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1. Introduction and preliminaries

Mann [8] presented a new iterative technique in 1953, which approximate fixed points of
nonexpansive mappings in uniformly convex Banach spaces, as follows:

τn+1 = (1 − ςn)τn + ςnTτn, (1.1)

where {ςn} is a sequence in (0, 1) so that limn→∞ ςn = 0 and
∑∞

n=1 ςn = ∞.
Following that, Ishikawa [2] established the following innovative iteration procedure in 1974 for

approximating fixed points of nonexpansive mappings:τn+1 = (1 − ςn)τn + ςnTνn,

νn = (1 − ζn)τn + ζnTτn, n = 1, 2, 3, ...,
(1.2)

where {ςn} and {ζn} are sequences in [0, 1) which satisfy the following conditions:
(i) 0 ≤ ςn ≤ ζn ≤ 1, limn→∞ ζn = 0,
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(ii)
∑∞

n=1 ςnζn = ∞.
It is worth noting that the Mann iteration procedure is a special case of Ishikawa, where ζn = 0 for

all n ∈ N.
In 2013, Khan [5] gave the concept of Picard-Mann hybrid iterative scheme. This scheme is defined

as follows: 
τ1 = τ ∈ X
τn+1 = Tνn

νn = (1 − αn)τn + αnTτn

with n ∈ Z+ (1.3)

where {αn} ∈ (0, 1). In 2019, following Khan, Okeke [9] gave the Picard-Ishikawa hybrid iterative
scheme which is defined as: 

τ1 = τ ∈ X
τn+1 = Tνn

νn = (1 − αn)τn + αnTcn

cn = (1 − βn)τn + βnTτn

with n ⊆ Z+ (1.4)

where {αn}, {βn} ⊆ (0, 1). Recently, Srivastava [10] introduced the Picard-S hybrid iterative scheme
which is defined as: 

τ1 = a ∈ X
τn+1 = Tbn

νn = (1 − αn)Tτn + αnTcn

cn = (1 − βn)τn + βnTτn

with n ∈ Z+ (1.5)

where {αn}, {βn} ⊆ (0, 1). Also, Lamba and Panwar [7] introduced the Picard-S ∗-iterative scheme which
is defined as: 

τ1 = τ ∈ X
τn+1 = Tνn

νn = (1 − αn)Tτn + αnTcn

cn = (1 − βn)Tτn + βnTµn

µn = (1 − γn)τn + γnTτn

with n ∈ Z+ (1.6)

where {αn}, {βn}, {γn} ⊆ (0, 1).
Recently, Jia et al. [3] proposed the Picard-Thakur-iterative scheme which is defined as:

τ1 ∈ X

τn+1 = Tνn

νn = (1 − αn)Tµn + αnTcn

cn = (1 − βn)dn + βnTµn with n ∈ Z+

µn = (1 − γn)τn + γnTτn

(1.7)

where {αn}, {βn}, and {γn} are sequences in (0, 1).
Assume that Banach space X has a nonempty subset A. We recall that a self-mapping T : A → A

is said to be nonexpansive provided that ‖T x − Ty‖ ≤ ‖x − y‖ for any x, y ∈ A. It was stated in [1, 6]
that the nonexpansive mapping T has a fixed point if X is a uniformly convex Banach space and A is a
bounded, closed, and convex subset of X.
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Here, we provide some prerequisites that are required.
Consistent with [4], we denote by Θ0 the family of functions θ : (0,∞)→ (1,∞) such that
(θ1) θ is increasing;
(θ2) for each sequence {ρn} ⊆ (0,∞), lim

n→∞
θ(ρn) = 1 iff lim

n→∞
ρn = 0;

(θ3) there are a y ∈ (0, 1) and a λ ∈ (0,∞] so that lim
ρ→0+

θ(ρ)−1
ρy = λ.

Theorem 1.1. [4, Corollary 2.1] Let T be a self-mapping on a complete metric space (X, d) so that

x, ω ∈ X, d(T x,Tω) , 0 ⇒ θ(d(T x,Tω)) ≤ θ(d(x, ω))α,

where θ ∈ Θ0 and α ∈ (0, 1). Then T has a unique fixed point.

It should be noted that the Banach contraction principle is a specific instance of the Theorem 1.1.
Denote by Θ the set of increasing continuous functions θ : (0,∞) → (1,∞). This family is a new

collection which is presented according to [4].
The following lemma is a modification of Lemma 2.1 in [11] in which an = sn, cn = αn and

bn = βn/cn. In addition, the left side of suppositions (i) and (iii) are valid. It is better to know that in
the following lemma, we do not need to have the right side of hypothesis (i) and (iii).

Lemma 1.2. [11] Let {an}, {bn} ⊂ [0,∞) and {cn} ⊂ [0, 1) be sequences of real numbers such that
an+1 ≤ (1 − cn)an + bn for all n ∈ N and

∞∑
n=1

cn = ∞ and
∞∑

n=1

bn < ∞.

Then, limn→∞ an = 0.

Theorem 1.3. [2] If E be a convex compact subset of a Hilbert space H, T be a Lipschitzian pseudo-
contractive map from E into itself and x0 is any point in E, then the sequence {xn} converges strongly
to a fixed point of T , where xn is defined iteratively for each n ∈ N by

yn = ςnT xn + (1 − ςn)xn,

xn+1 = ηnTyn + (1 − ηn)yn, n ∈ N, x0 ∈ X,

where 0 ≤ ςn ≤ ηn ≤ 1 for all n, limn→∞ ηn = 0, and
∑∞

n=1 ςnηn = ∞.

2. Main results

The iterative algorithm for fixed point issues in a vector space is provided below. We demonstrate
that the iterative technique presented in this research performs better than the Ishikawa algorithm in
Banach spaces under weaker constraints.

We denote by Φ the family of functions φ : X → (0,∞) so that:
(i) If φ(x) = φ(y), then x = y.
(ii) If for each sequence {xn} ⊆ X, lim

n→∞
xn = x, then lim

n→∞
φ(xn) = φ(x).

(iii) If for each sequence {xn} ⊆ X, lim
n→∞

φ(xn) = ζ, then ζ > 0.
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Example 2.1. Let X be a norm space. It is clear that f (t) = e‖t‖ is an element of Φ. Other examples
are

f (t) = e−‖t‖, f (t) = cosh ‖t‖, f (t) =
2 cosh ‖t‖

1 + cosh ‖t‖
,

f (t) = 1 + ln(1 + ‖t‖), f (t) =
2 + 2 ln(1 + ‖t‖)
2 + ln(1 + ‖t‖)

, f (t) = e‖t‖e
‖t‖
.

Let the function ρ(.) : [0,∞)→ [1,∞) be defined as follows:

ρ (a) =


a if a ≥ 1,
1
a

if 0 < a < 1,

1 if a = 0.

It is clear that ρ(ab) ≤ ρ(a)ρ(b) and ρ(as) = ρ(a)|s|, for all s ∈ R.

Definition 2.2. A sequence (xn) ⊆ [0,∞) is said to be ρ-convergent to a x ∈ [0,∞) if for all ε > 1 there
is N ∈ N such that for all n ≥ N we have ρ(xnx−1) < 1 + ε. Hence, ρ(xnx−1) → 1 as n → ∞ which is
denoted by xn 7→ x. A sequence (xn) ⊆ [0,∞) is said to be ρ-Cauchy in [0,∞), if for all ε > 1 there is
N ∈ N such that for all n,m ≥ N we have ρ(xnx−1

m ) < 1 + ε. Hence ρ(xnx−1
m )→ 1 as n→ ∞.

Also, ([0,∞), ρ) is said to be ρ-complete if every ρ-Cauchy sequence be a ρ-convergent sequence. It
is clear that since R is a complete space, hence ([0,∞), ρ) is ρ-complete.

Definition 2.3. Let X be a vector space. Then we say that F : X → X is a Φ-contraction mapping if
for a γ ∈ (0, 1) and a φ ∈ Φ we have

ρ(
φ(Fx)
φ(Fy)

) ≤ ρ(
φ(x)
φ(y)

)γ, x, y ∈ Xφ,

where Xφ = {x ∈ X : φ(x) > 0}.

Theorem 2.1. Let X be a vector space, and let F : X → X be a Φ-contraction. Then F has a unique
fixed point u ∈ X. Furthermore, for any x ∈ X we have

lim
n→∞

Fn(x) = u

with
ρ(φ(Fnx)φ(u)−1) ≤ ρ(φ(x)(φ(Fx))−1)

γn
1−γ .

