In this paper, we combine the critical point theory and variational method to investigate the following a class of coupled fractional systems of Choquard type
$ \begin{equation*} \left\{ \begin{array}{l} (-\Delta)^{s}u+\lambda_{1}u& = (I_{\alpha}*|u|^{p})|u|^{p-2}u+\beta v \quad &&\text{in}\\ \mathbb{R}^{N}, \ (-\Delta)^{s}v+\lambda_{2}v& = (I_{\alpha}*|v|^{p})|v|^{p-2}v+\beta u \quad &&\text{in}\ \mathbb{R}^{N}, \end{array} \right. \end{equation*} $
with $ s\in(0, 1), \ N\geq 3, \ \alpha\in(0, N), \ p > 1 $, $ \lambda_{i} > 0 $ are constants for $ i = 1, \ 2 $, $ \beta > 0 $ is a parameter, and $ I_{\alpha}(x) $ is the Riesz Potential. We prove the existence and asymptotic behaviour of positive ground state solutions of the systems by using constrained minimization method and Hardy-Littlewood-Sobolev inequality. Moreover, nonexistence of nontrivial solutions is also obtained.
Citation: Kexin Ouyang, Yu Wei, Huiqin Lu. Positive ground state solutions for a class of fractional coupled Choquard systems[J]. AIMS Mathematics, 2023, 8(7): 15789-15804. doi: 10.3934/math.2023806
In this paper, we combine the critical point theory and variational method to investigate the following a class of coupled fractional systems of Choquard type
$ \begin{equation*} \left\{ \begin{array}{l} (-\Delta)^{s}u+\lambda_{1}u& = (I_{\alpha}*|u|^{p})|u|^{p-2}u+\beta v \quad &&\text{in}\\ \mathbb{R}^{N}, \ (-\Delta)^{s}v+\lambda_{2}v& = (I_{\alpha}*|v|^{p})|v|^{p-2}v+\beta u \quad &&\text{in}\ \mathbb{R}^{N}, \end{array} \right. \end{equation*} $
with $ s\in(0, 1), \ N\geq 3, \ \alpha\in(0, N), \ p > 1 $, $ \lambda_{i} > 0 $ are constants for $ i = 1, \ 2 $, $ \beta > 0 $ is a parameter, and $ I_{\alpha}(x) $ is the Riesz Potential. We prove the existence and asymptotic behaviour of positive ground state solutions of the systems by using constrained minimization method and Hardy-Littlewood-Sobolev inequality. Moreover, nonexistence of nontrivial solutions is also obtained.
[1] | E. D. Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. http://dx.doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004 |
[2] | S. Pekar, Untersuchungüber die Elektronentheorie der Kristalle, Akademie Verlag, Berlin, 1954. |
[3] | E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard nonlinear equation, Stud. Appl. Math., 57 (1977), 93–105. http://dx.doi.org/10.1002/sapm197757293 doi: 10.1002/sapm197757293 |
[4] | R. Penrose, On gravity role in quantum state reduction, Gen. Relat. Gravit., 28 (1996), 581–600. http://dx.doi.org/10.1007/BF02105068 doi: 10.1007/BF02105068 |
[5] | R. Penrose, Quantum computation, entanglement and state reduction, R. Soc. Lond. Philos. Trans. Ser. A-Math. Phys. Eng. Sci., 365 (1998), 1927–1939. http://dx.doi.org/10.1098/rsta.1998.0256 doi: 10.1098/rsta.1998.0256 |
[6] | E. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Stud. Appl. Math., 57 (1977), 93–105. http://dx.doi.org/10.1002/sapm197757293 doi: 10.1002/sapm197757293 |
[7] | P. L. Lions, The Choquard equation and related questions, Nonlinear Anal., 4 (1980), 1063–1072. http://dx.doi.org/10.1016/0362-546X(80)90016-4 doi: 10.1016/0362-546X(80)90016-4 |
[8] | N. Ackermann, On a periodic Schrödinger equation with nonlocal superlinear part, Math. Z., 248 (2004), 423–443. http://dx.doi.org/10.1007/s00209-004-0663-y doi: 10.1007/s00209-004-0663-y |
[9] | D. Cassani, J. Zhang, Choquard-type equations with Hardy-Littlewood-Sobolev upper-critical growth, Adv. Nonlinear Anal., 8 (2018), 1184–1212. http://dx.doi.org/10.1515/anona-2018-0019 doi: 10.1515/anona-2018-0019 |
