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1. Introduction

Option pricing problem is one of the most important problems in financial mathematics. An option
is a contract that gives the holder the right to buy or sell an asset at a fixed price on or before a specified
date. The earliest option pricing model was proposed by Black and Scholes [1] in 1973 and has always
attracted the attention of many scholars. He and Zhu [2] deduced the pricing formulas of the European
option with stochastic volatility. Wu et al. [3] studied a European option pricing problem under a partial
information market. Guo et al. [4] discussed the pricing problem of geometric Asian options under the
condition of subdiffusion Brownian motion. Golbabai and Nikan [5] presented the pricing problem of
double barrier options when the underlying price change is viewed as a fractal transmission system.
Li and Wang [6] studied the valuation of European option bid and asked for prices under the mixed
fractional Brownian motion. Zhang and Wang [7] proposed a new bond pricing model and explained
its advantages by adding the bond market factor to the original pricing model. Sheybani and Buygi [8]
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introduced a new model for option pricing by the Black-Scholes option pricing idea and compared it
with the equilibrium option pricing model.

As we all know that if the sample data is sufficient, the probability distribution of random
phenomena can be established with the probability theory. However, when the sample data is
insufficient or the historical data cannot effectively predict the future situation, some experts in related
fields should be invited to evaluate the reliability of an event, and then apply the experience of experts
to predict the future trend. In order to accurately describe this vague concept, Liu established the
uncertainty theory in 2007 [9] and refined it in 2010 [10]. In order to better describe the dynamic
changes in uncertain environments, Liu [11] proposed the definition of uncertain processes and
uncertain differential equations. Subsequently, Liu [12] introduced a new calculus and applied it to
the fields of finance, control, filtering and dynamical systems. In addition, many scholars have further
studied uncertain differential equations, see [13–16].

Fractional calculus is very suitable for describing the processes with memory and heredity. A
preliminary study on fractional calculus can be found in Oldham and Spanier [17] and Samko
et al. [18]. Some references on fractional differential equations can be seen in [19–21]. Zhu [22]
introduced the concept of UFDEs, and gave the analytic solutions for some special Riemann-Liouville
and Caputo UFDEs. Zhu [23] proved the existence and uniqueness theorem of solutions of UFDEs.
Different from the traditional differential operator

(
d
dt

)p
, Hadamard [24] introduced another differential

operator
(
t d

dt

)p
and named it as Hadamard fractional calculus. Gambo et al. [25] and Jarad et al. [26]

extended the study of Hadamard fractional calculus to the Caputo-Hadamard environment. Gohar
et al. [27] studied the existence and uniqueness for solution of Caputo-Hadamard fractional differential
equations. Liu et al. [28] proposed the definition of Caputo-Hadamard UFDEs, and gave the analytic
solution of Caputo-Hadamard UFDEs. Subsequently, Liu et al. [29] connected the Caputo-Hadamard
UFDE with Caputo-Hadamard fractional differential equation by the concept of α-path.

Based on the uncertainty theory, Liu [30] discussed some applications about uncertain differential
equations in financial markets. Since then, many scholars applied different differential equations to
simulate the dynamic changes of stock prices in uncertain financial markets. Chen et al. [31] proposed
an uncertain stock model with periodic dividends. Gao et al. [32] studied the American barrier option
pricing formulas for the currency model in uncertain environments. Jin et al. [33] proposed an uncertain
stock model with the Caputo UFDE and studied the American option pricing formulas. Lu et al. [34]
established an uncertain stock model with the mean-reverting process, and gave the European option
pricing formulas. Lu et al. [35] studied the Asian option pricing formulas with expected and optimistic
values, respectively. Peng and Yao [36] proposed a new stock model with a mean-reverting process
and gave some option pricing formulas. Sun and Chen [37] proposed an Asian option model suitable
for uncertain financial markets.

In the financial market, the dynamic changes of stock price can be affected by many factors. When
the ordinary differential equations are used to describe the price fluctuations, it is often necessary
to construct extremely complex differential equations. Moreover, some empirical parameters in the
differential equations may be inconsistent with the actual situation. However, the Caputo-Hadamard
UFDEs has the advantages of simple modeling and clear physical meaning of parameters, thus it
becomes an important tool for complex system modeling. Furthermore, the Caputo-Hadamard UFDEs
can well describe the memory properties of dynamic systems in uncertain environment, which can well
meet the special requirements of dynamic systems with heredity properties.

AIMS Mathematics Volume 8, Issue 7, 15633–15650.



