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1. Introduction

In the literature, we often find the concept of non-integer (fractional) order derivation, which is the
generalization of the classical derivation. The concept of fractional derivation and fractional
integration are often associated with the names of Riemann-Liouville, while the question of the
generalization of these concepts is older. With particular concentration of physicists and engineers,
remarkable research work has been devoted to the theory of fractional calculus. They assured that the
use of the operators of fractional derivations and fractional integrations is desirable for the description
of memory and hereditary properties of various materials and processes. Indeed, it has been found
that several theoretical and experimental studies show that certain thermal (heat diffusion) (see [29]),
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physical (electricity) (see [22, 26]) and rheological (viscoelasticity) phenomena (see [30, 32]) are
subject to fractional equations.

On the other hand, the concept of the stability of a fractional differential equation appears when
we replaces this equation with an inequality that acts as a perturbation of the equation. Thus, the
question for the stability of fractional differential equations is how do the solutions of the inequality
differ from those of the given fractional differential equation. Considerable work has been given to the
study of the qualitative theory of all kinds of fractional differential equations, and for more details on
this information, see [2, 3, 14, 17, 23, 24, 26, 32, 33].

Quantum calculus is the notion of calculus without limits. Quantum calculus was first defined by
Jackson (see [19, 20]) in 1910. A generalization of quantum calculus, the (p, q)-calculus or
post-quantum calculus, was defined by Chakrabarti and Jagannathan (see [12]). (p, q)-calculus is an
extension of q calculus including two independent quantum parameters p and q, equal to q-calculus
for the case p = 1 and to the classical q-calculus when q goes to 1. Moreover, (p, q)-calculus has
many real world applications, such as mechanics, surfaces, physical sciences, etc. (see [5–11]
and [13, 15, 16, 21, 27, 28, 31]). In the last decades, the (p, q)-calculus has attracted the attention of
many researchers (see [5–11]).

Motivated by the above works in the literature, the aim of the current paper is investigating the
solutions of a fractional vector-order difference equation with Caputo fractional (p, q)-difference
operator in the Banach space, namely,cDι

p,qu(ξ) = F (pιξ, u (pιξ)) , ξ ∈ IT
p,q,

u(0) = u0, u0 ∈ E
ν,

(1.1)

where IT
p,q :=

{(
q
p

)k T
p : k ∈ N0

}
∪ {0}, ua ∈ E

ν, u0 = (u0,1, u0,2, . . . , u0,ν)T , u0, j ∈ E, j = 1, 2, . . . , ν, the
parameter p, q ∈ (0, 1], cDι

p,q denotes the Caputo-type fractional (p, q)-difference of the vector-order
ι = (ι1, . . . , ιν)T , 0 < ι j < 1, F : IT

p,q × E
ν → Eν is a given vector-valued function (v.v.f), and the

unknown v.v.f u : IT
p,q → E

ν is continuous on IT
p,q, where u(ξ) = (u1(ξ), . . . , uν(ξ))T .

In this paper, let E be a Banach space with the norm | · | and let Eν be ν-dimensional Banach space
with the norm ‖u‖ = max j=1,2,...,ν |u j|, ν ∈ N, for every u ∈ Eν, u = (u1, u2, . . . , uν)T , u j ∈ E, j =

1, 2, . . . , ν. Denote by C(IT
p,q,E

ν) the Banach space of continuous functions from IT
p,q to Eν with the

norm ‖u‖∞ = supξ∈IT
p,q
‖u(ξ)‖. By L1(IT

p,q,E
ν), we indicate the space of Bochner integrable functions

from IT
p,q to Eν with the norm ‖u‖L1 =

∫
IT

p,q

‖u(ξ)‖ dξ.

The paper is organized as follows: Section 2 is devoted to some preliminary notions. In Section 3,
we present our main results about the global convergence of s.a and the existence and the uniqueness
of solutions for a fractional (p, q)-difference equation. In Section 4, two examples are given to
demonstrate the theoretical results. Finally, in Section 5, we wrap up this paper by a concluding
remark.
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2. Preliminaries

Definition 2.1. [34] For ι > 0, 0 < q < p ≤ 1 and f defined on IT
p,q the fractional (p, q)-integral is

defined by

Iιp,q f (ξ) :=
1

p( ι2)Γp,q(ι)

∫ ξ

0
(ξ − qs)ι−1

p,q f
(

s
pι−1

)
dp,qs

=
(p − q)ξ

p( ι2)Γp,q(ι)

∞∑
k=0

qk

pk+1

ξ − (
q
p

)k+1

ξ

ι−1

p,q

f
(

qk

pk+ι
ξ

)
,

(2.1)

and
(
I0

p,q f
)

(ξ) = f (ξ), where
(
ι
2

)
is a combination.

Remark 2.1. Note that all integrals are taken in the Bochner sense.

Definition 2.2. [34] Let the continuous function f be defined on IT
p,q. Thus, the Riemann-Liouville

fractional (p, q)-difference is defined by(
Dι

p,q f
)

(ξ) =
(
D[ι]

p,qI
[ι]−ι
p,q f

)
(ξ), for ι > 0, (2.2)

with the smallest integer greater than or equal to ι given by dιe. Note that if ι = 0, then
(
D0

p,q f
)

(ξ) =

f (ξ).

Definition 2.3. [34] Let f be a continuous function defined on IT
p,q. If ι > 0, then the Caputo

fractional (p, q)-difference is stated by(
cDa

p,q f
)

(ξ) =
(
I[ι]−ι

p,q D[ι]
p,q f

)
(ξ). (2.3)

Note that if ι = 0, then
(

cD0
p,q f

)
(ξ) = f (ξ).

Lemma 2.1. [34] Let p, q ∈ (0, 1], 0 < ι < 1 and γ > 0. Thus, we have:(
Iιp,q I

γ
p,qu

)
(ξ) =

(
Iγp,q I

ι
p,qu

)
(ξ) =

(
Iι+γ,ρp,q u

)
(ξ) with u ∈ L1(IT

p,q,E
ν); (2.4)(

CDι
p,q I

ι
p,qu

)
(ξ) = u(ξ) with u ∈ L1(IT

p,q,E
ν); (2.5)(

Iιp,q
CDι

p,qu
)

(ξ) = u(ξ) − c, with u ∈ C1(IT
p,q,E

ν). (2.6)

Remark 2.2. Throughout this paper, all operators related to ι or u ∈ Eν are element-wise.

Definition 2.4. Let u = (u1, · · · , uν)T , u ∈ L1(IT
p,q,E

ν), be a v.v.f and ι = (ι1, · · · , ιν)T , with ν ∈ N, ι j ∈ R

for j = 1, · · · , ν. The (p, q)-difference Riemann-Liouville vector-order fractional (v.o.f) (p, q)-integral
of vector order ι is given by

Iιp,qu(ξ) =
(
Iι1p,qu1(ξ), · · · ,Iινp,quν(ξ)

)T
.

Definition 2.5. Let u = (u1, · · · , uν)T , u ∈ C1(IT
p,q,E

ν), be a vector-valued function and ι = (ι1, · · · , ιν)T ,
with ν ∈ N, ι j ∈ R for j = 1, · · · , ν. The (p, q)-difference Caputo v.o.f (p, q)-difference of vector order ι
is given by

cDι
p,qu(ξ) =

(
cDι1

p,qu1(ξ), · · · , cDιν
p,quν(ξ)

)T
.
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2.1. Measure of non-compactness

In this section, we will exhibit some important properties of the Hausdorff measure of
noncompactness (HMNC).

Definition 2.6. [4] Let V be a bounded subset of a Banach space E. We define the Hausdorff measure
of non-compactness of V as:

κ(V) = inf{ε > 0 : V can be covered by finitely many balls with radius < ε}.

Lemma 2.2. [4] Let Y,W ⊂ E be bounded, and the HMNC possesses the following properties:

i. κ(Y) = 0⇔ Y is relatively compact;

ii. Y ⊂ W ⇒ κ(Y) ≤ κ(W);

iii. κ(Y ∪W) = max{κ(Y), κ(W)};

iv. κ(Y) = κ(Y) = κ(conv(Y)), where Y and conv(Y) are the closure and the convex hull of Y ,
respectively;

v. κ(Y + W) ≤ κ(Y) + κ(W), where Y + W = {u + v : u ∈ Y, v ∈ W};

vi. κ(µY) ≤ |µ|κ(Y), for any µ ∈ R.

Definition 2.7. [25] Let d(X, d) be a metric space. A mapping J on X is called a Meir-Keeler
contraction if, for any ε > 0, there exists σ > 0 in a way that ε ≤ d(u, v) < ε + σ implies
that d(Ju,Jv) < ε, ∀u, v ∈ X.

Definition 2.8. [1] Let U be a non-empty subset of a Banach space E and let κ be a measure of
non-compactness on E. An operator J : U → U is called a Meir-Keeler condensing operator if, for
any ε > 0, there exists σ > 0 in a way that ε ≤ κ(V) < ε +σ implies that κ(J(V)) < ε, for any bounded
V of U.

Theorem 2.1. [1] Let Uθ be a non-empty, convex, bounded and closed subset of a Banach space E and
let κ be a measure of non-compactness on E. If J : Uθ → Uθ is a continuous Meir-Keeler condensing
operator, then J has at least one fixed point, and the set of all fixed points of J in Uθ is compact.

To end this essential part of the paper, we recall the following lemmas.

Lemma 2.3. [2] Let E be a Banach space, and V ⊂ C(IT
p,q,E) be bounded and equicontinuous. Then,

κ(V(ξ)) is continuous on IT
p,q, and κC(V) = maxξ∈IT

p,q
κ(V(ξ)).

Lemma 2.4. [18] Let E be a Banach space and V ⊂ E be bounded. Then, for each ε > 0, there is a
sequence {un}

∞
n=1 ⊂ V in a way that κ(V) ≤ 2κ

(
{un}

∞
n=1

)
+ ε.

Remark 2.3. We call V ⊂ L1(IT
p,q,E) uniformly integrable if there exists f ∈ L1(IT

p,q,R
+) in a way

that ‖u(s)‖ ≤ f (s), ∀u ∈ V, and a.e. s ∈ IT
p,q.

Lemma 2.5. [18] If {un}
∞
n=1 ⊂ L1(IT

p,q,E) is uniformly integrable, then ξ 7→ κ

({
un(ξ)

}∞
n=1

)
is measurable,

and

κ

({∫ ξ

a
un(τ) dτ

}∞
n=1

)
≤ 2

∫ ξ

a
κ({un(τ)}∞n=1) dτ.
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3. Main results

Definition 3.1. A function u ∈ C(IT
p,q,E

ν) is called a solution of the Cauchy problem (1.1) if u
satisfies cDι

p,qu(ξ) = F (pιξ, u (pιξ)) for a.e. ξ ∈ IT
p,q and the initial condition u(0) = u0.

The next lemma is crucial to the forthcoming discussions.

Lemma 3.1. For any ϕ ∈ C(IT
p,q,R) the solution u of the linear fractional (p, q)-difference equationcDι
p,qu(ξ) = ϕ(ξ), for a.e. ξ ∈ IT

p,q, 0 < ι < 1,
u(0) = u0 ∈ R,

(3.1)

is defined by the next equation:

u(ξ) = ua +
1

p( ι2)Γp,q(ι)

∫ ξ

0
(ξ − qs)(ι−1)ϕ(ps)dp,qs, ξ ∈ IT

p,q. (3.2)

Taking into account Definition 2.5 for the (p, q)-difference Caputo vector-order fractional (p, q)-
difference of vector order ι, from Lemma 3.1 we obtain the following result:

Lemma 3.2. For each φ ∈ C(IT
p,q,E

ν) the solution u : IT
p,q → E

ν of the linear (p, q)-difference vector-
order fractional equation cDι

p,qu(ξ) = φ(ξ), for a.e. ξ ∈ IT
p,q,

u(0) = ϑ, ϑ ∈ Eν,
(3.3)

with ϑ = (ϑ1, ϑ2, . . . , ϑν)T , is defined by the next equations:

ui(ξ) = ϑi +
1

p(ιi2)Γp,q(ιi)

∫ ξ

0
(ξ − qs)(ιi−1)φi(ps)dp,qs, ξ ∈ IT

p,q, i = 1, 2, . . . , ν. (3.4)

Alternatively, it can be written by the following form:

u(ξ) = ϑ +
1

p( ι2)Γp,q(ι)

∫ ξ

0
(ξ − qs)(ι−1)φ(ps)dp,qs, ξ ∈ IT

p,q, (3.5)

where

1

p( ι2)Γp,q(ι)

∫ ξ

0
(ξ − qs)(ι−1)φ(ps)dp,qs =

(
1

p(ι12)Γp,q(ι1)

∫ ξ

0
(ξ − qs)(ι1−1)φ1(ps)dp,qs,

1

p(ι22)Γp,q(ι2)

∫ ξ

0
(ξ − qs)(ι2−1)φ2(ps)dp,qs, . . . ,

1

p(ιν2)Γp,q(ιν)

∫ ξ

0
(ξ − qs)(ιν−1)φν(ps)dp,qs

)T
.

Definition 3.2. A function u ∈ C(IT
p,q,E

ν) forms a solution of the Cauchy problem (1.1) if and only if
u fulfills the integral equation

u(ξ) = ϑ +
1

p( ι2)Γp,q(ι)

∫ ξ

0
(ξ − qs)(ι−1)F (ps, u (ps)) dp,qs, ξ ∈ IT

p,q. (3.6)
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Let us now present our main results.

Theorem 3.1. Suppose the following:

(A1) The function F : IT
p,q × E

ν → Eν satisfies Carathodory conditions.

(A2) There exists a continuous function ω : IT
p,q → R+ and a nondecreasing continuous function

ϕ : R+ → R+ such that

‖F (ξ, u)‖ ≤ ω(ξ)ϕ(‖u‖), ξ ∈ IT
p,q, u ∈ Eν.

(A3) For every V ⊂ Eν and each ξ ∈ IT
p,q, we have

κ (F (ξ,V)) ≤ ω(ξ)κ(V).

Then, the Cauchy problem (1.1) possesses at least one solution on IT
p,q, provided that

Γp,q(ι j + 1) > 4
(T

p

)ι j

ω∗, (3.7)

where ω∗ := supξ∈IT
p,q
ω(ξ).

Proof. Let θ > 0 be any number such that

θ ≥ ‖u0‖ + Θιω
∗ϕ(θ),

with Θι = max j=1,2,...,ν

{ (
T
p

)ι j
Γp,q(ι j+1)

}
.

Define the operator J : C(IT
p,q,E

ν)→ C(IT
p,q,E

ν) by

(Ju)(ξ) = u0 +
1

p( ι2)Γp,q(ι)

∫ ξ

0
(ξ − qs)(ι−1)F (ps, u (ps)) dp,qs, (3.8)

with (Ju)(ξ) = ((Ju1)(ξ), (Ju2)(ξ), . . . , (Juν)(ξ))T where

(Ju j)(ξ) = u0, j +
1

p(ι j2)Γp,q(ι j)

∫ ξ

0
(ξ − qs)(ι j−1)F

(
ps, u j (ps)

)
dp,qs. (3.9)

According to (A1) and (A2), J is well-defined. Then, the existence of a mild solution of
system (1.1) is equivalent to the fixed point problem of u = Ju.

Consider the set Uθ := {u ∈ C(IT
p,q,E

ν) : ‖u‖∞ ≤ θ}. Clearly, the set Uθ is a closed, convex and
bounded subset of the Banach space C(IT

p,q,E
ν). In order to prove that the assumptions of Theorem are

satisfied, we will divide the proof into four claims.
Claim 1. J(Uθ) ⊆ Uθ.

For each ξ ∈ IT
p,q and any u ∈ Uθ, by (A2), for any j, one has

|(Ju j)(ξ)| ≤ |u0, j| +
1

p(ι j2)Γp,q(ι j)

∫ ξ

0
(ξ − qs)(ι j−1)|F

(
ps, u j (ps)

)
|dp,qs.
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Taking the maximum over j, we get

‖Ju(ξ)‖ ≤ ‖u0‖ + max
j=1,2,...,ν

 1

p(ι j2)Γp,q(ι j)

∫ ξ

0
(ξ − qs)(ι j−1)|F

(
ps, u j (ps)

)
|dp,qs


≤ ‖u0‖ + max

j=1,2,...,ν

 1

p(ι j2)Γp,q(ι j)

∫ ξ

0
(ξ − qs)(ι j−1)ω(ξ)ϕ(‖u‖)dp,qs


≤ ‖u0‖ + max

j=1,2,...,ν


(T

p

)ι j

Γp,q(ι j + 1)

ω∗ϕ(θ)

:= ‖u0‖ + Θιω
∗ϕ(θ)

≤ θ,

Hence, ‖Ju‖∞ ≤ θ, which implies that J(Uθ) ⊆ Uθ.
Claim 2. J is continuous.

For ξ ∈ IT
p,q, let {un} be a sequence that converges to u in Uθ. For any j, we have

|(Jun, j)(ξ) − (Ju j)(ξ)| ≤
1

p(ι j2)Γp,q(ι j)

∫ ξ

0
(ξ − qs)(ι j−1)|F

(
ps, un, j (ps)

)
− F

(
ps, u j (ps)

)
|dp,qs.

As in the previous claim, taking the maximum over j gives

‖(Jun)(ξ) − (Ju)(ξ)‖ ≤ max
j=1,2,...,ν


∫ ξ

0

(ξ − qs)(ι j−1)

p(ι j2)Γp,q(ι j)
|F

(
ps, un, j (ps)

)
− F

(
ps, u j (ps)

)
|dp,qs


≤ Θι‖F (·, un(·)) − F (·, u(·))‖.

In view of (A1), using the Lebesgue dominated convergence theorem, we infer that ‖Jun − Ju‖∞ →
0 when n→ ∞. Then, J is continuous.

Claim 3. J is bounded and equicontinuous.

From Claim 1, J(Uθ) = {J(u) : u ∈ Uθ} ⊂ Uθ, and consequently, for u ∈ Uθ, we have ‖Ju‖∞ ≤ θ,
which shows thatJ is bounded. Now, we will prove thatJ is equicontinuous. For ξ1 < ξ2, ξ1, ξ2 ∈ IT

p,q

and u ∈ Uθ, for any j, we get
|(Ju j)(ξ2) − (Ju j)(ξ1)|

≤

∣∣∣∣∣∣ 1

p(ι j2)Γp,q(ι j)

∫ ξ1

0
(ξ2 − qs)(ι j−1)F

(
ps, u j (ps)

)
dp,qs

+
1

p(ι j2)Γp,q(ι j)

∫ ξ2

ξ1

(ξ1 − qs)(ι j−1)F
(
ps, u j (ps)

)
|dp,qs

∣∣∣∣∣∣
≤

∫ ξ1

0

(
(ξ2 − qs)(ι j−1) − (ξ1 − qs)(ι j−1)

)
p(ι j2)Γp,q(ι j)

|F
(
ps, u j (ps)

)
|dp,qs

+
1

p(ι j2)Γp,q(ι j)

∫ ξ2

ξ1

(ξ1 − qs)(ι j−1)|F
(
ps, u j (ps)

)
|dp,qs. (3.10)
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Thus, applying the maximum over j on (3.10), we derive that
‖(Ju)(ξ2) − (Ju)(ξ1)‖

≤ max
j=1,2,...,ν


∫ ξ1

0

[
(ξ2 − qs)(ι j−1)

p(ι j2)Γp,q(ι j)
−

(ξ1 − qs)(ι j−1)

p(ι j2)Γp,q(ι j)

]
ω(ξ)ϕ(‖u‖)dp,qs


+ max

j=1,2,...,ν

 1

p(ι j2)Γp,q(ι j)

∫ ξ2

ξ1

(ξ1 − qs)(ι j−1)ω(ξ)ϕ(‖u‖)dp,qs


≤ max

j=1,2,...,ν


∫ ξ1

0

[
(ξ2 − qs)(ι j−1)

p(ι j2)Γp,q(ι j)
−

(ξ1 − qs)(ι j−1)

p(ι j2)Γp,q(ι j)

]
dp,qs

ω∗ϕ(θ)

+ max
j=1,2,...,ν

 1

p(ι j2)Γp,q(ι j)

∫ ξ2

ξ1

(ξ1 − qs)(ι j−1)dp,qs

ω∗ϕ(θ).

As |ξ2 − ξ1| → 0, ‖(Ju)(ξ2) − (Ju)(ξ1)‖∞ → 0. Hence, we deduce that J(Uθ) is equicontinuous.
Claim 4. J is a Meir-Keeler condensing operator.

We show that for given ε > 0, ∃ ι > 0 in a way that

ε ≤ κC(V) < ε + ι =⇒ κC(JV) < ε, V ⊂ Uθ.

In view of Lemma 2.4 and the properties of κ, for every bounded V ⊂ Uθ and ε′ > 0, there exists a
sequence {un}

∞
n=1 ⊂ V in a way that

κ (JV(ξ)) ≤ 2κ

 1

p( ι2)Γp,q(ι)

∫ ξ

0
(ξ − qs)(ι−1)F

(
ps, {un (ps)}∞n=1

)
dp,qs

 + ε′.

By virtue of Lemma 2.5 and (A3), we get

κ (JV(ξ)) ≤
4

p( ι2)Γp,q(ι)

∫ ξ

0
(ξ − qs)(ι−1)κ(F

(
ps, {un (ps)}∞n=1

)
)dp,qs + ε′

≤
4

p( ι2)Γp,q(ι)

∫ ξ

0
(ξ − qs)(ι−1)ω(ξ)κ({un (ps)}∞n=1)dp,qs + ε′

≤
4
(T

p

)ι jω∗

Γp,q(ι j + 1)
κC(V) + ε′.

Note that the above inequality holds true for every ε′ > 0. Thus, we get κ (JV(ξ)) ≤
4
(

T
p

)ι j
ω∗

Γp,q(ι j+1)κC(V).
Also, since J(V) ⊂ Uθ is bounded and equicontinuous and from Lemma 2.3, we have κC(J(V)) =

maxξ∈IT
p,q
κ(J(V)). Hence, κC(J(V)) ≤

4
(

T
p

)ι j
ω∗

Γp,q(ι j+1)κC(V).
Note that:

κC(J(V)) ≤
4
(T

p

)ι jω∗

Γp,q(ι j + 1)
κC(V) < ε,

and this implies that κC(V) < Γp,q(ι j+1)

4
(

T
p

)ι j
ω∗
ε.
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Hence, for given ε > 0 and taking σ =
Γp,q(ι j+1)−4

(
T
p

)ι j
ω∗

4
(

T
p

)ι j
ω∗

ε, we obtain that ε ≤ κC(V) < ε + σ, which

gives κC(V) < ε, for any V ⊂ Uθ. Consequently, we infer that the operator J : Uθ → Uθ is a Meir-
Keeler operator. So, Theorem 2.1 ensures that J has at least one fixed point u ∈ Uθ which is the
solution of the Cauchy problem (1.1), as desired.

Let us now exhibit the main result about the global convergence of successive approximations (s.a).
Set %IT

p,q := %IT
p,q, for any % ∈ [0, 1]. In order to to prove our main results, we need the following

assumptions.

(H1) The function F : %IT
p,q × E

ν → Eν satisfies Carathodory conditions.

(H2) There exist a constant ς > 0 and a continuous function h : IT
p,q × [0, ς] → R+ such that h(ξ, ·) is

nondecreasing for all ξ ∈ IT
p,q, and

|φ(ξ, ρ) − φ(ξ, ρ̄)| ≤ h(ξ, |ρ − ρ̄|) (3.11)

satisfies for all ξ ∈ IT
p,q and ρ, ρ̄ ∈ R such that |ρ − ρ̄| ≤ ς.

(H3) There exists a continuous function ω : IT
p,q → R

+ and a nondecreasing continuous function
ϕ : R+ → R+ such that

‖F (ξ, u)‖ ≤ ω(ξ)ϕ(‖u‖), ξ ∈ IT
p,q, u ∈ Eν.

(H4) R ≡ 0 is the only function in C
(
δIT

p,q, [0, ς]
)

satisfying the integral inequality

R(ξ) ≤ max
j=1,2,...,ν


∫ ξδ

0

(ξ − qs)(ι j−1)

p(ι j2)Γp,q(ι)
h (ps,R (ps)) dp,qs

 (3.12)

with % ≤ δ ≤ 1.

Definition 3.3. We present the s.a of the problem (1.1) as

u0(ξ) = u0, ξ ∈ IT
p,q,

un+1(ξ) = u0 +
1

p( ι2)Γp,q(ι)

∫ ξ

0
(ξ − qs)(ι−1)F (ps, un (ps)) dp,qs, ξ ∈ IT

p,q.

Theorem 3.2. Suppose that (H1)–(H4) hold. Thus, the s.a un, n ∈ N are defined, and we have a
convergence towards the unique solution of problem (1.1) uniformly on IT

p,q.

Proof. Since un is in C(IT
p,q,E

ν), there exists ν > 0 satisfying

‖un‖ ≤ ν.

By (H1), the s.a are well-defined. For every ξ1, ξ2 ∈ IT
p,q with ξ1 < ξ2, and for all ξ ∈ IT

p,q,
|(Ju j,n)(ξ2) − (Ju j,n)(ξ1)|

≤

∣∣∣∣∣∣ 1

p(ι j2)Γp,q(ι j)

∫ ξ1

0
(ξ2 − qs)(ι j−1)F

(
ps, u j,n−1 (ps)

)
dp,qs
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+
1

p(ι j2)Γp,q(ι j)

∫ ξ2

ξ1

(ξ1 − qs)(ι j−1)F
(
ps, u j,n−1 (ps)

)
|dp,qs

∣∣∣∣∣∣
≤

∫ ξ1

0

(
(ξ2 − qs)(ι j−1) − (ξ1 − qs)(ι j−1)

)
p(ι j2)Γp,q(ι j)

|F
(
ps, u j,n−1 (ps)

)
|dp,qs

+
1

p(ι j2)Γp,q(ι j)

∫ ξ2

ξ1

(ξ1 − qs)(ι j−1)|F
(
ps, u j,n−1 (ps)

)
|dp,qs. (3.13)

Thus, applying the maximum over j on (3.13), we derive that
‖(Ju)(ξ2) − (Ju)(ξ1)‖

≤ max
j=1,2,...,ν


∫ ξ1

0

[
(ξ2 − qs)(ι j−1)

p(ι j2)Γp,q(ι j)
−

(ξ1 − qs)(ι j−1)

p(ι j2)Γp,q(ι j)

]
ω(ξ)ϕ(‖u‖)dp,qs


+ max

j=1,2,...,ν

 1

p(ι j2)Γp,q(ι j)

∫ ξ2

ξ1

(ξ1 − qs)(ι j−1)ω(ξ)ϕ(‖u‖)dp,qs


≤ max

j=1,2,...,ν


∫ ξ1

0

[
(ξ2 − qs)(ι j−1)

p(ι j2)Γp,q(ι j)
−

(ξ1 − qs)(ι j−1)

p(ι j2)Γp,q(ι j)

]
dp,qs

ω∗ϕ(θ)

+ max
j=1,2,...,ν

 1

p(ι j2)Γp,q(ι j)

∫ ξ2

ξ1

(ξ1 − qs)(ι j−1)dp,qs

ω∗ϕ(θ).

As |ξ2 − ξ1| → 0, ‖(Ju)(ξ2) − (Ju)(ξ1)‖∞ → 0. Hence, we deduce the equicontinuity on IT
p,q. of the

sequence {un, n ∈ N}.
Set µ := sup {% ∈ [0, 1] : {un(ξ)} converges uniformly on %IT

p,q

}
.

If µ = 1, we have the global convergence of s.a. We will assume that µ < 1, and {un(ξ)} is equi-
continuous on µIT

p,q, so it converges uniformly towards a function ũ(ξ). If we prove it, there is δ ∈ (µ, 1]
satisfying {un(ξ)} converges uniformly on δIT

p,q, so we find a contradiction.
Set u(ξ) = ũ(ξ) for all ξ ∈ µIT

p,q.
By (H2), there are a positive constant ζ and a continuous function h : IT

p,q × [0, ζ] → R+

satisfying (3.11). Then, there are

δ ∈ [µ, 1] and n0 ∈ N,

satisfying, for all ξ ∈ δIT
p,q and n,m > n0, we get

|un(ξ) − um(ξ)| ≤ ζ.