Proof. We first show the uniqueness. Suppose that there exist x, y ∈ X with x = Fx and y = Fy. Then

1 ≤ ρ(φ(x)φ(y)−1) = ρ(φ(Fx)(φ(Fy))−1) ≤ ρ(φ(x)φ(y)−1)γ < ρ(φ(x)φ(y)−1),

which is a contradition and so x = y.
To show the existence, select x ∈ X. We first show that {φ(Fnx)} is a Cauchy sequence. Notice for

n ∈ {0, 1, ...} that

ρ(φ(Fnx)(φ(Fn+1x))−1) ≤ ρ(φ(Fn−1x)(φ(Fnx))−1)γ ≤ ... ≤ ρ(φ(x)(φ(Fx))−1)γ
n
.
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Thus for m > n where n ∈ {0, 1, ...},

ρ(φ(Fnx)(φ(Fmx))−1) ≤ ρ(φ(Fnx)(φ(Fn+1x))−1) ρ(φ(Fn+1x)φ(Fn+2x))−1)
... ρ(φ(Fm−1x)(φ(Fmx))−1)

≤ ρ(φ(x)(φ(Fx))−1)γ
n
... ρ(φ(x)φ(Fx))−1)γ

m−1

≤ ρ(φ(x)(φ(Fx))−1)γ
n[1+γ+γ2+...]

= ρ(φ(x)(φ(Fx))−1)
γn

1−γ .

That is, for m > n, n ∈ {0, 1, ...},

ρ(φ(Fnx)(φ(Fmx))−1) ≤ ρ(φ(x)(φ(Fx))−1)
γn

1−γ . (2.1)

This shows that {φ(Fnx)} is a ρ-Cauchy sequence, and so there exists ζ ∈ [0,∞) with limn→∞ φ(Fnx) =

ζ. By (iii), there exists u ∈ X with ζ = φ(u). Moreover the continuity of φ and F yields

φ(u) = lim
n→∞

φ(Fn+1x) = lim
n→∞

φ(F(Fnx)) = φ(Fu).

Therefore, u is a fixed point of F. Finally, letting m→ ∞ in (2.1) yields

ρ(φ(Fn(x))φ(u−1)) ≤ ρ(φ(x)φ((F(x)))−1)
γn

1−γ .

�

Theorem 2.2. Let X be a vector space. Let F : X → X be a Φ-contraction mapping, 0 < γ ≤ 1 and
x0 ∈ X. We define a sequence {xn} ⊆ X by

φ(yn) = φ(Fxn)ςnφ(xn)1−ςn ,

φ(xn+1) = φ(Fyn)ηnφ(yn)1−ηn ,

where n ∈ N, 0 ≤ ςn ≤ ηn ≤ 1, limn→∞ ηn = 0 and
∑∞

n=1 ςn = ∞. Then the sequence {xn} is convergent
strongly to an element p ∈ X such that F p = p.

Proof. By Theorem 2.1, F has a unique fixed point p ∈ X. From the assumption that F is a Φ-
contraction, we have the following inequalities:

ρ(
φ(xn+1)
φ(p)

) = ρ(
φ(Fyn)ηnφ(yn)1−ηn

φ(p)
)

= ρ(
φ(Fyn)ηnφ(yn)1−ηn

φ(p)ηnφ(p)1−ηn
)

= ρ([
φ(Fyn)
φ(p)

]ηn[
φ(yn)
φ(p)

]1−ηn)

≤ ρ(
φ(Fyn)
φ(p)

)ηnρ(
φ(yn)
φ(p)

)1−ηn

≤ ρ(
φ(yn)
φ(p)

)γηnρ(
φ(yn)
φ(p)

)1−ηn
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= ρ(
φ((Fxn)ςn x1−ςn

n )
φ(p)

)γηnρ(
φ(yn)
φ(p)

)1−ηn

= ρ(
φ(Fxn)ςnφ(xn)1−ςn

φ(p)ςnφ(p)1−ςn
)γηnρ(

φ(yn)
φ(p)

)1−ηn

≤ [ρ(
φ(Fxn)
φ(p)

)ςnρ(
φ(xn)
φ(p)

)1−ςn]γηnρ(
φ(yn)
φ(p)

)1−ηn

≤ [ρ(
φ(xn)
φ(p)

)γςnρ(
φ(xn)
φ(p)

)1−ςn]γηnρ(
φ(yn)
φ(p)

)1−ηn

= ρ(
φ(xn)
φ(p)

)ςnγ
2ηn+(1−ςn)γηn+1−ηn .