15635

We apply the Caputo-Hadamard UFDEs to describe the dynamic changes of stock price, and
present a new uncertain stock model. Consider the effect of uncertain interference on the bond, a
new uncertain stock model is constructed by using the uncertain differential equation and Caputo-
Hadamard UFDE to describe the dynamic changes of bond price and stock price, respectively. The
composition of this paper is as follows: in Section 2, some basic concepts and lemmas in uncertainty
theory and fractional calculus are reviewed. In Section 3, the European option pricing formulas and
some numerical examples are given. In Section 4, a new uncertain stock model is constructed, and
the validity of the corresponding European option pricing formulas is illustrated through the numerical
experiments. The last section gives the conclusion of this paper.

2. Preliminary

In this section, some basic concepts and lemmas of the uncertainty theory will be introduced, such
as uncertain measure, uncertain variable, uncertain process. More detailed information can refer to [9,
10, 21, 26, 28, 29].

2.1. Uncertainty theory

Let Γ be a nonempty set and L be a σ-algebra over Γ. Define an uncertain measure M on the
σ-algebra L. Each element Λ in L is called an event. The set functionM from L to [0, 1] is called
an uncertain measure which satisfies three axioms: (i)M{Γ} = 1 for the universal set Γ; (ii)M{Λ} +
M{Λc} = 1 for any event Λ; (iii)M

{⋃∞
i=1Λi

}
≤

∑∞
i=1M{Λi} for every countable sequence of events

Λ1, Λ2, · · · .
The triplet (Γ, L,M) is called an uncertainty space. The product uncertain measureM was defined

by [10], thus producing the fourth axiom of uncertainty theory. Let (Γk, Lk,Mk) be uncertainty spaces
for k = 1, 2,· · · . The product uncertain measureM is an uncertain measure satisfyingM

{∏∞
k=1Λk

}
=∧∞

k=1Mk {Λk}, where Λk are arbitrarily chosen events from Lk for k = 1, 2, · · · , respectively.
An uncertain variable is a function ξ from an uncertainty space (Γ, L,M) to the set of real numbers

such that {ξ ∈ B} = {γ ∈ Γ|ξ(γ) ∈ B} is an event for any Borel set B of real numbers. The uncertainty
distribution Φ(x) of an uncertain variable ξ is defined by Φ(x) =M{ξ ≤ x} for any real number x. The
expected value of uncertain variable ξ is defined by

E[ξ] =
∫ +∞

0
M{ξ ≥ r}dr −

∫ 0

−∞

M{ξ ≤ r}dr,

which indicated that at least one of the two integrals is finite. If the expected value of uncertain variable
ξ exists, then

E[ξ] =
∫ 1

0
Φ−1(x)dx,

where Φ−1(x) is the inverse uncertainty distribution of uncertain variable ξ. Correspondingly the
variance of uncertain variable ξ is defined by V[ξ] = E

[
(ξ − E[ξ])2

]
. A normal uncertain variable

ξ, denoted by ξ ∼ N(e, σ) with expected value e and variance σ2, has the uncertainty distribution

Φ(x) =
(
1 + exp

(
π(e − x)
√

3σ

))−1

, x ∈ R.
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An uncertain process Ct is said to be a Liu process if it satisfies that: (i) C0 = 0 and almost all
sample paths are Lipschitz continuous; (ii) Ct has stationary and independent increments; (iii) every
increment Cs+t − Cs is a normal uncertain variable with expected value 0 and variance t2, denoted by
Cs+t −Cs ∼ N(0, t). Furthermore, Ct has the uncertainty distribution

Φt(x) =
(
1 + exp

(
−
πx
√

3t

))−1

,

and the inverse uncertainty distribution

Φ−1
t (α) =

t
√

3
π

ln
α

1 − α
.

Based on Liu process, the uncertain calculus was proposed. For any partition of closed interval
[a, b] with a = t1 < t2 < · · · < tk+1 = b, the mesh is written as ∆ = max1≤i≤k |ti+1 − ti|. The uncertain
integral of Xt with respect to Ct is

∫ b

a
XtdCt = lim∆→0

∑k
i=1 Xti ·

(
Cti+1 −Cti

)
, provided that the limit

exists almost surely and is finite. In this case, the uncertain process Xt is said to be integrable. Let f
and g are two integrable function and Ct is a Liu process. Then dXt = f (t, Xt) dt+ g (t, Xt) dCt is called
an uncertain differential equation. A solution Xt of the uncertain differential equation is an uncertain
process, which is equivalent to a solution of the uncertain integral equation

Xt = X0 +

∫ t

0
f (s, Xs) ds +

∫ t

0
g (s, Xs) dCs.

Lemma 2.1 ( [10]). Let X1t, X2t, · · · , Xnt be independent uncertain processes with regular uncertainty
distributions Φ1t,Φ2t, · · · ,Φnt, respectively. If f (x1, x2, · · · , xn) is continuous, strictly increasing
with respect to x1, x2, · · · , xm and strictly decreasing with respect to xm+1, xm+2, · · · , xn, then
f (X1t, X2t, · · · , Xnt) has the inverse uncertainty distribution

Φ−1
t (α) = f

(
Φ−1

1t (α), · · · ,Φ−1
mt (α),Φ−1

m+1,t(1 − α), · · · ,Φ−1
nt (1 − α)

)
.

2.2. Fractional calculus

In this subsection, we present some definitions and properties of Hadamard and Caputo-Hadamard
fractional integrals and derivatives. Unless otherwise stated in this paper, we always assume that
δ = t d

dt , the fractional order p be a real number with 0 < n − 1 < p ≤ n, where n is a positive integer.

Definition 2.1 ( [21]). The Hadamard integral of function f (t) is defined by

J
p
a+ f (t) =

1
Γ(p)

∫ t

a

(
log

t
s

)p−1
f (s)

ds
s
, 0 < a < t,

where the Gamma function is defined by the integral Γ(p) =
∫ ∞

0
e−ttp−1dt.

Definition 2.2 ( [21]). The Hadamard derivative of function f (t) is defined by

HD
p
a+ f (t) =

1
Γ(n − p)

(
t

d
dt

)n ∫ t

a

(
log

t
s

)n−p−1
f (s)

ds
s
, 0 < a < t.
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Definition 2.3 ( [26]). The Caputo-Hadamard derivative of function f (t) is defined as follows:
(i) If p < N+, the Caputo-Hadamard derivative can be represented as

CHD
p
a+ f (t) =

1
Γ(n − p)

∫ t

a

(
log

t
s

)n−p−1
δn f (s)

ds
s
, 0 < a < t.

(ii) If p ∈ N+, then
CHD

p
a+ f (t) = δn f (t), 0 < a < t.

Definition 2.4 ( [28]). Suppose that f , g : [a,∞) × R → R are two continuous functions. Then the
fractional differential equation with initial conditions CHD

p
a+Xt = f (t, Xt) + g (t, Xt) dCt

dt , 0 < a ≤ t,

δkXt

∣∣∣
t=a
= xk, k = 0, 1, · · · , n − 1

(2.1)

is called a Caputo-Hadamard UFDE. The solution Xt of (2.1) is an uncertain process such that

Xt =

n−1∑
k=0

(
log t

a

)k

Γ(k + 1)
xk +

1
Γ(p)

∫ t

a

(
log

t
s

)p−1
f (s, Xs)

ds
s
+

1
Γ(p)

∫ t

a

(
log

t
s

)p−1
g (s, Xs)

dCs

s
.

Lemma 2.2 ( [28]). Assume that the coefficients f (t, x), g(t, x) : [a,∞) × R → R in (2.1) satisfy the
Lipschitz condition

| f (t, x) − f (t, z)| + |g(t, x) − g(t, z)| ≤ L|x − z|, t ≥ a > 0

and the linear growth condition

| f (t, x)| + |g(t, x)| ≤ L(1 + |x|), ∀x ∈ R, t ≥ a > 0, L ≥ 0.

Then the Caputo-Hadamard UFDE (2.1) has a unique solution.

Remark 1. Denote the HD
p
1+,

CHD
p
1+ and J p

1+ by the abbreviations HDp, CHDp and J p, respectively.

Lemma 2.3 ( [28]). Suppose that a be constant, b(t) and σ(t) be two continuous functions on [1,T ].
The Caputo-Hadamard UFDE with initial conditions CHDpXt = aXt + b(t) + σ(t) dCt

dt , t ∈ [1,T ],

δkXt

∣∣∣
t=1
= xk, k = 0, 1, · · · , n − 1

has a solution Xt such that

Xt =

n−1∑
k=0

xk
(
log t

)kEp,k+1
(
a
(
log t

)p)
+

∫ t

1

(
log

t
s

)p−1
Ep,p

(
a
(
log

t
s

)p)
b(s)

ds
s

+

∫ t

1

(
log

t
s

)p−1
Ep,p

(
a
(
log

t
s

)p)
σ(s)

dCs

s
, (2.2)

where the Mittag-Leffler function is defined by Ep,q(t) =
∑∞

k=0
tk

Γ(pk+q) , t ∈ C, p > 0, q > 0.

AIMS Mathematics Volume 8, Issue 7, 15633–15650.



15638

Lemma 2.4 ( [29]). The Caputo-Hadamard UFDE (2.1) has an α-path Xαt which satisfies the following
fractional differential equation CHD

p
a+Xαt = f

(
t, Xαt

)
+

∣∣∣g (
t, Xαt

)∣∣∣Φ−1(α), t ≥ a > 0,

δkXt

∣∣∣
t=a
= xk, k = 0, 1, · · · , n − 1,

(2.3)

where Φ−1(α) =
√

3
π

ln α
1−α , α ∈ (0, 1) is the inverse standard normal uncertainty distribution.

