In this research article, we deal with the global convergence of successive approximations (s.a) as well as the existence of solutions to a fractional $ {(p, q)} $-difference equation. Then, we discuss the existence result of the solutions of Caputo-type $ {(p, q)} $-difference fractional vector-order equations in a Banach space. Also, we prove a theorem on the global convergence of successive approximations to the unique solution of our problem. Finally, the application of the main results is demonstrated by presenting numerical examples.
Citation: Abdelatif Boutiara, Mohamed Rhaima, Lassaad Mchiri, Abdellatif Ben Makhlouf. Cauchy problem for fractional $ {(p, q)} $-difference equations[J]. AIMS Mathematics, 2023, 8(7): 15773-15788. doi: 10.3934/math.2023805
In this research article, we deal with the global convergence of successive approximations (s.a) as well as the existence of solutions to a fractional $ {(p, q)} $-difference equation. Then, we discuss the existence result of the solutions of Caputo-type $ {(p, q)} $-difference fractional vector-order equations in a Banach space. Also, we prove a theorem on the global convergence of successive approximations to the unique solution of our problem. Finally, the application of the main results is demonstrated by presenting numerical examples.
[1] | A. Aghajani, M. Mursaleen, A. S. Haghighi, Fixed point theorems for Meir-Keeler condensing operators via measure of noncompactness, Acta Math. Sci., 35 (2015), 552–566. https://doi.org/10.1016/S0252-9602(15)30003-5 doi: 10.1016/S0252-9602(15)30003-5 |
[2] | J. P. Aubin, I. Ekeland, Applied nonlinear analysis, New York: John Wiley & Sons, 1984. |
[3] | D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional calculus models and numerical methods, Singapore: World Scientific, 2012. |
[4] | J. Banas̀, On measures of noncompactness in Banach spaces, Commentationes Mathematicae Universitatis Carolinae, 21 (1980), 131–143. |
[5] | A. Boutiara, J. Alzabut, M. Ghaderi, S. Rezapour, On a coupled system of fractional ${(p, q)}$-differential equation with Lipschitzian matrix in generalized metric space, AIMS Math., 8 (2023), 1566–1591. https://doi.org/10.3934/math.2023079 doi: 10.3934/math.2023079 |
[6] | A. Boutiara, M. Benbachir, K. Guerbati, Measure of noncompactness for nonlinear Hilfer fractional differential equation in Banach spaces, Ikonion J. Math., 1 (2019), 55–67. |
[7] | A. Boutiara, Mixed fractional differential equation with nonlocal conditions in Banach spaces, J. Math. Model., 9 (2021), 451–463. https://doi.org/10.22124/jmm.2021.18439.1582 doi: 10.22124/jmm.2021.18439.1582 |
[8] | A. Boutiara, S. Etemad, J. Alzabut, A. Hussain, M. Subramanian, S. Rezapour, On a nonlinear sequential four-point fractional q-difference equation involving $q$-integral operators in boundary conditions along with stability criteria, Adv. Differ. Equ., 2021 (2021), 367. https://doi.org/10.1186/s13662-021-03525-3 doi: 10.1186/s13662-021-03525-3 |
[9] | A. Boutiara, M. Benbachir, M. K. Kaabar, F. Martínez, M. E. Samei, M. Kaplan, Explicit iteration and unbounded solutions for fractional q–difference equations with boundary conditions on an infinite interval, J. Inequal. Appl., 2022 (2022), 29. https://doi.org/10.1186/s13660-022-02764-6 doi: 10.1186/s13660-022-02764-6 |
[10] | A. Boutiara, M. Benbachir, Existence and uniqueness results to a fractional $q$-difference coupled system with integral boundary conditions via topological degree theory, Int. J. Nonlinear Anal., 13 (2022), 3197–3211. https://doi.org/10.22075/ijnaa.2021.21951.2306 doi: 10.22075/ijnaa.2021.21951.2306 |
[11] | A. Boutiara, Multi-term fractional $q$-difference equations with $q$-integral boundary conditions via topological degree theory, Commun. Optim. Theory, 2021 (2021), 1. https://doi.org/10.23952/cot.2021.1 doi: 10.23952/cot.2021.1 |
[12] | R. Chakrabarti, R. A. Jagannathan, A $(p, q)$-oscillator realization of two-parameter quantum algebras, J. Phys. A Math. Gen., 24 (1991), L711–L718. https://doi.org/10.1088/0305-4470/24/13/002 doi: 10.1088/0305-4470/24/13/002 |
[13] | W. T. Cheng, W. H. Zhang, Q. B. Cai, ${(p, q)}$-gamma operators which preserve $x^2$, J. Inequal. Appl., 2019 (2019), 108. https://doi.org/10.1186/s13660-019-2053-3 doi: 10.1186/s13660-019-2053-3 |
[14] | K. Deimling, Multivalued differential equations, New York: De Gruyter, 1992. https://doi.org/10.1515/9783110874228 |
[15] | T. Dumrongpokaphan, S. K. Ntouyas, T. Sitthiwirattham, Separate fractional ${(p, q)}$-integrodifference equations via nonlocal fractional ${(p, q)}$-integral boundary conditions, Symmetry, 13 (2021), 2212. https://doi.org/10.3390/sym13112212 doi: 10.3390/sym13112212 |
[16] | U. Duran, Post quantum calculus, University of Gaziantep, 2016. |
[17] | A. Fernandez, C. Ustaoğlu, On some analytic properties of tempered fractional calculus, J. Comput. Appl. Math., 336 (2020), 112400. https://doi.org/10.1016/j.cam.2019.112400 doi: 10.1016/j.cam.2019.112400 |
[18] | H. P. Heinz, On the behavior of measure of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Anal. Theor., 7 (1983), 1351–1371. https://doi.org/10.1016/0362-546X(83)90006-8 doi: 10.1016/0362-546X(83)90006-8 |
[19] | F. H. Jackson, On $q$-difference equations, Am. J. Math., 32 (1910), 305–314. https://doi.org/10.2307/2370183 doi: 10.2307/2370183 |
[20] | F. H. Jackson, On $q$-difference integrals, Q. J. Pure Appl. Math., 41 (1910), 193–203. |
[21] | N. Kamsrisuk, C. Promsakon, S. K. Ntouyas, J. Tariboon, Nonlocal boundary value problems for ${(p, q)}$-difference equations, Differ. Equ. Appl., 10 (2018), 183–195. https://doi.org/10.7153/dea-2018-10-11 doi: 10.7153/dea-2018-10-11 |
[22] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
[23] | A. Lasota, Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys., 13 (1965), 781–786. |
[24] | F. Mainardi, Fractional calculus and waves in linear viscoelasticity: An introduction to mathematical models, World Scientific, 2022. https://doi.org/10.1142/p614 |
[25] | A. Meir, E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl., 28 (1969), 326–329. https://doi.org/10.1016/0022-247X(69)90031-6 doi: 10.1016/0022-247X(69)90031-6 |
[26] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, 1993. |
[27] | G. V. Milovanovic, V. Gupta, N. Malik, ${(p, q)}$-Beta functions and applications in approximation, Bol. Soc. Mat. Mex., 24 (2018), 219–237. https://doi.org/10.1007/s40590-016-0139-1 doi: 10.1007/s40590-016-0139-1 |
[28] | P. Neang, K. Nonlaopon, J. Tariboon, S. K. Ntouyas, B. Ahmad, Existence and uniqueness results for fractional ${(p, q)}$-difference equations with separated boundary conditions, Mathematics, 10 (2022), 767. https://doi.org/10.3390/math10050767 doi: 10.3390/math10050767 |
[29] | K. B. Oldham, J. Spanier, The fractional calculus: Theory and applications of differentiation and integration to arbitrary order, New York: Academic Press, 1974. |
[30] | I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999. |
[31] | P. N. Sadjang, On the fundamental theorem of ${(p, q)}$-calculus and some ${(p, q)}$-taylor formulas, Results Math., 73 (2018), 39. https://doi.org/10.1007/s00025-018-0783-z doi: 10.1007/s00025-018-0783-z |
[32] | S. Samko, A. Kilbas, O. Marichev, Fractional integrals and derivatives, Switzerland: Gordon and Breach Science Publishers, 1993. |
[33] | W. Shatanawi, A. Boutiara, M. S. Abdo, M. B. Jeelani, K. Abodayeh, Nonlocal and multiple-point fractional boundary value problem in the frame of a generalized Hilfer derivative, Adv. Differ. Equ., 2021 (2021), 294. https://doi.org/10.1186/s13662-021-03450-5 doi: 10.1186/s13662-021-03450-5 |
[34] | J. Soontharanon, T. Sitthiwirattham, On fractional ${(p, q)}$-calculus, Adv. Differ. Equ., 2020 (2020), 35. https://doi.org/10.1186/s13662-020-2512-7 |