Consider the problem of minimizing the sum of two convex functions, one being smooth and the other non-smooth in Banach space. In this paper, we introduce a non-traditional forward-backward splitting method for solving such minimization problem. We establish different convergence estimates under different stepsize assumptions.
Citation: Weibo Guan, Wen Song. Convergence rates of the modified forward reflected backward splitting algorithm in Banach spaces[J]. AIMS Mathematics, 2023, 8(5): 12195-12216. doi: 10.3934/math.2023615
Consider the problem of minimizing the sum of two convex functions, one being smooth and the other non-smooth in Banach space. In this paper, we introduce a non-traditional forward-backward splitting method for solving such minimization problem. We establish different convergence estimates under different stepsize assumptions.
[1] | P. L. Combettes, D. Dũng, B. C. Vũ, Dualization of signal recovery problems, Set-Valued Var. Anal., 18 (2010), 373–404. https://doi.org/10.1007/s11228-010-0147-7 doi: 10.1007/s11228-010-0147-7 |
[2] | P. L. Combettes, Inconsistent signal feasibility problems: least-squares solutions in a product space, IEEE Trans. Signal Process., 42 (1994), 2955–2966. https://doi.org/10.1109/78.330356 doi: 10.1109/78.330356 |
[3] | P. L. Combettes, V. R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. Sim., 4 (2005), 1168–1200. https://doi.org/10.1137/050626090 doi: 10.1137/050626090 |
[4] | P. L. Lions, B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal., 16 (1979), 964–979. https://doi.org/10.1137/0716071 doi: 10.1137/0716071 |
[5] | Y. Malitsky, M. K. Tam, A forward-backward splitting method for monotone inclusions without cocoercivity, SIAM J. Optim., 30 (2020), 1451–1472. https://doi.org/10.1137/18M1207260 doi: 10.1137/18M1207260 |
[6] | A. Padcharoen, D. Kitkuan, W. Kumam, P. Kumam, Tseng methods with inertial for solving inclusion problems and application to image deblurring and image recovery problems, Comput. Math. Methods, 3 (2021), 2577-7408 https://doi.org/10.1002/cmm4.1088 doi: 10.1002/cmm4.1088 |
[7] | K. Bredies, A forward-backward splitting algorithm for the minimization of nonsmooth convex functionals in Banach space, Inverse Probl., 25 (2008), 14228341. https://doi.org/10.1088/0266-5611/25/1/015005 doi: 10.1088/0266-5611/25/1/015005 |
[8] | W. B. Guan, W. Song, The generalized forward-backward splitting method for the minimization of the sum of two functions in Banach spaces, Numer. Func. Anal. Opt., 36 (2015), 867–886. https://doi.org/10.1080/01630563.2015.1037591 doi: 10.1080/01630563.2015.1037591 |
[9] | W. B. Guan, W. Song, The forward-backward splitting method and its convergence rate for the minimization of the sum of two functions in Banach space. Optim. Lett., 15 (2021), 1735–1758. https://doi.org/10.1007/s11590-020-01544-9 doi: 10.1007/s11590-020-01544-9 |
[10] | F. E. Browder, Fixed point therems for nonlinear semicontractive mappings in Banach spaces, Arch. Rational Mech. Anal., 21 (1966), 259–269. https://doi.org/10.1007/BF00282247 doi: 10.1007/BF00282247 |
[11] | J. P. Gossez, E. L. Dozo, Some geometric properties related to the fixed point theory for nonexpansive mappings, Pac. J. Math., 40 (1972), 565–573. https://doi.org/10.2140/PJM.1972.40.565 doi: 10.2140/PJM.1972.40.565 |
[12] | I. Cioranescu, Geometry of Banach spaces, duality mappings and nonlinear problems, Dordrecht: Springer, 1990. |
[13] | W. Takahashi, Convex analysis and approximation of fixed points, Japan: Yokohama Publishers, 2000. |
[14] | Y. I. Alber, R. S. Burachik, A. N. Iusem, A proximal point method for nonsmooth convex optimization problems in Banach spaces, Abstr. Appl. Anal., 2 (1996), 614871. https://doi.org/10.1155/S1085337597000298 doi: 10.1155/S1085337597000298 |
[15] | Y. I. Alber, Metric and generalized projection operators in Banach spaces: properties and applications, Mathematics, 1 (1993), 1109–1120. https://doi.org/10.48550/arXiv.funct-an/9311001 doi: 10.48550/arXiv.funct-an/9311001 |
[16] | Y. I. Albert, I. Ryazantseva, Nonlinear ill-posed problems of monotone type, Dordrecht: Springer, 2006. https://doi.org/10.1007/1-4020-4396-1 |
[17] | Y. Yao, N. Shahzad, Strong convergence of aproximal point algorithm with general errors, Optim. Lett., 6 (2012), 621–628. https://doi.org/10.1007/s11590-011-0286-2 doi: 10.1007/s11590-011-0286-2 |
[18] | Y. I. Alber, S. Reich, D. Shoikhet, Iterative approximations of null points of uniformly accretive operators with estimates of convergence rate, Communications in Applied Analysis, 6 (2002), 89–104. |
[19] | H. Attouch, M. O. Czarnecki, J. Peypouquet, Coupling forward-backward with penalty schemes and parallel splitting for constrained variational inequalities, SIAM J. Optim., 21 (2011), 1251–1274. https://doi.org/10.1137/110820300 doi: 10.1137/110820300 |
[20] | S. Kamimura, W. Takahashi, Strong convergence of a proximal type algorithm in a Banach space, SIAM J. Optim., 13 (2002), 938–945. https://doi.org/10.1137/S105262340139611X doi: 10.1137/S105262340139611X |
[21] | S. Sabach, S. Shtern, A first order method for solving convex bilevel optimization problems, SIAM J. Optim., 27 (2017), 640–660. https://doi.org/10.1137/16M105592X doi: 10.1137/16M105592X |
[22] | D. P. Bertsekas, Nonlinear programming, 2 Eds., MA: Athena Scientific, 1999. |
[23] | M. Bounkhel, R. Al-Yusof, Proximal analysis in reflexive smooth Banach spaces, Nonlinear Analysis, 73 (2010), 1921–1939. https://doi.org/10.1016/j.na.2010.04.077 doi: 10.1016/j.na.2010.04.077 |