Research article

An efficient method for 3D Helmholtz equation with complex solution

  • Received: 17 February 2023 Revised: 07 April 2023 Accepted: 12 April 2023 Published: 21 April 2023
  • MSC : 32W50, 65M70

  • The Helmholtz equation as an elliptic partial differential equation possesses many applications in the time-harmonic wave propagation phenomena, such as the acoustic cavity and radiation wave. In this paper, we establish a numerical method based on the orthonormal shifted discrete Chebyshev polynomials for finding complex solution of this equation. The presented method transforms the Helmholtz equation into an algebraic system of equations that can be easily solved. Four practical examples are examined to show the accuracy of the proposed technique.

    Citation: M. H. Heydari, M. Hosseininia, D. Baleanu. An efficient method for 3D Helmholtz equation with complex solution[J]. AIMS Mathematics, 2023, 8(6): 14792-14819. doi: 10.3934/math.2023756

    Related Papers:

  • The Helmholtz equation as an elliptic partial differential equation possesses many applications in the time-harmonic wave propagation phenomena, such as the acoustic cavity and radiation wave. In this paper, we establish a numerical method based on the orthonormal shifted discrete Chebyshev polynomials for finding complex solution of this equation. The presented method transforms the Helmholtz equation into an algebraic system of equations that can be easily solved. Four practical examples are examined to show the accuracy of the proposed technique.