Lemma 2.5 ( [29]). Let Xt and Xαt be unique solution and α-path of the Caputo-Hadamard UFDE
(2.1), respectively. Then  M

{
Xt ≤ Xαt ,∀t ∈ (a,T )

}
= α,

M
{
Xt > Xαt ,∀t ∈ (a,T )

}
= 1 − α.

(2.4)

Furthermore, the solution Xt of (2.1) has the inverse uncertain distribution Φ−1
t (α) = Xαt .

3. Uncertain stock model

In this section, we will present a new uncertain stock model by applying the Caputo-Hadamard
UFDEs to simulate the dynamic changes of stock price in uncertain financial markets. Based on the
proposed uncertain stock model, the pricing formulas of the European call option and the European
put option are given. Suppose that Xt is the bond price and Yt is the stock price at time t. The uncertain
stock model with mean-reverting process satisfy the following equations

dXt = rXtdt,
CHDpYt = (m − aYt) + σdCt

dt , t ∈ [1,T ],

δkY1 = yk, k = 0, 1, . . . n − 1,

(3.1)

where r represents the riskless interest rate, r, m, a, σ are some positive numbers.

3.1. European call option

European option is the option that the buyer must exercise on the expiration time of the option.
Consider the general uncertain stock model, a European call option is a contract that gives the holder
the right to buy a stock at an expiration time T for a strike price K. The stock price at expiration time T
would be YT , and the profit that the holder get from buying the stock would be (YT − K)+. Considering
the time value of money resulted from the bond, the present value of the profit is exp(−rT ) (YT − K)+.
Let fc is the price of this contract, then the net return of the investors is

(
− fc + exp(−rT ) (YT − K)+

)
.

The net return of the banks is opposite. The most reasonable pricing is that the investors and banks
have the same expected return. Thus fc = exp(−rT )E

[
(YT − K)+

]
.

Definition 3.1 ( [10]). Assume a European call option has a strike price K and an expiration time T .
Then the European call option price based on model (3.1) is

fc = exp(−rT )E
[
(YT − K)+

]
,

where YT is the stock price at time T .
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Theorem 3.1 (European call option pricing formula). Assume a European call option for the uncertain
stock model (3.1) has a strike price K and an expiration time T . Then the European call option price is

fc = exp(−rT )
∫ 1

0

 n−1∑
k=0

yk(log T )kEp,(k+1)
(
−a(log T )p)

+

m + |σ| √3
π

ln
α

1 − α

 (log T
)p Ep,p+1

(
−a(log T )p) − K

+ dα. (3.2)

Proof. The α-path of (3.1) is the solution of the corresponding Caputo-Hadamard fractional differential
equation  CHDpYαt =

(
m − aYαt

)
+ |σ|Φ−1(α), t ∈ [1,T ],

δkY1 = yk, k = 0, 1, . . . n − 1.

According to Eq (2.2), we have

Yαt =
n−1∑
k=0

yk(log t)kEp,(k+1)
(
−a

(
log t

)p)
+

m + |σ| √3
π

ln
α

1 − α

 (log t)pEp,p+1
(
−a

(
log t

)p) .
Obviously, (YT − K)+ is increasing with respect to YT , then (YT − K)+ has the inverse uncertainty
distribution

(
YαT − K

)+
. According to the definition of the expected value, we get

fc = exp(−rT )E
[
(YT − K)+

]
= exp(−rT )

∫ 1

0

(
YαT − K

)+ dα

= exp(−rT )
∫ 1

0

 n−1∑
k=0

yk(log T )kEp,(k+1)
(
−a(log T )p)

+

m + |σ| √3
π

ln
α

1 − α

 (log T
)p Ep,p+1

(
−a(log T )p) − K

+ dα.

Thus, the pricing formula (3.2) of the European call option is proved. The proof ends. □

Remark 2. The pricing formula of the European call option can also be given by the method in [34].

Example 3.1. Suppose that the dynamic change of stock price follow the uncertain stock model (3.1),
the current stock price is y0 = 30, the instantaneous growth rate is y1 = 2, and the riskless interest rate
is r = 2.68% per annum. In addition, let T = 3, m = 0.1, a = 0.06, and σ = 7.5, the strike price
K = 31. According to the European call option pricing formula (3.2), the price fc of the European call
option with different fractional order p (0 < p ≤ 2) can be effectively calculated, as shown in Table 1
and Figure 1.

Table 1. The price of the European call option with different fractional order p.

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
fc 1.5957 1.6824 1.7502 1.7988 1.8285 1.8398 1.8333 1.8102 1.7719 1.7199
p 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
fc 2.4485 2.3772 2.2976 2.2118 2.1214 2.0283 1.9340 1.8399 1.7472 1.6572
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Figure 1. The price of the European call option with different fractional order p.

As can be seen from Table 1 and Figure 1, the price of the European call option decreases
monotonically in the interval [0.7, 1.0] and [1.1, 2.0], and increases monotonically in the interval
[0.1, 0.6]. The price of the European call option decreases faster in the interval [1.1, 2.0] than the
interval [0.7, 1.0]. This result is consistent with the variation of European call option price with
fractional order p in the pricing formula (3.2).When the fractional order p changes from 1 to 1.1, the
integer order differential equation is transformed into the fractional differential equation to simulate the
dynamic change of stock price in the uncertain stock model (3.1). At this time, the dynamic system is
endowed with the property of memory, and the stock price is affected by the historical price in obvious
price fluctuation. From a mathematical point of view, since the influence of initial condition y1, the
price of the European call option will increase significantly.

3.2. European put option

A European put option is a contract that gives the holder the right to sell a stock at an expiration
time T for a strike price K. The stock price at expiration time T would be YT , and the profit that the
holder get from buying the stock would be (K − YT )+. Considering the time value of money resulted
from the bond, the present value of the profit is exp(−rT ) (K − YT )+. Let fp is the price of this contract,
then the net return of the investors is

(
− fp + exp(−rT ) (K − YT )+

)
. The net return of the banks is

opposite. The most reasonable pricing is that the investors and banks have the same expected return.
Thus fp = exp(−rT )E

[
(K − YT )+

]
.

Definition 3.2 ( [10]). Assume a European put option has a strike price K and an expiration time T .
Then the European put option price based on model (3.1) is

fp = exp(−rT )E
[
(K − YT )+

]
,

where YT is the stock price at time T .

Theorem 3.2 (European put option pricing formula). Assume a European put option for the uncertain

AIMS Mathematics Volume 8, Issue 7, 15633–15650.
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stock model (3.1) has a strike price K and an expiration time T . Then the European put option price is

fp = exp(−rT )
∫ 1

0

K −
n−1∑
k=0

yk(log T )kEp,(k+1)
(
−a(log T )p)

−

m + |σ| √3
π

ln
1 − α
α

 (log T
)p Ep,p+1

(
−a(log T )p)+ dα. (3.3)

Proof. The α-path of (3.1) is the solution of the corresponding Caputo-Hadamard fractional differential
equation  CHDpYαt =

(
m − aYαt

)
+ |σ|Φ−1(α), t ∈ [1,T ],

δkY1 = yk, k = 0, 1, . . . n − 1.

According to Eq (2.2), we have

Yαt =
n−1∑
k=0

yk(log t)kEp,(k+1)
(
−a

(
log t

)p)
+

m + |σ| √3
π

ln
α

1 − α

 (log t)pEp,p+1
(
−a

(
log t

)p) .
Obviously, (K − YT )+ is decreasing with respect to YT , then (K − YT )+ has the inverse uncertainty
distribution

(
K − Y1−α

T

)+
. According to the definition of the expected value, we get

fp = exp(−rT )E
[
(K − YT )+

]
= exp(−rT )

∫ 1

0

(
K − Y1−α

T

)+
dα

= exp(−rT )
∫ 1

0

K −
n−1∑
k=0

yk(log T )kEp,(k+1)
(
−a(log T )p)

−

m + |σ| √3
π

ln
1 − α
α

 (log T
)p Ep,p+1

(
−a(log T )p)+ dα.

Thus, the pricing formula (3.3) of the European put option is proved. The proof ends. □

Remark 3. The pricing formula of the European put option can also be given by the method in [34].

Example 3.2. Suppose that the dynamic change of stock price follow the uncertain stock model (3.1),
the current stock price is y0 = 30, the instantaneous growth rate is y1 = −1, and the riskless interest
rate is r = 2.68% per annum. In addition, let T = 3, m = 0.1, a = 0.06, and σ = 7.5, the strike price
K = 29. According to the European put option pricing formula (3.3), the price fp of the European put
option with different fractional order p (0 < p ≤ 2) can be effectively calculated, as shown in Table 2
and Figure 2.

Table 2. The price of the European put option with different fractional order p.

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
fp 2.9716 3.1275 3.2489 3.3359 3.3889 3.4089 3.3974 3.3563 3.2878 3.1948
p 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
fp 3.6439 3.5115 3.3636 3.2036 3.0345 2.8595 2.6815 2.5029 2.3259 2.1526
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Figure 2. The price of the European put option with different fractional order p.

As can be seen from Table 2 and Figure 2, the price of the European put option decreases
monotonically in the interval [0.7, 1.0] and [1.1, 2.0], and increases monotonically in the interval
[0.1, 0.6]. The price of the European put option decreases faster in the interval [1.1, 2.0] than the
interval [0.7, 1.0]. This result is consistent with the variation of European put option price with
fractional order p in the pricing formula (3.3). When the fractional order p changes from 1 to 1.1, the
integer order differential equation is transformed into the fractional differential equation to simulate the
dynamic change of stock price in the uncertain stock model (3.1). At this time, the dynamic system is
endowed with the property of memory, and the stock price is affected by the historical price in obvious
price fluctuation. From a mathematical point of view, since the influence of initial condition y1, the
price of the European put option will increase significantly.

4. The effect of uncertain interference on the bond

In this section, we mainly consider the effect of uncertain factors on the bond. The change of
bond price in uncertain financial market will result in the corresponding change in the time value of
money generated. Based on the ordinary differential equation dXt = rXtdt, we will add the uncertain
interference term as dCt. That is, the bond price Xt follows the uncertain differential equation

dXt = rXtdt + sXtdCt.

When the time value of the money generated by the bond changes, we need to reformulate the
European option pricing formulas. On the basis of the uncertain stock model (3.1), a new uncertain
stock model involving the bond price Xt and the stock price Yt is introduced. Let Xt and Yt satisfy the
following equations 

dXt = rXtdt + sXtdC1t,

CHDpYt = (m − aYt) + σdC2t
dt , t ∈ [1,T ],

δkY1 = yk, k = 0, 1, . . . n − 1,

(4.1)

where r, s, m, a, σ are some positive numbers, C1t and C2t are two independent Liu processes.
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4.1. European call option

Since the bond price Xt and the stock price Yt are described by different differential equations driven
by two independent Liu processes, respectively. Then the bond price Xt and the stock price Yt are two
independent uncertain processes. Take into account the uncertainty of the money value over time, thus
the expected value of the time value of money generated by the bond is used to the present value return.
Then the present value of return can be given by E

[
exp(−rT − sC1T ) (YT − K)+

]
. Let fc is the price of

this contract. Then the net return of the investors is
(
− fc + E

[
exp(−rT − sC1T ) (YT − K)+

])
. The net

return of the banks is opposite. The most reasonable pricing is that the investors and banks have the
same expected return. Thus fc = E

[
exp(−rT − sC1T ) (YT − K)+

]
.

Definition 4.1. Assume a European call option has a strike price K and an expiration time T . Then
the European call option price based on model (4.1) is

fc = E
[
exp(−rT − sC1T ) (YT − K)+

]
,

where YT is the stock price at time T .

Theorem 4.1 (European call option pricing formula). Assume a European call option for the uncertain
stock model (4.1) has a strike price K and an expiration time T . Then the European call option price is

fc =

∫ 1

0

exp
−rT −

sT
√

3
π

ln
1 − α
α

 ω + θ √3
π

ln
α

1 − α

+ dα, (4.2)

where

ω =

n−1∑
k=0

yk(log T )kEp,(k+1)
(
−a(log T )p) + m(log T )pEp,p+1

(
−a(log T )p) − K,

θ = |σ|(log T )pEp,p+1
(
−a(log T )p) .

Proof. Note that the inverse uncertainty distribution of Liu process C1t is

Φ−1
1t (α) =

t
√

3
π

ln
α

1 − α
.

Then exp(−rt − sC1t) has an inverse uncertainty distribution

Ψ−1
1t (α) = exp

−rt −
st
√

3
π

ln
1 − α
α

 .
The solution of (4.1) can be given by

Yt =

n−1∑
k=0

yk
(
log t

)k Ep,(k+1)
(
−a

(
log t

)p)
+ m

(
log t

)p Ep,p+1
(
−a

(
log t

)p)
+ σ

∫ t

1

(
log

t
s

)p−1
Ep,p

(
−a

(
log

t
s

)p) dC2s

s
.
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Then (YT − K)+ has an inverse uncertainty distribution is

Ψ−1
2T (α) =

 n−1∑
k=0

yk(log T )kEp,(k+1)
(
−a(log T )p) + m(log T )pEp,p+1

(
−a(log T )p)

+|σ|(log T )pEp,p+1
(
−a(log T )p) √3

π
ln
α

1 − α
− K

+ .
It follows from Lemma 2.1 that exp(−rT − sC1T ) (YT − K)+ has an inverse uncertainty distribution is

Ψ−1
T (α) =

exp
−rT −

sT
√

3
π

ln
1 − α
α

  n−1∑
k=0

yk(log T )kEp,(k+1)
(
−a(log T )p)

+m(log T )pEp,p+1
(
−a(log T )p) + |σ|(log T )pEp,p+1

(
−a(log T )p) √3

π
ln
α

1 − α
− K

+ .
According to the definition of the expected value, we have

fc = E
[
exp(−rT − sC1T ) (YT − K)+

]
=

∫ 1

0

exp
−rT −

sT
√

3
π

ln
1 − α
α

 ω + θ √3
π

ln
α

1 − α

+ dα,

where

ω =

n−1∑
k=0

yk(log T )kEp,(k+1)
(
−a(log T )p) + m(log T )pEp,p+1

(
−a(log T )p) − K,

θ = |σ|(log T )pEp,p+1
(
−a(log T )p) .