Put µn = ηn − ςnγ
2ηn − (1 − ςn)γηn. Since

µn = ηn(1 − γ) + ςnηnγ(1 − γ) ≥ ηn(1 − γ),∑∞
n=1 µn = ∞. If we set an = ρ(φ(xn)

φ(p) ), then an+1 ≤ a(1−µn)
n and so ln an+1 ≤ (1 − µn) ln an. Therefore,

by Lemma 1.2, we have lim ln an = 0 and so lim an = 1. Therefore, limn→∞ ρ(φ(xn)
φ(p) ) = 1 and so

limn→∞ φ(xn) = φ(p). Hence, we have xn → p. �

Theorem 2.3. Let X be a vector space. Let F : X → X be a Φ-contraction mapping, 0 < γ ≤ 1 and
x0 ∈ X such that

ρ(
φ(Fx)
φ(Fy)

) ≤ ρ(
φ(x)
φ(y)

)αρ(
Fx
x

)βρ(
Fy
y

)β x, y ∈ Xφ, (2.2)

where Xφ = {x ∈ X : φ(x) > 0}, α, β ≥ 0 and α + 2β < 1. Then F has a unique fixed point.

Proof. Suppose that x0 ∈ Xφ. We define xn+1 = Fxn. Now,

ρ(
φ(xn+2)
φ(xn+1)

) = ρ(
φ(Fxn+1)
φ(Fxn)

)

≤ ρ(
φ(xn+1)
φ(xn)

)αρ(
φ(Fxn+1)
φ(xn+1)

)βρ(
φ(Fxn)
φ(xn)

)β

= ρ(
φ(xn+1)
φ(xn)

)αρ(
φ(xn+2)
φ(xn+1)

)βρ(
φ(xn+1)
φ(xn)

)β.

So,

ρ(
φ(xn+2)
φ(xn+1)

) ≤ ρ(
φ(xn+1)
φ(xn)

)
α+β
1−β .

Let γ =
α+β

1−β < 1. Hence, inductively we have

ρ(
φ(xn+2)
φ(xn+1)

) ≤ ρ(
φ(x1)
φ(x0)

)γ
n+1
,

and so
ρ(
φ(xn+1)
φ(xn)

)→ 1.

Therefore, similar to the proof of Theorem 2.1, the sequence {xn} is ρ-convergent to an x ∈ Xφ such
that Fx = x. �

AIMS Mathematics Volume 8, Issue 5, 12185–12194.



12191

Remark 2.1. Under weaker conditions, Theorem 2.2 produces stronger results than Theorem 1.3.
Because Theorem 2.2 is in the framework of a vector space, but Theorem 1.3 is in the framework of a
Hilbert space. Also, the condition

∑∞
n=1 ςnηn = ∞ is replaced by

∑∞
n=1 ςn = ∞.

On the other hand, the algorithm of Theorem 2.2 has a better rate of convergence than the Ishikawa
algorithm, as we will demonstrate in the following section.

Ishikawa algorithm which is defined by

yn = ςnFxn + (1 − ςn)xn,

xn+1 = ηnFyn + (1 − ηn)yn,

is algorithm I.
The algorithm of Theorem 2.2 was defined by

φ(yn) = φ(Fxn)ςnφ(xn)1−ςn ,

φ(xn+1) = φ(Fyn)ηnφ(yn)1−ηn ,

where n ∈ N, x0 ∈ X, 0 ≤ ςn ≤ ηn ≤ 1, limn→∞ ηn = 0, and
∑∞

n=1 ςn = ∞. Suppose that φ1(t) = e‖t‖.
Hence we have

e‖yn‖ = e‖Fxn‖ςne‖xn‖(1−ςn),

e‖xn+1‖ = e‖Fyn‖ηne‖yn‖(1−ηn),

and so we have
‖yn‖ = ςn‖Fxn‖ + (1 − ςn)‖xn‖,

‖xn+1‖ = ηn‖Fyn‖ + (1 − ηn)‖yn‖,

which is algorithm II.
Suppose that φ(t) = 1 + ln(1 + ‖t‖). Hence we have

1 + ln(1 + ‖yn‖) = [1 + ln(1 + ‖Fxn‖)]ςn[1 + ln(1 + ‖xn‖)](1−ςn),

1 + ln(1 + ‖xn+1‖) = [1 + ln(1 + ‖Fyn‖)]ηn[1 + ln(1 + ‖yn‖)](1−ηn),

which we call it algorithm III.
In the following, we consider and compare the algorithms I–III with some examples.

Example 2.4. Let X = R2 and F : (R2, ‖.‖∞)→ (R2, ‖.‖∞) be defined by F(x, y) = ( x
2 ,

y
2 ). We have

max{|y1n|, |y2n|} = ςn max{|
x1n

2
|, |

x2n

2
|} + (1 − ςn) max{|x1n|, |x2n|},

max{|x1(n+1)|, |x2(n+1)|} = ηn max{|
y1n

2
|, |

y2n

2
|} + (1 − ηn) max{|y1n|, |y2n|},

which is algorithm II.

1 + ln(1 + max{|y1n|, |y2n|}) = [1 + ln(1 + max{|
x1n

2
|, |

x2n

2
|})]ςn[1 + ln(1 + max{|x1n|, |x2n|})](1−ςn),

1 + ln(1 + max{|x1(n+1)|, |x2(n+1)|}) = [1 + ln(1 + max{|
y1n

2
|, |

y2n

2
|})]ηn[1 + ln(1 + max{|y1n|, |y2n|})](1−ηn),

that is algorithm III.
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Example 2.5. Let X = R2, F : (R2, ‖.‖2)→ (R2, ‖.‖2) be defined by F(x, y) = ( x
2 ,

y
2 ). We have

√
y2

1n + y2
2n = ςn

√
x2

1n

2
+

x2
2n

2
+ (1 − ςn)

√
x2

1n + x2
2n,

√
x2

1(n+1) + x2
2(n+1) = ηn

√
y2

1n

2
+

y2
2n

2
+ (1 − ηn)

√
y2

1n + y2
2n,

which is algorithm II.

1 + ln(1 +

√
y2

1n + y2
2n) = [1 + ln(1 +

√
x2

1n

2
+

x2
2n

2
)]ςn[1 + ln(1 +

√
x2

1n + x2
2n)](1−ςn),

1 + ln(1 +

√
x2

1(n+1) + x2
2(n+1)) = [1 + ln(1 +

√
y2

1n

2
+

y2
2n

2
)]ηn[1 + ln(1 +

√
y2

1n + y2
2n)](1−ηn),

which is algorithm III. We illustrate the results of the example in Table 1. In Table 1, we perform some
tests for the convergence behavior of an iterative scheme for the initial point (2, 2).

In Figure 1, we perform the convergence. For the initial point (2, 2), we see that the iterative scheme
(III) reaches the fixed point faster.

Figure 1. The comparison of the rate of convergence for iterations I–III.

Table 1. The comparison of the rate of convergence for iterations I–III.

Initial point Iteration Processes n=100
I (Ishikawa) II III

(2, 2) (0.0009, 0.0009 ) (0.00260, 0.0010) (0.00003, 0.0009)

AIMS Mathematics Volume 8, Issue 5, 12185–12194.
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3. Conclusions

Ishikawa iteration is widely used in the solution of fixed point equations which takes the shape
Fx = x, where F : X → X is a nonexpansive mapping and X is a non-empty, closed and convex
subset of a Banach space. This algorithm converges weakly to the fixed point of F provided that the
underlying space is a Hilbert space. It is interesting to address the apparent deficiency of the previous
algorithm by building an algorithm that converges to the fixed point of F in a vector space. Also, we
demonstrated that in comparison to the Ishikawa technique in Banach spaces, the iterative algorithm
presented in this study performs better under weaker conditions. In order to achieve this, we compared
the convergence behavior of iterations, and taking into account a few offered cases, we support the
major findings.
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