
∂x

∂ f2
∂y

 . (3.2)

evaluated at the equilibrium point (x∗, y∗), satisfy the condition that |arg(ηi)| >
qπ
2 .

Definition 3. ( [12, 24]) A fixed point E∗ = (G∗, I∗) of system (2.2) is called stable if |η1| < 1, |η2| < 1
and a source if | η1 | >1, | η2 | >1. It is called a saddle if | η1 |< 1, | η2 | >1 or | η1 | >1, | η2 |< 1 and
a nonhyperbolic fixed point if either | η1 |= 1, or | η2 |= 1. It is called a spiral source if η1,2 = σ ± iµ,
µ , 0, σ, µ ∈ R and | η1,2 | >1.

Lemma 4. ( [24]) If η1 and η2 are the eigenvalues of Jacobian matrix (3.2). Then |η1| < 1 and |η2| < 1
if the following condition holds:

(i) 1 − det(J2) > 0,
(ii) 1 − tr(J2) + det(J2) > 0, and
(ii) 1 + tr(J2) + det(J2) > 0.

4. Properties of solutions of the fractional-order model

4.1. Local and global existence of the solution

The fractional-order system (2.3) can be written in the following formDqX(t) = f (X(t)),

X(k)(t0) = X(k)
0 ,

where

X =
[
G
I

]
, X0 =

[
G0

I0

]
, f (X) =

[
f1(X)
f2(X)

]
=

[
−p1G(t) − p4I(t)G(t)

βG(t)+1 + p7

p6G(t) − b2I(t)

]
.

In this subsection, we study the existence and uniqueness of the solutions of the fractional system (2.3)
in Ω × (0,T ] with

Ω = {(G, I) ∈ R2 : max(|G|, |I|) ≤ Φ}.

Theorem 4. The sufficient condition for existence and uniqueness of the local solution of system (2.3)
in the specified region Ω × (0,T ] with initial conditions X0 = (G0, I0) ∈ Ω and t ∈ (0,T ] is

µ = max{p1 + p6 + p4Φ, p2 + p4βΦ
2}.
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Proof. Since the vector function f (X(t)) satisfies all the assumption of Theorem 2.3, so we only need
to prove the condition (3.1) of Theorem 2.4. For X, X ∈ Ω, one obtains

∥ f (X) − f (X)∥

= | f1(X) − f1(X)| + | f2(X) − f2(X)|

=
∣∣∣∣ − p1G −

p4IG
βG + 1

+ p7 + p1G +
p4I G

βG + 1
− p7

∣∣∣∣ + |p6G − p2I − p6G + p2I|

=
∣∣∣∣ − p1(G −G) − p4

βIGG + IG − βGIG − IG

(βG + 1)(βG + 1)

∣∣∣∣ + |p6(G −G) + p2(I − I)|

≤ (p1 + p6 + p4Φ)η|G −G| + (p2 + p4βΦ
2)|I − I|

≤ µ∥X − X∥,

where
µ = max{p1 + p6 + p4Φ, p2 + p4βΦ

2}.

Thus, f (X(t)) satisfies the Lipschitz condition with respect to X and it follows from Theorem 2.4 that
there exists a unique local solution X(t) of system (2.3) with initial condition X0 = (G0, I0). □

In the next result, we prove the global existence of solutions for system (2.3).

Theorem 5. For any given initial condition X0 = (G0, I0) satisfying (2.3), there is a unique global
solution X(t), which remains in R2, of the model (2.3).

Proof. Denote

B0 =

[
p7

0

]
, B1 =

[
−p1 0
p6 −p2

]
, B2 =

0 −p4
β

0 0

 .
Hence, system (2.3) reduces to where

F(X) = B0 + B1X +
βG
βG + 1

B2X.

Thus

∥ F(X) ∥ ≤∥B0∥+∥B1X∥ +
∥∥∥∥ βG
βG + 1

B2X
∥∥∥∥

≤∥B0∥ +
(
∥B1∥+∥B2∥

)
∥X∥.

It follows, from Theorem 2.5 that there exists a unique global solution X(t) of system (2.3) with initial
condition X0 = (G0, I0). □

4.2. Non-negativity and boundedness

We are only interested in solutions that are non-negative and bounded in terms of biological
significance. The following result guarantees the non-negativity and boundedness solutions of
system (2.3). Let Ω+ = {(G, I) ∈ Ω : G ∈ R+ and I ∈ R+}.