Thus, the pricing formula (4.2) of the European call option is proved. The proof ends. □

Example 4.1. Suppose that the dynamic change of stock price follow the uncertain stock model (4.1),
which the parameters as follows: y0 = 30, y1 = 2, r = 0.0268, s = 0.015, T = 3, m = 0.1, a = 0.06,
σ = 7.5, K = 31. According to the European call option pricing formula (4.2), the price of the
European call option with different fractional order p (0 < p ≤ 2) can be effectively calculated, as
shown in Table 3 and Figure 3.

Table 3. The price of the European call option with different fractional order p.

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
fc 1.7144 1.8074 1.8800 1.9321 1.9639 1.9759 1.9690 1.9443 1.9033 1.8476
p 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
fc 2.6037 2.5279 2.4433 2.3517 2.2550 2.1550 2.0532 1.9512 1.8500 1.7509
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Figure 3. The price of the European call option with different fractional order p.

As can be seen from Table 3 and Figure 3, the change trend of the European call option price is
similar to that in Example 3.1. The price of the European call option decreases monotonically in the
interval [0.7, 1.0] and [1.1, 2.0], and increases monotonically in the interval [0.1, 0.6]. The price of the
European call option decreases faster in the interval [1.1, 2.0] than the interval [0.7, 1.0]. This result
is consistent with the variation of European call option price with fractional order p in the pricing
formula (4.2).When the fractional order p changes from 1 to 1.1, the integer order differential equation
is transformed into the fractional differential equation to simulate the dynamic change of stock price
in the uncertain stock model (4.1). At this time, the dynamic system is endowed with the property of
memory, and the stock price is affected by the historical price in obvious price fluctuation. From a
mathematical point of view, since the influence of initial condition y1, the price of the European call
option will increase significantly.

After adding the uncertain interference term to the bond price, a new stock model is proposed
by applying different differential equations to describe the dynamic changes of the bond price and
the stock price, respectively. The pricing formula of the European call option can be given by two
different uncertain stock models (3.1) and (4.1), respectively. When the uncertain factors occur, they
will inevitably have an effect on the normal economy. Uncertain interferences usually have a negative
effect on the bond price, and the bond prices usually depreciate after being disrupted by the uncertain
interference. Thus, the price of the European call option is higher by the uncertain stock model
(4.1) than the uncertain stock model (3.1), which is in line with the actual situation. The price of
the European call options predicted by two uncertain stock models have similar dynamic trends for
different fractional order. Furthermore, it also shows that the influence of the uncertain factors on the
bond price will not affect the change trend for the price of the European call option.

4.2. European put option

Since the bond price Xt and the stock price Yt are described by different differential equations driven
by two independent Liu processes, respectively. Then the bond price Xt and the stock price Yt are two
independent uncertain processes. Take into account the uncertainty of the money value over time, thus
the expected value of the time value of money generated by the bond is used to the present value return.
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Then the present value of return can be given by E
[
exp(−rT − sC1T ) (K − YT )+

]
. Let fp is the price of

this contract. Then the net return of the investors is
(
− fp + E

[
exp(−rT − sC1T ) (K − YT )+

])
. The net

return of the banks is opposite. The most reasonable pricing is that the investors and banks have the
same expected return. Thus fp = E

[
exp(−rT − sC1T ) (K − YT )+

]
.

Definition 4.2. Assume a European put option has a strike price K and an expiration time T . Then the
European put option price based on model (4.1) is

fp = E
[
exp(−rT − sC1T ) (K − YT )+

]
,

where YT is the stock price at time T .

Theorem 4.2 (European put option pricing formula). Assume a European put option for the uncertain
stock model (4.1) has a strike price K and an expiration time T . Then the European put option price is

fp =

∫ 1

0

exp
−rT −

sT
√

3
π

ln
1 − α
α

 ζ − θ √3
π

ln
1 − α
α

+ dα, (4.3)

where

ζ = K −
n−1∑
k=0

yk(log T )kEp,(k+1)
(
−a(log T )p) − m(log T )pEp,p+1

(
−a(log T )p) ,

θ = |σ|(log T )pEp,p+1
(
−a(log T )p) .