For all ξ ∈ δIT
p,q, set

R(n,m)(ξ) = |un(ξ) − um(ξ)| ,
Rk(ξ) = sup

n,m≥k
R(n,m)(ξ).

Rk(ξ) is a non-increasing sequence, so it converges to a function R(ξ), for all ξ ∈ δIT
p,q. By the equi-

continuity of {Rk(ξ)} we derive

lim
k→∞

Rk(ξ) = R(ξ) uniformly on δIT
p,q.
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Moreover, for each ξ ∈ δIT
p,q and n,m ≥ k, we get

R(n,m)(ξ) =
∣∣∣u j,n(ξ) − u j,m(ξ)

∣∣∣
≤

∣∣∣∣∣∣ 1

p(ι j2)Γp,q(ι)

∫ ξ

0
(ξ − qs)(ι j−1)F

(
ps, u j,n−1 (ps)

)
dp,qs

−
1

p( ι2)Γp,q(ι j)

∫ ξ

0
(ξ − qs)(ι j−1)F

(
ps, u j,m−1 (ps)

)
dp,qs

∣∣∣∣∣∣
≤

∫ ξ

0

(ξ − qs)(ι j−1)

p(ι j2)Γp,q(ι)

∣∣∣∣F (
ps, u j,n−1 (ps)

)
− F

(
ps, u j,m−1 (ps)

) ∣∣∣∣dp,qs

≤

∫ ξδ

0

(ξ − qs)(ι j−1)

p(ι j2)Γp,q(ι)

∣∣∣∣F (
ps, u j,n−1 (ps)

)
− F

(
ps, u j,m−1 (ps)

) ∣∣∣∣dp,qs.

Taking the maximum over j and using (3.11), we have

R(n,m)(ξ) = |un(ξ) − um(ξ)|

≤ max
j=1,2,...,ν


∫ ξδ

0

(ξ − qs)(ι j−1)

p(ι j2)Γp,q(ι)
h
(
ps,

∣∣∣∣u j,n−1 (ps) − u j,m−1 (ps)
∣∣∣∣) dp,qs


≤ max

j=1,2,...,ν


∫ ξδ

0

(ξ − qs)(ι j−1)

p(ι j2)Γp,q(ι)
h
(
ps,R(n−1,m−1) (ps)

)
dp,qs

 .
Thus

Rk(ξ) ≤ max
j=1,2,...,ν


∫ ξδ

0

(ξ − qs)(ι j−1)

p(ι j2)Γp,q(ι)
h (ps,Rk−1 (ps)) dp,qs

 .
According to the Lebesgue-dominated convergence theorem, we can obtain

R(ξ) ≤ max
j=1,2,...,ν


∫ ξδ

0

(ξ − qs)(ι j−1)

p(ι j2)Γp,q(ι)
h (ps,R (ps)) dp,qs

 .
By (H1) and (H4) we have R ≡ 0 on δIT

p,q, which gives that limk→∞ Rk(ξ) = 0 uniformly on δIT
p,q. Thus,

{uk(ξ)}∞k=1 is a Cauchy sequence on δIT
p,q. So, {uk(ξ)}∞k=1 is uniformly convergent on δIT

p,q which leads to
a contradiction.

Then, {uk(ξ)}∞k=1 converges uniformly on IT
p,q to a continuous function u∗(ξ).

According to the Lebesgue-dominated convergence theorem, we have

lim
k→∞

u0 +
1

p(ι j2)Γp,q(ι)

∫ ξ

0
(ξ − qs)(ι j−1)F (ps, uk (ps)) dp,qs

= u0 +
1

p(ι j2)Γp,q(ι)

∫ ξ

0
(ξ − qs)(ι j−1)F (ps, u∗ (ps)) dp,qs,

∀ξ ∈ IT
p,q. This implies that u∗ is a solution to the system (1.1).
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Now, we will show the uniqueness of the solutions of system (1.1). Set u and w as the two solutions
of (1.1). Thus, set

µ := sup
{
% ∈ [0, 1] : u1(ξ) = u2(ξ) for ξ ∈ %IT

p,q

}
,

and assume that µ < 1. There exist a positive constant ζ and a function h : µIT
p,q× [0, ζ] → R+

satisfying (3.11). Choose δ ∈ (%, 1) such that

|u(ξ) − w(ξ)| ≤ ζ for ξ ∈ δIT
p,q.