AIMS Mathematics Volume 8, Issue 7, 15824–15843.
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Theorem 6. The solutions of system (2.3), which start in Ω+ are uniformly bounded within a region

V1 =
{
(G, I) ∈ Ω+ : H(t) ≤

p7

λ
+ ε, for all ε > 0}. (4.1)

Proof. Let (G(t), I(t)) be a solution of system (2.3). By taking H(t) = G(t) + I(t), one obtains

DqH(t) = (p6 − p1)G(t) − p2I −
p4I(t)G(t)
βG(t) + 1

+ p7 .

Hence, for all λ > 0,

DqH(t) + λH(t) ≤ (λ + p6 − p1)G(t) + (λ − p2)I + p7.

One can choose λ < min{p1 − p6, p2}. Thus

DqH(t) + λH(t) ≤ p7. (4.2)

Following Lemma 2.8, one obtains

0 ≤ H(t) ≤
(
H(t0) −

p7

λ

)
Eq[−λ(t − t0)q] +

p7

λ
−→

p7

λ
, t −→ ∞.

Hence, the solutions of (2.3) starting from Ω+ are uniformly bounded in the open region V1. □

Theorem 7. The solutions of system (2.3), which start in Ω+ are nonnegative.

Proof. From the first equation of system (2.4), one obtains

DqG(t) = −p1G(t) −
p4I(t)G(t)
βG(t) + 1

+ p7. (4.3)

Again from Eq (4.3), one obtains
G(t) + I(t) ≤

p7

λ
. (4.4)

So from Eqs (4.3) and (4.4), one obtains

DqG(t) ≥ −p1G(t) −
( p4

β

)
+ p7

= (λ − p1)G(t) +
(
λ −

p4

β

)
I(t)

= k1G(t) + k2I(t)

where k1 = (λ − p1), and k2 =
(
λ − p4

β

)
.

Now according to the positivity of Mittag-Leffer function Eq,1 > 0 for any q ∈ (0, 1), it follows that

G(t) ≥ G0Eq,1(−λtq)⇒ G ≥ 0.

From second equation of system (1.2), one obtains

DqI(t) = p6G(t) − p2I(t) ≥ −p2I(t).

Thus
I(t) ≥ I0Eq,1(−λtq)⇒ I ≥ 0.

Hence all solution of system (2.3) are non-negative. □
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5. Dynamical behaviour of the fractional-order model

5.1. Local and global stability of equilibria

In this subsection, some explicit conditions for the occurrence of a Hopf bifurcation for Eq (2.3)
will be established. To find the fixed points, let

DqG(t) = 0,
DqI(t) = 0.

Thus, the equilibrium point E∗ = (G∗, I∗) of (2.3) is given by

G∗ =
(βp7 − p1) ±

√
(βp7 − p1)2 + 4p7(βp1 +

p4 p6
p2

)

2(βp1 +
p4 p6

p2
)

,

I∗ =
p6

p2
G∗.

To linearize the fractional model (2.3), about E∗ = (G∗, I∗), we use the transformation x(t) = G(t)−G∗,
y(t) = I(t) − I∗. Eq (2.3) can be converted to

Dqx(t) = −p1(x(t) +G∗) −
p4(y(t) + I∗)(x(t) +G∗)
β(x(t) +G∗) + 1

+ p7,

Dqy(t) = p6(x(t) +G∗) − p2(y(t) + I∗).
(5.1)

Then the linearization of Eq (4.2) at the origin leads to

Dqx(t) = −A1x(t) − A2y(t),
Dqy(t) = A3x(t) − A4y(t).

(5.2)

where
A1 =

(
p1 +

p4I∗

βG∗ + 1
−
βp4I∗G∗

(βG∗ + 1)2

)
, A2 =

p4G∗

βG∗ + 1
, A3 = p6, A4 = p2.

Then, the Jacobian matrix J1(E∗) at E∗ for the fractional model (5.2) is given by

J1(E∗) =
[
−A1 −A2

A3 −A4

]
.

Its characteristic equation is

P1(σ) = σ2 + (A1 + A4)σ + A1A4 + A3A2 = 0, (5.3)

and its eigenvalues are

σ1,2 =
1
2

(
tr(J1) ±

√
tr2(J1) − 4 det(J1)

)
,

with tr(J1) = −(A1 + A4), and det(J1) = A1A4 + A2A3. That is, the roots of the characteristic Eq (4.3)
are

σ1 =
−(A1 + A4) +

√
(A1 + A4)2 − 4(A1A4 + A3A2)

2
,
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σ2 =
−(A1 + A4) −

√
(A1 + A4)2 − 4(A1A4 + A3A2)

2
.

Then, sum of the roots = −(A1 + A4) and product of the roots = A1A4 + A2A3. Thus, one can say that
both the roots of (6.1) are real and negative or complex conjugate with negative real parts if and only if

A1 + A4 > 0 and A1A4 + A2A3 > 0.

Hence, one obtains the following result.

Lemma 5. The equilibrium point E∗ = (G∗, I∗) of the fractional model (2.3) is locally asymptotically
stable if and only if both conditions A1 + A4 > 0 and A1A4 + A2A3 > 0 hold simultaneously.

On other direction, following Lemma 2.9, the sufficient condition for the local asymptotic stability
of E∗ is given by

| argσ1| >
qπ
2
, | argσ2| >

qπ
2
,

i.e.,

∣∣∣∣ √4∆ − tr2(J)
tr(J)

∣∣∣∣ > tan
qπ
2
,

i.e.,

∣∣∣∣ √4[A1A4 + A2A3] − (A1 + A4)2

A1 + A4

∣∣∣∣ > tan
qπ
2
.

Now, we study the global stability of E∗.

Theorem 8. The positive equilibrium point E∗ = (G∗, I∗) of the fractional-order model (2.3) is globally
asymptotically stable in V2 = {(G, I) ∈ Ω+ : G

G∗ >
I∗
I > 1, β ≤ p6

νp4G∗ , ν = min{I}}.

Proof. Consider the following positive definite Lyapunov function:

L(G, I) =
(
G −G∗ −G∗ ln

G
G∗

)
+

(
I − I∗ − I∗ ln

I
I∗

)
.

AIMS Mathematics Volume 8, Issue 7, 15824–15843.
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From Lemma 2.7, one obtains the fractional derivative of L with respect to t as

DqL(G, I) ≤
(G −G∗

G

)
DqG +

( I − I∗

I

)
DqI

=
(G −G∗

G

)(
− p1G(t) −

p4IG
βG + 1

+ p7

)
+

( I − I∗

I

)
(p6G(t) − p2I(t))

=
(G −G∗

G

)(
− p1(G −G∗) −

p4IG
βG + 1

+
p4I∗G∗

βG∗ + 1

)
+

( I − I∗

I

)
(p6(G −G∗) − p2(I − I∗))

= −
p1

G
(G −G∗)2 −

p2

I
(I − I∗)2 +

p6

I
(I − I∗)(G −G∗)

+
(G −G∗

G

)(−βG∗p4IG + βGp4I∗G∗ + p4(I∗G∗ − IG)
(βG + 1)(βG∗ + 1)

)
= −

p1

G
(G −G∗)2 −

p2

I
(I − I∗)2 +

p4

G
(G −G∗)(I∗G∗ − IG)
(βG + 1)(βG∗ + 1)

+
p6

I
(I − I∗)(G −G∗) + βG∗p4

(G −G∗)(I∗ − I)
(βG + 1)(βG∗ + 1)

≤ −
p1

G
(G −G∗)2 −

p2

I
(I − I∗)2 +

p4

G
(G −G∗)(I∗G∗ − IG)
(βG + 1)(βG∗ + 1)

+
p6

I
(I − I∗)(G −G∗) + βG∗p4(G −G∗)(I∗ − I)

= −
p1

G
(G −G∗)2 −

p2

I
(I − I∗)2 +

p4

G
(G −G∗)(I∗G∗ − IG)
(βG + 1)(βG∗ + 1)

+ (βG∗p4 −
p6

I
)(G −G∗)(I∗ − I).

Thus, DνL(G, I) < 0 in V2. Furthermore DqL(G, I) = 0 implies that G = G∗, and I = I∗.
Therefore, the singleton {E∗} is the only invariant set such that DqL(G, I) = 0. The Lasalle invariance
principle (see [31, 51]) gives conclusion that E∗ is globally asymptotically stable on Ω+. □

5.2. Hopf bifurcation in the fractional-order system

The Hopf bifurcation of system (2.3) occurs when

| argσ1| =
qπ
2
, | argσ2| =

qπ
2
,

i.e., ∣∣∣ √4∆ − tr2(J)
tr(J)

∣∣∣ = tan
qπ
2
,

Then ∣∣∣∣ √4[A1A4 + A2A3] − (A1 + A4)2

A1 + A4

∣∣∣∣ = tan
qπ
2

is a sufficient conditions of occurring the Hopf bifurcation of the system (2.3).
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6. Discretized of the first-order model of glucose-insulin interaction

In this subsection, we discretize the system (2.1) by using the forward Euler discretization method
in integer order. Replacing dG(t)

dt and dI(t)
dt by the difference quotients

G(t + h) −G(t)
h

, and
I(t + h) − I(t)

h
, respectively.

In this way, one obtains the following system of difference equations:

Gn+1 = Gn + h
[
− p1Gn −

p4InGn

βGn + 1
+ p7

]
,

In+1 = In + h[p6Gn − p2In],

where 0 < h < 1 is the step size. We have Gn+1 = Gn = G and In+1 = In = I at a fixed point. It can
be easily determined that (2.4) has the same fixed point as that given by E∗ = (G∗, I∗) in the fractional
order model (2.3), where

G∗ =
(βp7 − p1) ±

√
(βp7 − p1)2 + 4p7(βp1 +

p4 p6
p2

)

2(βp1 +
p4 p6

p2
)

,

I∗ =
p6

p2
G∗.

The Jacobian matrix of system (2.4) is given by

J2(E∗) =
[
a11 a12

a21 a22

]
, (6.1)

where a11 = 1−Kh, a12 = −
p4G∗h

(βG∗+1) , a21 = hp6, and a22 = 1−p2h, with K = p1+
p4I∗

(βG∗+1)2 , and B = p4 p6G∗

(βG∗+1) .
Note that K > 0 and B > 0. Its characteristic equation is

P2(η) = η2 − (a11 + a22)η + a11a22 − a12a21 = 0.

Following Lemma 4.2, on can obtain the following theorem:

Theorem 9. The positive equilibrium point E∗ = (G∗, I∗) of the discrtized fractional-order model (2.4)

is stable if m < min{m1,m2}, m1 =
q
√

(p2+K)Γ(q+1)
p2K+B , m2 =

q
√

2Γ(q+1)
p2+K , for q ∈ (0, 1] and unstable otherwise.

Proof. At E∗ = (G∗, I∗), the eigenvalues η1 and η2 of the Jacobian matrix (6.1) is given by

η1,2 =
1
2

(
tr(J2) ±

√
tr2(J) − 4 det(J2)

)
,

where

tr(J2) = a11 + a22 = 2 − (p2 + K)h,

det(J2) = a11a22 − a12a21 = 1 − (p2 + K)h + (p2K + B)h2.
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By simple calculation, one obtains

(i) 1 − det(J2) = h[(p2 + K) − (p2K + B)h] > 0, if m < m1, m1 =
q
√

(p2+K)Γ(q+1)
p2K+B ,

(ii) 1 − tr(J2) + det(J2) = (p2 + K)h2 > 0, and

(iii) 1 + tr(J2) + det(J2) = 2(2 − (p2 + K))h + (p2 + K)h2 > 0, if m < m2, m2 =
q
√

2Γ(q+1)
p2+K .

Then, following Lemma 4.2, the positive equilibrium point E∗ = (G∗, I∗) of the discrtized fractional-
order model (2.4) is stable if m < min{m1,m2}, for q ∈ (0, 1] and unstable otherwise. □

6.1. Bifurcation in the discrtization fractional-order system

Neimark-Sacker bifurcation (NSB) is the equivalent of the continuous systems’ Hopf bifurcation
and is also the main tool for proof of the existence of quasi-periodic orbits for the map [11].

Flip bifurcation happens when a new limit cycle occurs from an existing limit cycle, also called as
period-doubling bifurcation, and the period of the new limit cycle is twice that of the old one.

Fold bifurcation, also called saddle-node bifurcation, is the collision or disappearance of two
equilibria in the system.

Lemma 6. The interior equilibrium point E∗ loses its stability

(i) via NSB when (p2 + K)h = 1.
(ii) via flip bifurcation (period doubling) when 2(p2 + K)h = 4 + (p2K + B)h2.

Proof. (i) NSB is occurred when associated Jacobian matrix J2 has two complex conjugate eigenvalues
with modulus 1 [24]. It means

det(J2) = 1, and − 2 < tr(J2) < 2.

Then
(p2 + K)h = 1.

(ii) When a single eigenvalue becomes equal to −1, flip bifurcation occurs. Flip bifurcation is expressed
as a characteristic equation of the related Jacobian matrix in the form of

1 + tr(J2) + det(J2) = 0.

It follows
2(p2 + K)h = 4 + (p2K + B)h2. (6.2)

Thus, by flip bifurcation, the equilibrium point E∗ loses its stability when Eq (6.2) follows.
When a real eigenvalue passes through 1, a fold bifurcation or transcritical bifurcation occurs, or it

is defined as
1 − tr(J2) + det(J2) = 0.

It follows
(p2K + B)h2 = 0.

which is not possible. Since all involved parameters are taken as positive. □
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7. Numerical simulations

Numerical simulations that we provided support the analytical results. First, by using the Matlab
program and using a set of parameter values in Table 1, one simulate numerical system (2.3) for
different values of fractional order q to support analytical results (Figure 1). The nonlinear system (2.3)
is solved by using Adams-Bashforth-Moulton method. Consider the following:

DqG(t) = −0.0565 ×G −
5.72 × 10−6 × I ×G

0.01 ×G
+ 4.43,

DqI(t) == 0.031 ×G − 0.0438 × I,

with G(0) = 295, I(0) = 1008.43, q = 0.5, m = 0.001.

Table 1. Parameters and their values taken from [26].

Parameter G(0) I(0) p1 p2 p4 p6 p7 β

Value 295 1008.43 0.0565 0.0438 5.72 × 10−6 0.031 4.43 0.01
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Figure 1. Dynamical behaviour of the Glucose and Insulin interaction for different values of
q.

For these parameter, E∗ = (78.4404, 55.5172) is asymptomatically stable. According to
Theorem 4.2, E∗ is globally asymptotically stable of system (2.3). In the collection of Figure 2, we
analyse the relationship between the glucose and insulin for different fractional order q.

Second, numerical simulations of the discretized first order system (2.4) are given by taking the
parameter values as shown in Table 1 by using the mathematica program. Consider the following
system:

Gn+1 = Gn +
mq

Γ(q + 1)
[
− 0.0565 ×Gn −

5.72 × 10−6 × In ×Gn

0.01 ×Gn + 1
+ 4.43

]
,

In+1 = In +
mq

Γ(q + 1)
[0.031 ×Gn − 0.0438 × In],

with G(0) = 295, I(0) = 1008.43.
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By simple calculation, system (2.4) has an equilibrium point E∗. Also, one obtains
(i) 1 − det(J2) = h

[
(p2 + K) − (p2K + B)h

]
= 0.0930 > 0, where h = 0.95 < h1 =

(p2+K)
p2K+B = 40.3720,

(ii) 1 − tr(J2) + det(J2) =
(
p2 + K

)
h2 = 0.0906 > 0, and

(iii) 1 + tr(J2) + det(J2) = 2(2 − (p2 + K))h +
(
p2 + K

)
h2 = 3.6999 > 0, where h = 0.95 < h2 =

2
p2+K =

19.9204.
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Figure 2. Phase plot (G − I) for different values of q.

By Theorem 5.1, the equilibrium point E∗ is stable of system (2.4). Behavior of G(t), and I(t), for
different values of h, showing glucose and insulin dynamics are shown in Figures 3 and 4. Also, the
behavior of Glucose, and Insulin concentration versus time for different cases h = 0.75, h = 0.85, and
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h = 0.95 see Figure 5.
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Figure 3. Behaviour of G(t) for different values of q, showing Glucose dynamics.
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Figure 4. Behaviour of I(t) for different values of q, showing insulin dynamics.

0 20 40 60 80 100

0

200

400

600

800

1000

n, q=.75

G
n
,
I n

In

Gn

0 20 40 60 80 100

0

200

400

600

800

1000

n, q=0.85

G
n
,
I n

In

Gn

0 20 40 60 80 100

0

200

400

600

800

1000

n, q=0.95

G
n
,
I n

In

Gn

0 20 40 60 80 100

0

200

400

600

800

1000

n, q=1

G
n
,
I n

In

Gn

Figure 5. Glucose and insulin concentration versus time for different cases of q = 0.75,
q = 0.85, q = 0.95, and q = 1.
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8. Conclusions

In this work, the fractional-order model (2.3) based on the IVGTT was analyzed to learn the
dynamics of interaction the glucose and insulin in the human body. Euler discretization scheme
was applied to discretize fractional-order system model (2.3). Our results suggested the conditions
on parameters, such the existence of periodic solution surrounding the equilibrium point. A Hopf
bifurcation arises in this analysis. From the above discussions, one can deduce that the model is
physiologically consistent and the suggested model may be a useful tool for further research on
Diabetes Mellitus.
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