[10] | E. Lenzmann, Well-posedness for semi-relativistic Hartree equations of critical type, Math. Phys. Anal. Geom., 2 (2007), 43–64. http://dx.doi.org/10.1007/s11040-007-9020-9 doi: 10.1007/s11040-007-9020-9 |
[11] | L. Ma, L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., 195 (2010), 455–467. http://dx.doi.org/10.1007/s00205-008-0208-3 doi: 10.1007/s00205-008-0208-3 |
[12] | P. Ma, J. Zhang, Existence and multiplicity of solutions for fractional Choquard equations, Nonlinear Anal., 164 (2017), 100–117. http://dx.doi.org/10.1016/j.na.2017.07.011 doi: 10.1016/j.na.2017.07.011 |
[13] | H. Berestycki, P. L. Lions, Nonlinear scalar field equations, I existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313–345. http://dx.doi.org/10.1007/BF00250555 doi: 10.1007/BF00250555 |
[14] | V. Moroz, J. van Schaftingen, Existence of groundstates for a class of nonlinear Choquard equations, Trans. Am. Math. Soc., 367 (2015), 6557–6579. http://dx.doi.org/10.1090/S0002-9947-2014-06289-2 doi: 10.1090/S0002-9947-2014-06289-2 |
[15] | N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Rev., 268 (2000), 56–108. http://dx.doi.org/10.1016/S0375-9601(00)00201-2 doi: 10.1016/S0375-9601(00)00201-2 |
[16] | D. Applebaum, Lévy processes: From probability to finance and quantum groups, Notices Am. Math. Soc., 51 (2004), 1336–1347. |
[17] | J. Frölich, B. L. G. Jonsson, E. Lenzmann, Boson stars as solitary waves, Commun. Math. Phys., 274 (2007), 1–30. http://dx.doi.org/10.1007/s00220-007-0272-9 doi: 10.1007/s00220-007-0272-9 |
[18] | H. Lu, X. Zhang, Positive solution for a class of nonlocal elliptic equations, Appl. Math. Lett., 88 (2019), 125–131. http://dx.doi.org/10.1016/j.aml.2018.08.019 doi: 10.1016/j.aml.2018.08.019 |
[19] | D. L$\ddot{u}$, S. Peng, On the positive vector solutions for nonlinear fractional Laplacian systems with linear coupling, Discrete Contin. Dyn. Syst., 37 (2017), 3327–3352. http://dx.doi.org/10.3934/dcds.2017141 doi: 10.3934/dcds.2017141 |
[20] | M. Wang, X, Qu, H. Lu, Ground state sign-changing solutions for fractional Laplacian equations with critical nonlinearity, AIMS Math., 6 (2021), 5028–5039. http://dx.doi.org/10.3934/math.2021297 doi: 10.3934/math.2021297 |
[21] | H. Wang, K. Ouyang, H. Lu, Normalized ground states for fractional Kirchhoff equations with critical or supercritical nonlinearity, AIMS Math., 7 (2022), 10790–10806. http://dx.doi.org/10.3934/math.2022603 doi: 10.3934/math.2022603 |
[22] | P. d'Avenia, G. Siciliano, M. Squassina, On fractional Choquard equations, Math. Mod. Meth. Appl. S., 25 (2015), 1447–1476. http://dx.doi.org/10.1142/S0218202515500384 doi: 10.1142/S0218202515500384 |
[23] | P. Chen, X. Liu, Ground states of linearly coupled systems of Choquard type, Appl. Math. Lett., 84 (2018), 70–75. http://dx.doi.org/10.1016/j.aml.2018.04.016 doi: 10.1016/j.aml.2018.04.016 |
[24] | M. Yang, J. Albuquerque, E. Silva, M. L. Silva, On the critical cases of linearly coupled Choquard systems, Appl. Math. Lett., 91 (2019), 1–8. http://dx.doi.org/10.1016/j.aml.2018.11.005 doi: 10.1016/j.aml.2018.11.005 |
[25] | V. I. Bogachev, Measure Theory, Springer, Berlin, 2007. http://dx.doi.org/10.1007/978-3-540-34514-5 |
[26] | M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. http://dx.doi.org/10.1007/978-1-4612-4146-1 |
[27] | E. H. Lieb, M. Loss, Analysis, 2 Eds., In: Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2001. |
[28] | A. Baernstein, A unified approach to symmetrization, In: Partial Differential Equations of Elliptic Type, Symposia Mathematica, Cambridge: Cambridge University Press, 1994. |