Then, for any ξ ∈ δIT
p,q, we get∣∣∣u j(ξ) − w j(ξ)

∣∣∣
≤

∣∣∣∣∣∣ 1

p(ι j2)Γp,q(ι)

∫ ξ

0
(ξ − qs)(ι j−1)F

(
ps, u j (ps)

)
dp,qs

−
1

p( ι2)Γp,q(ι j)

∫ ξ

0
(ξ − qs)(ι j−1)F

(
ps,w j (ps)

)
dp,qs

∣∣∣∣∣∣
≤

∫ ξ

0

(ξ − qs)(ι j−1)

p(ι j2)Γp,q(ι)

∣∣∣∣F (
ps, u j (ps)

)
− F

(
ps,w j (ps)

) ∣∣∣∣dp,qs

≤

∫ ξδ

0

(ξ − qs)(ι j−1)

p(ι j2)Γp,q(ι)

∣∣∣∣F (
pι jt, u j (ps)

)
− F

(
ps,w j (ps)

) ∣∣∣∣dp,qs.

Taking the maximum over j and using (3.11), we get

|u(ξ) − w(ξ)|

≤ max
j=1,2,...,ν


∫ ξδ

0

(ξ − qs)(ι j−1)

p(ι j2)Γp,q(ι)
h
(
ps,

∣∣∣∣u j (ps) − w j (ps)
∣∣∣∣) dp,qs

 .
Again, by (H1) and (H4) we get u−w ≡ 0 on δIT

p,q. This gives u = w on δIT
p,q, which is a contradiction.

Therefore, µ = 1, and system (1.1) has a unique solution on IT
p,q.

4. Applications

In this section we give two examples to illustrate our main result. Let

Eν = c0 = {u = (u1, u2, . . . , un, . . .) : un → 0(n→ ∞)} ,

be the Banach space of real sequences converging to zero, endowed with its usual norm

‖u‖∞ = sup
n≥1
|un| .

Example 4.1. Consider the following fractional difference equation posed in c0 :
cDι

p,qu(ξ) = F (ξ, u(ξ)), ξ ∈ IT
p,q := [0, 1],

u(0) = (0, 0, . . . , 0, . . .).
(4.1)
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Note that, this problem is a particular case with the following data:

IT
p,q := [0, 1], ι = 1/2, p = 1/4, q = 1/5.

and F : IT
p,q × c0 −→ c0 is given by

F (ξ, u) =

{
1

eξ + 3

(
1
n2 + arctan (|un|)

)}
n≥1

, for ξ ∈ IT
p,q, u = {un}n≥1 ∈ c0.

It is clear that condition (A1) holds, and

‖F (ξ, u)‖ ≤
1

eξ + 3
(1 + ‖u‖) = ω(ξ)ϕ(‖u‖).

Therefore, the assumption (A2) of Theorem 3.1 is satisfied with ω(ξ) = 1
eξ+3 , ξ ∈ IT

p,q and ϕ(x) =

1 + x, x ∈ [0,∞). On the other hand, for any bounded set V ⊂ c0, we have

κ (F (ξ,V)) ≤ ω(ξ)κ(V), a.e. t ∈ IT
p,q.

Hence, (A3) is satisfied. Now, we check that condition (3.7) is satisfied. Indeed, ∆ = 4ω∗
Γp,q(ι+1) =

1
Γp,q(1/2+1) < 1, and (1 + θ)∆ ≤ θ. Thus,

θ ≥
∆

1 − ∆
= 2.8143

Then, θ can be chosen as θ = 3. Consequently, all the hypotheses of Theorem 3.1 are satisfied, and we
conclude that the problem (4.1) has at least one solution u ∈ C

(
IT

p,q, c0

)
.

Example 4.2. We consider the following Caputo fractional (p, q)-difference Cauchy problem:
cDι

p,qu(ξ) = F (ξ, u(ξ)), ξ ∈ IT
p,q := [0, 1], ι ∈ (0, 1),

u(0) = 1,
(4.2)

where
F (ξ, u(ξ)) =

(
eξ−1 + |u(ξ)|

) ξ(
1 + ξ2) (1 + |u(ξ)|)

.

For each u, ū ∈ R and ξ ∈ IT
p,q we have

|F (ξ, u) − F (ξ, ū)| ≤ ξ
(
1 + eξ−1

)
|u − ū|.

This leads to the condition (3.11), which holds for each ξ ∈ IT
p,q, ζ > 0, and the function

h : [0, 1] × [0, ζ]→ [0,∞),

such that
h(ξ, u) = ξ

(
1 + eξ−1

)
|u|.

Then, Theorem 3.2 leads us to the successive approximations un, n ∈ N, defined by

u0(ξ) = 1, ξ ∈ IT
p,q,

un+1(ξ) = 1 +
1

p( ι2)Γp,q(ι)

∫ ξ

0
(ξ − qs)(ι−1)F (ps, un (ps)) dp,qs, t ∈ IT

p,q,

which converges uniformly on IT
p,q to the unique solution of the problem (4.2).
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5. Conclusions

In this paper, we investigate the global convergence of s.a and the existence and the uniqueness of
solutions to a fractional (p, q)-difference equation by using the measure of non-compactness method
with Meir-Keeler fixed point theorem of condensing operators. Two examples are also provided to
demonstrate the main results presented in this paper.
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