    加载中


    [1] Z. He, P. Li, G. Zhao, H. Chen, A meshless Galerkin least-square method for the Helmholtz equation, Eng. Anal. Bound. Elem., 35 (2011), 868–878. https://doi.org/10.1016/j.enganabound.2011.01.010. doi: 10.1016/j.enganabound.2011.01.010
    [2] M. Heydari, M. Hooshmandasl, F. Maalek Ghaini, M. Fatehi Marji, R. Dehghan, M. Memarian, A new wavelet method for solving the Helmholtz equation with complex solution, Numer. Meth. Part. D. E., 32 (2016), 741–756. http://dx.doi.org/10.1002/num.22022 doi: 10.1002/num.22022
    [3] N. Song, E. Lee, Dual system least squares finite element method for the Helmholtz equation, Results in Applied Mathematics, 9 (2021), 100138. http://dx.doi.org/10.1016/j.rinam.2020.100138 doi: 10.1016/j.rinam.2020.100138
    [4] L. Cao, Y. Gu, C. Zhang, Q. Qin, A meshless chebyshev collocation method for eigenvalue problems of the Helmholtz equation, Eng. Anal. Bound. Elem., 125 (2021), 80–109. http://dx.doi.org/10.1016/j.enganabound.2021.01.006 doi: 10.1016/j.enganabound.2021.01.006
    [5] R. Balam, M. Zapata, A new eighth-order implicit finite difference method to solve the three-dimensional Helmholtz equation, Comput. Math. Appl., 80 (2020), 1176–1200. http://dx.doi.org/10.1016/j.camwa.2020.06.011 doi: 10.1016/j.camwa.2020.06.011
    [6] L. Zhao, E. Park, E. Chung, Staggered discontinuous Galerkin methods for the Helmholtz equation with large wave number, Comput. Math. Appl., 80 (2020), 2676–2690. http://dx.doi.org/10.1016/j.camwa.2020.09.019 doi: 10.1016/j.camwa.2020.09.019
    [7] D. Zhang, F. Sun, Y. Ma, Y. Guo, A Fourier-Bessel method with a regularization strategy for the boundary value problems of the Helmholtz equation, J. Comput. Appl. Math., 368 (2020), 112562. http://dx.doi.org/10.1016/j.cam.2019.112562 doi: 10.1016/j.cam.2019.112562
    [8] M. Londono, H. Montegranario, Radial basis function-generated finite differences with Bessel weights for the 2D Helmholtz equation, Eng. Anal. Bound. Elem., 105 (2019), 257–266. http://dx.doi.org/10.1016/j.enganabound.2019.04.026 doi: 10.1016/j.enganabound.2019.04.026
    [9] J. Fang, J. Qian, L. Zepeda-Núñez, H. Zhao, A hybrid approach to solve the high-frequency Helmholtz equation with source singularity in smooth heterogeneous media, J. Comput. Phys., 371 (2018), 261–279. http://dx.doi.org/10.1016/j.jcp.2018.03.011 doi: 10.1016/j.jcp.2018.03.011
    [10] Y. Youssri, A. Atta, Spectral collocation approach via normalized shifted Jacobi polynomials for the nonlinear Lane-Emden equation with fractal-fractional derivative, Fractal Fract., 7 (2023), 133. http://dx.doi.org/10.3390/fractalfract7020133 doi: 10.3390/fractalfract7020133
    [11] A. Atta, Y. Youssri, Advanced shifted first-kind Chebyshev collocation approach for solving the nonlinear time-fractional partial integro-differential equation with a weakly singular kernel, Comput. Appl. Math., 41 (2022), 381. http://dx.doi.org/10.1007/s40314-022-02096-7 doi: 10.1007/s40314-022-02096-7
    [12] R. Hafez, Y. Youssri, Shifted Gegenbauer-Gauss collocation method for solving fractional neutral functional-differential equations with proportional delay, Kragujev. J. Math., 46 (2022), 981–996. http://dx.doi.org/10.46793/KgJMat2206.981H doi: 10.46793/KgJMat2206.981H
    [13] Y. Youssri, Two Fibonacci operational matrix pseudo-spectral schemes for nonlinear fractional Klein-Gordon equation, Int. J. Mod. Phys. C, 33 (2022), 2250049. http://dx.doi.org/10.1142/S0129183122500498 doi: 10.1142/S0129183122500498
    [14] Y. Youssri, Orthonormal ultraspherical operational matrix algorithm for fractal-fractional Riccati equation with generalized Caputo derivative, Fractal Fract., 5 (2021), 100. http://dx.doi.org/10.3390/fractalfract5030100 doi: 10.3390/fractalfract5030100
    [15] M. Heydari, Z. Avazzadeh, C. Cattani, Orthonormal shifted discrete Hahn polynomials for a new category of nonlinear variable‐order fractional 2D optimal control problems, Asian J. Control, 24 (2022), 1986–1997. http://dx.doi.org/10.1002/asjc.2573 doi: 10.1002/asjc.2573
    [16] M. Hosseininia, M. Heydari, Z. Avazzadeh, Orthonormal shifted discrete Legendre polynomials for the variable-order fractional extended Fisher-Kolmogorov equation, Chaos Soliton. Fract., 155 (2022), 111729. http://dx.doi.org/10.1016/j.chaos.2021.111729 doi: 10.1016/j.chaos.2021.111729
    [17] L. Moradi, F. Mohammadi, A comparative approach for time-delay fractional optimal control problems: discrete versus continuous Chebyshev polynomials, Asian J. Control, 22 (2020), 204–216. http://dx.doi.org/10.1002/asjc.1858 doi: 10.1002/asjc.1858
    [18] H. Dehestani, Y. Ordokhani, An efficient approach based on Legendre-Gauss-Lobatto quadrature and discrete shifted Hahn polynomials for solving Caputo-Fabrizio fractional Volterra partial integro-differential equations, J. Comput. Appl. Math., 403 (2022), 113851. http://dx.doi.org/10.1016/j.cam.2021.113851 doi: 10.1016/j.cam.2021.113851
    [19] J. Cao, Y. Chen, Y. Wang, G. Cheng, T. Barrière, Shifted Legendre polynomials algorithm used for the dynamic analysis of PMMA viscoelastic beam with an improved fractional model, Chaos Soliton. Fract., 141 (2020), 110342. http://dx.doi.org/10.1016/j.chaos.2020.110342 doi: 10.1016/j.chaos.2020.110342
    [20] M. Heydari, Z. Avazzadeh, A. Atangana, Orthonormal shifted discrete Legendre polynomials for solving a coupled system of nonlinear variable-order time fractional reaction-advection-diffusion equations, Appl. Numer. Math., 161 (2021), 425–436. http://dx.doi.org/10.1016/j.apnum.2020.11.020 doi: 10.1016/j.apnum.2020.11.020
    [21] M. Heydari, M. Razzaghi, Z. Avazzadeh, Orthonormal shifted discrete Chebyshev polynomials: application for a fractal-fractional version of the coupled Schrödinger-Boussinesq system, Chaos Soliton. Fract., 143 (2021), 110570. http://dx.doi.org/10.1016/j.chaos.2020.110570 doi: 10.1016/j.chaos.2020.110570
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1221) PDF downloads(61) Cited by(0)

Article outline

Figures and Tables

Figures(14)  /  Tables(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog