Research article

Convergence rates of the modified forward reflected backward splitting algorithm in Banach spaces

  • Received: 28 January 2023 Revised: 12 March 2023 Accepted: 14 March 2023 Published: 22 March 2023
  • MSC : 65K05, 90C25, 90C30

  • Consider the problem of minimizing the sum of two convex functions, one being smooth and the other non-smooth in Banach space. In this paper, we introduce a non-traditional forward-backward splitting method for solving such minimization problem. We establish different convergence estimates under different stepsize assumptions.

    Citation: Weibo Guan, Wen Song. Convergence rates of the modified forward reflected backward splitting algorithm in Banach spaces[J]. AIMS Mathematics, 2023, 8(5): 12195-12216. doi: 10.3934/math.2023615

    Related Papers:

  • Consider the problem of minimizing the sum of two convex functions, one being smooth and the other non-smooth in Banach space. In this paper, we introduce a non-traditional forward-backward splitting method for solving such minimization problem. We establish different convergence estimates under different stepsize assumptions.



    加载中


    [1] P. L. Combettes, D. Dũng, B. C. Vũ, Dualization of signal recovery problems, Set-Valued Var. Anal., 18 (2010), 373–404. https://doi.org/10.1007/s11228-010-0147-7 doi: 10.1007/s11228-010-0147-7
    [2] P. L. Combettes, Inconsistent signal feasibility problems: least-squares solutions in a product space, IEEE Trans. Signal Process., 42 (1994), 2955–2966. https://doi.org/10.1109/78.330356 doi: 10.1109/78.330356
    [3] P. L. Combettes, V. R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. Sim., 4 (2005), 1168–1200. https://doi.org/10.1137/050626090 doi: 10.1137/050626090
    [4] P. L. Lions, B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal., 16 (1979), 964–979. https://doi.org/10.1137/0716071 doi: 10.1137/0716071
    [5] Y. Malitsky, M. K. Tam, A forward-backward splitting method for monotone inclusions without cocoercivity, SIAM J. Optim., 30 (2020), 1451–1472. https://doi.org/10.1137/18M1207260 doi: 10.1137/18M1207260
    [6] A. Padcharoen, D. Kitkuan, W. Kumam, P. Kumam, Tseng methods with inertial for solving inclusion problems and application to image deblurring and image recovery problems, Comput. Math. Methods, 3 (2021), 2577-7408 https://doi.org/10.1002/cmm4.1088 doi: 10.1002/cmm4.1088
    [7] K. Bredies, A forward-backward splitting algorithm for the minimization of nonsmooth convex functionals in Banach space, Inverse Probl., 25 (2008), 14228341. https://doi.org/10.1088/0266-5611/25/1/015005 doi: 10.1088/0266-5611/25/1/015005
    [8] W. B. Guan, W. Song, The generalized forward-backward splitting method for the minimization of the sum of two functions in Banach spaces, Numer. Func. Anal. Opt., 36 (2015), 867–886. https://doi.org/10.1080/01630563.2015.1037591 doi: 10.1080/01630563.2015.1037591
    [9] W. B. Guan, W. Song, The forward-backward splitting method and its convergence rate for the minimization of the sum of two functions in Banach space. Optim. Lett., 15 (2021), 1735–1758. https://doi.org/10.1007/s11590-020-01544-9 doi: 10.1007/s11590-020-01544-9
    [10] F. E. Browder, Fixed point therems for nonlinear semicontractive mappings in Banach spaces, Arch. Rational Mech. Anal., 21 (1966), 259–269. https://doi.org/10.1007/BF00282247 doi: 10.1007/BF00282247
    [11] J. P. Gossez, E. L. Dozo, Some geometric properties related to the fixed point theory for nonexpansive mappings, Pac. J. Math., 40 (1972), 565–573. https://doi.org/10.2140/PJM.1972.40.565 doi: 10.2140/PJM.1972.40.565
    [12] I. Cioranescu, Geometry of Banach spaces, duality mappings and nonlinear problems, Dordrecht: Springer, 1990.
    [13] W. Takahashi, Convex analysis and approximation of fixed points, Japan: Yokohama Publishers, 2000.
    [14] Y. I. Alber, R. S. Burachik, A. N. Iusem, A proximal point method for nonsmooth convex optimization problems in Banach spaces, Abstr. Appl. Anal., 2 (1996), 614871. https://doi.org/10.1155/S1085337597000298 doi: 10.1155/S1085337597000298
    [15] Y. I. Alber, Metric and generalized projection operators in Banach spaces: properties and applications, Mathematics, 1 (1993), 1109–1120. https://doi.org/10.48550/arXiv.funct-an/9311001 doi: 10.48550/arXiv.funct-an/9311001
    [16] Y. I. Albert, I. Ryazantseva, Nonlinear ill-posed problems of monotone type, Dordrecht: Springer, 2006. https://doi.org/10.1007/1-4020-4396-1
    [17] Y. Yao, N. Shahzad, Strong convergence of aproximal point algorithm with general errors, Optim. Lett., 6 (2012), 621–628. https://doi.org/10.1007/s11590-011-0286-2 doi: 10.1007/s11590-011-0286-2
    [18] Y. I. Alber, S. Reich, D. Shoikhet, Iterative approximations of null points of uniformly accretive operators with estimates of convergence rate, Communications in Applied Analysis, 6 (2002), 89–104.
    [19] H. Attouch, M. O. Czarnecki, J. Peypouquet, Coupling forward-backward with penalty schemes and parallel splitting for constrained variational inequalities, SIAM J. Optim., 21 (2011), 1251–1274. https://doi.org/10.1137/110820300 doi: 10.1137/110820300
    [20] S. Kamimura, W. Takahashi, Strong convergence of a proximal type algorithm in a Banach space, SIAM J. Optim., 13 (2002), 938–945. https://doi.org/10.1137/S105262340139611X doi: 10.1137/S105262340139611X
    [21] S. Sabach, S. Shtern, A first order method for solving convex bilevel optimization problems, SIAM J. Optim., 27 (2017), 640–660. https://doi.org/10.1137/16M105592X doi: 10.1137/16M105592X
    [22] D. P. Bertsekas, Nonlinear programming, 2 Eds., MA: Athena Scientific, 1999.
    [23] M. Bounkhel, R. Al-Yusof, Proximal analysis in reflexive smooth Banach spaces, Nonlinear Analysis, 73 (2010), 1921–1939. https://doi.org/10.1016/j.na.2010.04.077 doi: 10.1016/j.na.2010.04.077
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1184) PDF downloads(58) Cited by(0)

Article outline

Figures and Tables

Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog