Research article Special Issues

Cauchy problem for fractional $ {(p, q)} $-difference equations

  • Received: 03 February 2023 Revised: 31 March 2023 Accepted: 10 April 2023 Published: 28 April 2023
  • MSC : 34A08

  • In this research article, we deal with the global convergence of successive approximations (s.a) as well as the existence of solutions to a fractional $ {(p, q)} $-difference equation. Then, we discuss the existence result of the solutions of Caputo-type $ {(p, q)} $-difference fractional vector-order equations in a Banach space. Also, we prove a theorem on the global convergence of successive approximations to the unique solution of our problem. Finally, the application of the main results is demonstrated by presenting numerical examples.

    Citation: Abdelatif Boutiara, Mohamed Rhaima, Lassaad Mchiri, Abdellatif Ben Makhlouf. Cauchy problem for fractional $ {(p, q)} $-difference equations[J]. AIMS Mathematics, 2023, 8(7): 15773-15788. doi: 10.3934/math.2023805

    Related Papers:

  • In this research article, we deal with the global convergence of successive approximations (s.a) as well as the existence of solutions to a fractional $ {(p, q)} $-difference equation. Then, we discuss the existence result of the solutions of Caputo-type $ {(p, q)} $-difference fractional vector-order equations in a Banach space. Also, we prove a theorem on the global convergence of successive approximations to the unique solution of our problem. Finally, the application of the main results is demonstrated by presenting numerical examples.



    加载中


    [1] A. Aghajani, M. Mursaleen, A. S. Haghighi, Fixed point theorems for Meir-Keeler condensing operators via measure of noncompactness, Acta Math. Sci., 35 (2015), 552–566. https://doi.org/10.1016/S0252-9602(15)30003-5 doi: 10.1016/S0252-9602(15)30003-5
    [2] J. P. Aubin, I. Ekeland, Applied nonlinear analysis, New York: John Wiley & Sons, 1984.
    [3] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional calculus models and numerical methods, Singapore: World Scientific, 2012.
    [4] J. Banas̀, On measures of noncompactness in Banach spaces, Commentationes Mathematicae Universitatis Carolinae, 21 (1980), 131–143.
    [5] A. Boutiara, J. Alzabut, M. Ghaderi, S. Rezapour, On a coupled system of fractional ${(p, q)}$-differential equation with Lipschitzian matrix in generalized metric space, AIMS Math., 8 (2023), 1566–1591. https://doi.org/10.3934/math.2023079 doi: 10.3934/math.2023079
    [6] A. Boutiara, M. Benbachir, K. Guerbati, Measure of noncompactness for nonlinear Hilfer fractional differential equation in Banach spaces, Ikonion J. Math., 1 (2019), 55–67.
    [7] A. Boutiara, Mixed fractional differential equation with nonlocal conditions in Banach spaces, J. Math. Model., 9 (2021), 451–463. https://doi.org/10.22124/jmm.2021.18439.1582 doi: 10.22124/jmm.2021.18439.1582
    [8] A. Boutiara, S. Etemad, J. Alzabut, A. Hussain, M. Subramanian, S. Rezapour, On a nonlinear sequential four-point fractional q-difference equation involving $q$-integral operators in boundary conditions along with stability criteria, Adv. Differ. Equ., 2021 (2021), 367. https://doi.org/10.1186/s13662-021-03525-3 doi: 10.1186/s13662-021-03525-3
    [9] A. Boutiara, M. Benbachir, M. K. Kaabar, F. Martínez, M. E. Samei, M. Kaplan, Explicit iteration and unbounded solutions for fractional q–difference equations with boundary conditions on an infinite interval, J. Inequal. Appl., 2022 (2022), 29. https://doi.org/10.1186/s13660-022-02764-6 doi: 10.1186/s13660-022-02764-6
    [10] A. Boutiara, M. Benbachir, Existence and uniqueness results to a fractional $q$-difference coupled system with integral boundary conditions via topological degree theory, Int. J. Nonlinear Anal., 13 (2022), 3197–3211. https://doi.org/10.22075/ijnaa.2021.21951.2306 doi: 10.22075/ijnaa.2021.21951.2306
    [11] A. Boutiara, Multi-term fractional $q$-difference equations with $q$-integral boundary conditions via topological degree theory, Commun. Optim. Theory, 2021 (2021), 1. https://doi.org/10.23952/cot.2021.1 doi: 10.23952/cot.2021.1
    [12] R. Chakrabarti, R. A. Jagannathan, A $(p, q)$-oscillator realization of two-parameter quantum algebras, J. Phys. A Math. Gen., 24 (1991), L711–L718. https://doi.org/10.1088/0305-4470/24/13/002 doi: 10.1088/0305-4470/24/13/002
    [13] W. T. Cheng, W. H. Zhang, Q. B. Cai, ${(p, q)}$-gamma operators which preserve $x^2$, J. Inequal. Appl., 2019 (2019), 108. https://doi.org/10.1186/s13660-019-2053-3 doi: 10.1186/s13660-019-2053-3
    [14] K. Deimling, Multivalued differential equations, New York: De Gruyter, 1992. https://doi.org/10.1515/9783110874228
    [15] T. Dumrongpokaphan, S. K. Ntouyas, T. Sitthiwirattham, Separate fractional ${(p, q)}$-integrodifference equations via nonlocal fractional ${(p, q)}$-integral boundary conditions, Symmetry, 13 (2021), 2212. https://doi.org/10.3390/sym13112212 doi: 10.3390/sym13112212
    [16] U. Duran, Post quantum calculus, University of Gaziantep, 2016.
    [17] A. Fernandez, C. Ustaoğlu, On some analytic properties of tempered fractional calculus, J. Comput. Appl. Math., 336 (2020), 112400. https://doi.org/10.1016/j.cam.2019.112400 doi: 10.1016/j.cam.2019.112400
    [18] H. P. Heinz, On the behavior of measure of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Anal. Theor., 7 (1983), 1351–1371. https://doi.org/10.1016/0362-546X(83)90006-8 doi: 10.1016/0362-546X(83)90006-8
    [19] F. H. Jackson, On $q$-difference equations, Am. J. Math., 32 (1910), 305–314. https://doi.org/10.2307/2370183 doi: 10.2307/2370183
    [20] F. H. Jackson, On $q$-difference integrals, Q. J. Pure Appl. Math., 41 (1910), 193–203.
    [21] N. Kamsrisuk, C. Promsakon, S. K. Ntouyas, J. Tariboon, Nonlocal boundary value problems for ${(p, q)}$-difference equations, Differ. Equ. Appl., 10 (2018), 183–195. https://doi.org/10.7153/dea-2018-10-11 doi: 10.7153/dea-2018-10-11
    [22] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
    [23] A. Lasota, Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys., 13 (1965), 781–786.
    [24] F. Mainardi, Fractional calculus and waves in linear viscoelasticity: An introduction to mathematical models, World Scientific, 2022. https://doi.org/10.1142/p614
    [25] A. Meir, E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl., 28 (1969), 326–329. https://doi.org/10.1016/0022-247X(69)90031-6 doi: 10.1016/0022-247X(69)90031-6
    [26] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, 1993.
    [27] G. V. Milovanovic, V. Gupta, N. Malik, ${(p, q)}$-Beta functions and applications in approximation, Bol. Soc. Mat. Mex., 24 (2018), 219–237. https://doi.org/10.1007/s40590-016-0139-1 doi: 10.1007/s40590-016-0139-1
    [28] P. Neang, K. Nonlaopon, J. Tariboon, S. K. Ntouyas, B. Ahmad, Existence and uniqueness results for fractional ${(p, q)}$-difference equations with separated boundary conditions, Mathematics, 10 (2022), 767. https://doi.org/10.3390/math10050767 doi: 10.3390/math10050767
    [29] K. B. Oldham, J. Spanier, The fractional calculus: Theory and applications of differentiation and integration to arbitrary order, New York: Academic Press, 1974.
    [30] I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999.
    [31] P. N. Sadjang, On the fundamental theorem of ${(p, q)}$-calculus and some ${(p, q)}$-taylor formulas, Results Math., 73 (2018), 39. https://doi.org/10.1007/s00025-018-0783-z doi: 10.1007/s00025-018-0783-z
    [32] S. Samko, A. Kilbas, O. Marichev, Fractional integrals and derivatives, Switzerland: Gordon and Breach Science Publishers, 1993.
    [33] W. Shatanawi, A. Boutiara, M. S. Abdo, M. B. Jeelani, K. Abodayeh, Nonlocal and multiple-point fractional boundary value problem in the frame of a generalized Hilfer derivative, Adv. Differ. Equ., 2021 (2021), 294. https://doi.org/10.1186/s13662-021-03450-5 doi: 10.1186/s13662-021-03450-5
    [34] J. Soontharanon, T. Sitthiwirattham, On fractional ${(p, q)}$-calculus, Adv. Differ. Equ., 2020 (2020), 35. https://doi.org/10.1186/s13662-020-2512-7
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1183) PDF downloads(100) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog