Research article Special Issues

European option pricing problem based on a class of Caputo-Hadamard uncertain fractional differential equation

  • Received: 22 February 2023 Revised: 05 April 2023 Accepted: 12 April 2023 Published: 27 April 2023
  • MSC : 34A08, 45G15, 91G30

  • Uncertain fractional differential equation (UFDE) is very suitable for describing the dynamic change in uncertain environments. In this paper, we consider the European option pricing problem by applying the Caputo-Hadamard UFDEs to simulate the dynamic change of stock price. First, an uncertain stock model with the mean-reverting process is studied, and the European option pricing formulas are given. Then, the effect of uncertain interference on the bond is considered, and the corresponding European option pricing formulas are presented. Finally, some numerical examples are given to illustrate the effectiveness of pricing formulas.

    Citation: Hanjie Liu, Yuanguo Zhu, Yiyu Liu. European option pricing problem based on a class of Caputo-Hadamard uncertain fractional differential equation[J]. AIMS Mathematics, 2023, 8(7): 15633-15650. doi: 10.3934/math.2023798

    Related Papers:

  • Uncertain fractional differential equation (UFDE) is very suitable for describing the dynamic change in uncertain environments. In this paper, we consider the European option pricing problem by applying the Caputo-Hadamard UFDEs to simulate the dynamic change of stock price. First, an uncertain stock model with the mean-reverting process is studied, and the European option pricing formulas are given. Then, the effect of uncertain interference on the bond is considered, and the corresponding European option pricing formulas are presented. Finally, some numerical examples are given to illustrate the effectiveness of pricing formulas.



    加载中


    [1] F. Black, M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ., 81 (1973), 637–654. https://doi.org/10.1086/260062 doi: 10.1086/260062
    [2] X. J. He, S. P. Zhu, Pricing European options with stochastic volatility under the minimal entropy martingale measure, Eur. J. Appl. Math., 27 (2016), 233–247. https://doi.org/10.1017/S0956792515000510 doi: 10.1017/S0956792515000510
    [3] M. Wu, J. Lu, N. Huang, On European option pricing under partial information, Appl. Math., 61 (2016), 61–77. https://doi.org/10.1007/s10492-016-0122-1 doi: 10.1007/s10492-016-0122-1
    [4] Z. Guo, X. Wang, Y. Zhang, Option pricing of geometric Asian options in a subdiffusive Brownian motion regime, AIMS Math., 5 (2020), 5332–5343. https://doi.org/10.3934/math.2020342 doi: 10.3934/math.2020342
    [5] A. Golbabai, O. Nikan, A computational method based on the moving least-squares approach for pricing double barrier options in a time-fractional Black-Scholes model, Comput. Econ., 55 (2020), 119–141. https://doi.org/10.1007/s10614-019-09880-4 doi: 10.1007/s10614-019-09880-4
    [6] Z. Li, X. T. Wang, Valuation of bid and ask prices for European options under mixed fractional Brownian motion, AIMS Math., 6 (2021), 7199–7214. https://doi.org/10.3934/math.2021422 doi: 10.3934/math.2021422
    [7] H. Zhang, G. Wang, Reversal effect and corporate bond pricing in China, Pac.-Basin Finance J., 70 (2021), 101664. https://doi.org/10.1016/j.pacfin.2021.101664 doi: 10.1016/j.pacfin.2021.101664
    [8] H. R. Sheybani, M. O. Buygi, Equilibrium-based Black-Scholes option pricing in electricity markets, IEEE Syst. J., 16 (2022), 5413–5423. https://doi.org/10.1109/JSYST.2021.3131938 doi: 10.1109/JSYST.2021.3131938
    [9] B. Liu, Uncertainty theory, 2 Eds., Berlin: Springer-Verlag, 2007. https://doi.org/10.1007/978-3-540-73165-8
    [10] B. Liu, Uncertainty theory: a branch of mathematics for modeling human uncertainty, Berlin: Springer-Verlag, 2010. https://doi.org/10.1007/978-3-642-13959-8
    [11] B. Liu, Fuzzy process, hybrid process and uncertain process, J. Uncertain Syst., 2 (2008), 3–16.
    [12] B. Liu, Some research problems in uncertainy theory, J. Uncertain Syst., 3 (2009), 3–10.
    [13] X. Chen, B. Liu, Existence and uniqueness theorem for uncertain differential equation, Fuzzy. Optim. Decis. Making, 9 (2010), 69–81. https://doi.org/10.1007/s10700-010-9073-2 doi: 10.1007/s10700-010-9073-2
    [14] X. Chen, D. A. Ralescu, Liu process and uncertain calculus, J. Uncertain Anal. Appl., 1 (2013), 1–12. https://doi.org/10.1186/2195-5468-1-3 doi: 10.1186/2195-5468-1-3
    [15] B. Liu, Extreme value theorems of uncertain process with application to insurance risk model, Soft Comput., 17 (2013), 549–556. https://doi.org/10.1007/s00500-012-0930-5 doi: 10.1007/s00500-012-0930-5
    [16] K. Yao, Extreme values and integral of solution of uncertain differential equation. J. Uncertain Anal. Appl., 1 (2013), 1–21. https://doi.org/10.1186/2195-5468-1-2
    [17] K. B. Oldham, J. Spanier, The fractional calculus, New York: Academic Press, 1974.
    [18] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, theory and applications, New York: Gordon and Breach Science Publishers, 1993.
    [19] K. S. Miller, B. Ross, An introduction to the fractional calculus and differential equations, New York: Wiley, 1993.
    [20] I. Podlubny, Fractional differential equation, San Diego: Academic Press, 1999.
    [21] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier Science, 2006.
    [22] Y. Zhu, Uncertain fractional differential equations and an interest rate model, Math. Method. Appl. Sci., 38 (2015), 3359–3368. https://doi.org/10.1002/mma.3335 doi: 10.1002/mma.3335
    [23] Y. Zhu, Existence and uniqueness of the solution to uncertain fractional differential equation, J. Uncertain Anal. Appl., 3 (2015), 1–11. https://doi.org/10.1186/s40467-015-0028-6 doi: 10.1186/s40467-015-0028-6
    [24] J. Hadamard, Essai sur l'etude des fonctions donnees par leur developpment de Taylor, Gauthier-Villars, 1892.
    [25] Y. Y. Gambo, F. Jarad, D. Baleanu, T. Abdeljawad, On Caputo modification of the Hadamard fractional derivatives. Adv. Differ. Equ., 2014 (2014), 1–12. https://doi.org/10.1186/1687-1847-2014-10
    [26] F. Jarad, T. Abdeljawad, D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2012 (2012), 1–8. https://doi.org/10.1186/1687-1847-2012-142 doi: 10.1186/1687-1847-2012-142
    [27] M. Gohar, C. Li, C. Yin, On Caputo-Hadamard fractional differential equations, Int. J. Comput. Math., 97 (2020), 1459–1483. https://doi.org/10.1080/00207160.2019.1626012 doi: 10.1080/00207160.2019.1626012
    [28] Y. Liu, Y. Zhu, Z. Lu, On Caputo-Hadamard uncertain fractional differential equations, Chaos, Soliton. Fract., 146 (2021), 110894. https://doi.org/10.1016/j.chaos.2021.110894 doi: 10.1016/j.chaos.2021.110894
    [29] Y. Liu, H. Liu, Y. Zhu, An approach for numerical solutions of Caputo-Hadamard uncertain fractional differential equations, Fractal Fract., 6 (2022), 1–14. https://doi.org/10.3390/fractalfract6120693 doi: 10.3390/fractalfract6120693
    [30] B. Liu, Toward uncertain finance theory, J. Uncertain Anal. Appl., 1 (2013), 1–15. https://doi.org/10.1186/2195-5468-1-1 doi: 10.1186/2195-5468-1-1
    [31] X. Chen, Y. Liu, D. A. Ralescu, Uncertain stock model with periodic dividends, Fuzzy Optim. Decis. Making, 12 (2013), 111–123. https://doi.org/10.1007/s10700-012-9141-x doi: 10.1007/s10700-012-9141-x
    [32] R. Gao, K. Liu, Z. Li, L. Lang, American barrier option pricing formulas for currency model in uncertain environment, J. Syst. Sci. Complex., 35 (2022), 283–312. https://doi.org/10.1007/s11424-021-0039-y doi: 10.1007/s11424-021-0039-y
    [33] T. Jin, Y. Sun, Y. Zhu, Extreme values for solution to uncertain fractional differential equation and application to American option pricing model, Phys. A, 534 (2019), 122357. https://doi.org/10.1016/j.physa.2019.122357 doi: 10.1016/j.physa.2019.122357
    [34] Z. Lu, H. Yan, Y. Zhu, European option pricing model based on uncertain fractional differential equation, Fuzzy Optim. Decis. Making, 18 (2019), 199–217. https://doi.org/10.1007/s10700-018-9293-4 doi: 10.1007/s10700-018-9293-4
    [35] Z. Lu, Y. Zhu, B. Li, Critical value-based Asian option pricing model for uncertain financial markets, Phys. A, 525 (2019), 694–703. https://doi.org/10.1016/j.physa.2019.04.022 doi: 10.1016/j.physa.2019.04.022
    [36] J. Peng, K. Yao, A new option pricing model for stocks in uncertainty markets, Int. J. Oper. Res., 8 (2011), 18–26.
    [37] J. Sun, X. Chen, Asian option pricing formula for uncertain financial market, J. Uncertain Anal. Appl., 3 (2015), 1–11. https://doi.org/10.1186/s40467-015-0035-7 doi: 10.1186/s40467-015-0035-7
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1275) PDF downloads(75) Cited by(3)

Article outline

Figures and Tables

Figures(4)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog