We provide an iterative algorithm for fixed point issues in vector spaces in the paragraphs that follow. We demonstrate that, compared to the Ishikawa technique in Banach spaces, the iterative algorithm presented in this study performs better under weaker conditions. In order to achieve this, we compare the convergence behavior of iterations, and taking into account a few offered cases, we support the major findings.
Citation: Mohammad Reza Haddadi, Vahid Parvaneh, Monica Bota. Further generalizations of the Ishikawa algorithm[J]. AIMS Mathematics, 2023, 8(5): 12185-12194. doi: 10.3934/math.2023614
We provide an iterative algorithm for fixed point issues in vector spaces in the paragraphs that follow. We demonstrate that, compared to the Ishikawa technique in Banach spaces, the iterative algorithm presented in this study performs better under weaker conditions. In order to achieve this, we compare the convergence behavior of iterations, and taking into account a few offered cases, we support the major findings.
[1] | F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. USA, 54 (1965), 1041–1044. https://doi.org/10.1073/pnas.54.4.1041 doi: 10.1073/pnas.54.4.1041 |
[2] | S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44 (1974), 147–150. https://doi.org/10.1090/S0002-9939-1974-0336469-5 doi: 10.1090/S0002-9939-1974-0336469-5 |
[3] | J. Jia, K. Shabbir, K. Ahmad, N. A. Shah, T. Botmart, Strong convergence of a new hybrid iterative scheme for nonexpensive mappings and applications, J. Funct. Spaces, 2022 (2022), 4855173. https://doi.org/10.1155/2022/4855173 doi: 10.1155/2022/4855173 |
[4] | M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl., 2014 (2014), 38. https://doi.org/10.1186/1029-242X-2014-38 doi: 10.1186/1029-242X-2014-38 |
[5] | S. H. Khan, A Picard-Mann hybrid iterative process, Fixed Point Theory Appl., 2013 (2013), 69. https://doi.org/10.1186/1687-1812-2013-69 doi: 10.1186/1687-1812-2013-69 |
[6] | W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Mon., 72 (1965), 1004–1006. https://doi.org/10.2307/2313345 doi: 10.2307/2313345 |
[7] | P. Lamba, A. Panwar, A Picard-$S^{*}$ iterative algorithm for approximating fixed points of generalized $\alpha$-nonexpansive mappings, J. Math. Comput. Sci., 11 (2021), 2874–2892. |
[8] | W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506–510. https://doi.org/10.2307/2032162 doi: 10.2307/2032162 |
[9] | G. A. Okeke, Convergence analysis of the Picard-Ishikawa hybrid iterative process with applications, Afr. Mat., 30 (2019), 817–835. https://doi.org/10.1007/s13370-019-00686-z doi: 10.1007/s13370-019-00686-z |
[10] | J. Srivastava, Introduction of new Picard-S hybrid iteration with application and some results for nonexpansive mappings, Arab J. Math. Sci., 28 (2022), 61–76. https://doi.org/10.1108/AJMS-08-2020-0044 doi: 10.1108/AJMS-08-2020-0044 |
[11] | H. K. Xu, An iterative approach to quadratic optimization, J. Optim. Theory Appl., 116 (2003), 659–678. https://doi.org/10.1023/A:1023073621589 doi: 10.1023/A:1023073621589 |