Proof. It follows from Lemma 2.1 that exp(−rt − sC1t) has an inverse uncertainty distribution

Ψ−1
1t (α) = exp

−rt −
st
√

3
π

ln
1 − α
α

 ,
and (K − YT )+ has an inverse uncertainty distribution is

Ψ−1
2T (α) =

K − n−1∑
k=0

yk(log T )kEp,(k+1)
(
−a(log T )p) − m(log T )pEp,p+1

(
−a(log T )p)

−|σ|(log T )pEp,p+1
(
−a(log T )p) √3

π
ln

1 − α
α

+ .
It follows from Lemma 2.1 that exp(−rT − sC1T ) (K − YT )+ has an inverse uncertainty distribution is

Ψ−1
T (α) =

exp
−rT −

sT
√

3
π

ln
1 − α
α

 K − n−1∑
k=0

yk(log T )kEp,(k+1)
(
−a(log T )p)

−m(log T )pEp,p+1
(
−a(log T )p) − |σ|(log T )pEp,p+1

(
−a(log T )p) √3

π
ln

1 − α
α

+ .
According to the definition of the expected value, we have

fc = E
[
exp(−rT − sC1T ) (YT − K)+

]
=

∫ 1

0

exp
−rT −

sT
√

3
π

ln
1 − α
α

 ζ − θ √3
π

ln
1 − α
α

+ dα,
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where

ζ = K −
n−1∑
k=0

yk(log T )kEp,(k+1)
(
−a(log T )p) − m(log T )pEp,p+1

(
−a(log T )p) ,

θ = |σ|(log T )pEp,p+1
(
−a(log T )p) .

Thus, the pricing formula (4.3) of the European put option is proved. The proof ends. □

Example 4.2. Suppose that the dynamic change of stock price follow the uncertain stock model (4.1),
which the parameters as follows: y0 = 30, y1 = −1, r = 0.0268, s = 0.015, T = 3, m = 0.1,
a = 0.06, σ = 7.5, K = 29. According to the European put option pricing formula (4.3), the price of
the European put option with different fractional order p (0 < p ≤ 2) can be effectively calculated, as
shown in Table 4 and Figure 4.

Table 4. The price of the European put option with different fractional order p.

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
fp 3.1487 3.3151 3.4450 3.5383 3.5952 3.6167 3.6044 3.5602 3.4868 3.3871
p 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
fp 3.8470 3.7056 3.5482 3.3781 3.1990 3.0139 2.8258 2.6372 2.4506 2.2678

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0
2 . 2
2 . 4
2 . 6
2 . 8
3 . 0
3 . 2
3 . 4
3 . 6
3 . 8
4 . 0

 

 

Pri
ce

p
Figure 4. The price of the European put option with different fractional order p.

As can be seen from Table 4 and Figure 4, the change trend of the European put option price
is similar to that in Example 3.2. The price of the European put option decreases monotonically in
the interval [0.7, 1.0] and [1.1, 2.0], and increases monotonically in the interval [0.1, 0.6]. The price
of the European put option decreases faster in the interval [1.1, 2.0] than the interval [0.7, 1.0]. This
result is consistent with the variation of European put option price with fractional order p in the pricing
formula (4.3). When the fractional order p changes from 1 to 1.1, the integer order differential equation
is transformed into the fractional differential equation to simulate the dynamic change of stock price
in the uncertain stock model (4.1). At this time, the dynamic system is endowed with the property of
memory, and the stock price is affected by the historical price in obvious price fluctuation. From a
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mathematical point of view, since the influence of initial condition y1, the price of the European put
option will increase significantly.

After adding the uncertain interference term to the bond price, a new stock model is proposed
by applying different differential equations to describe the dynamic changes of the bond price and
the stock price, respectively. The pricing formula of the European put option can be given by two
different uncertain stock models (3.1) and (4.1), respectively. When the uncertain factors occur, they
will inevitably have an effect on the normal economy. Uncertain interferences usually have a negative
effect on the bond price, and the bond prices usually depreciate after being disrupted by the uncertain
interference. Thus, the price of the European put option is higher by the uncertain stock model (4.1)
than the uncertain stock model (3.1), which is in line with the actual situation. The price of the
European put options predicted by two uncertain stock models have similar dynamic trends for different
fractional order. Furthermore, it also shows that the influence of the uncertain factors on the bond price
will not affect the change trend for the price of the European put option.

5. Conclusions

In this paper, we investigate the European option pricing problem based on Caputo-Hadamard
UFDE in an uncertain environment, and give the European call option pricing formula and the
European put option pricing formula. The dynamic changes of the European option price for the
different fractional orders p is illustrated by the numerical experiments. Subsequently, the effect
of uncertain interference on the bond price is studied. At the same time, the uncertain differential
equation and Caputo-Hadamard UFDEs are used to simulate the dynamic change of the bond price
and the stock price, respectively, a new uncertain stock model with mean-reverting is constructed.
After adding the uncertain interference on the bond price, the pricing formulas of the European call
option and the European put option are given. In order to illustrate the validity of the pricing formulas,
the price of the European call option and the European put option for the different fractional orders p
are calculated, respectively. Through the comparison of the European option price for two uncertain
stock model, the price of the European option is usually higher when the bond price be disturbed by
the uncertain interference. The change trend of stock price is not usually affected by the time value of
money generated by the bond. In future work, we will continue to study the option pricing problem
through different stock models.
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