Research article

Chance-constrained approach for decentralized supply chain network under uncertain cost

  • Received: 16 February 2023 Revised: 11 March 2023 Accepted: 13 March 2023 Published: 23 March 2023
  • MSC : 90C15, 90C33

  • A decentralized supply chain network under uncertain cost is studied to obtain the optimal decisions of the enterprises in a situation in which the cost is uncertain. The supply chain network members adopt a chance-constrained approach to make decisions. The second-order cone-constrained variational inequality problem is used to construct the chance-constrained supply chain network equilibrium model. Then, the existence and uniqueness properties of the proposed equilibrium model are discussed under some mild assumptions. For the discontinuous functions in the feasible region of the model, the proposed model is converted to a second-order cone complementarity problem. The numerical results show that the uncertainty and risk attitude of retailers and manufacturers have different effects on supply chain network members. When the risk attitude is high, a small change in the risk attitude will significantly change all decisions of supply chain members. If the supply chain member is affected by the uncertainty positively, its profit will increase as its risk attitude increases. Moreover, it is appropriate to adopt a chance-constrained approach when the supply chain members can estimate the distributions of the competitor's strategies.

    Citation: Shuai Huang, Youwu Lin, Jing Zhang, Pei Wang. Chance-constrained approach for decentralized supply chain network under uncertain cost[J]. AIMS Mathematics, 2023, 8(5): 12217-12238. doi: 10.3934/math.2023616

    Related Papers:

  • A decentralized supply chain network under uncertain cost is studied to obtain the optimal decisions of the enterprises in a situation in which the cost is uncertain. The supply chain network members adopt a chance-constrained approach to make decisions. The second-order cone-constrained variational inequality problem is used to construct the chance-constrained supply chain network equilibrium model. Then, the existence and uniqueness properties of the proposed equilibrium model are discussed under some mild assumptions. For the discontinuous functions in the feasible region of the model, the proposed model is converted to a second-order cone complementarity problem. The numerical results show that the uncertainty and risk attitude of retailers and manufacturers have different effects on supply chain network members. When the risk attitude is high, a small change in the risk attitude will significantly change all decisions of supply chain members. If the supply chain member is affected by the uncertainty positively, its profit will increase as its risk attitude increases. Moreover, it is appropriate to adopt a chance-constrained approach when the supply chain members can estimate the distributions of the competitor's strategies.



    加载中


    [1] A. Nagurney, J. Dong, D. Zhang, A supply chain network equilibrium model, Transport. Res. E-Log., 38 (2002), 281–303. https://doi.org/10.1016/S1366-5545(01)00020-5 doi: 10.1016/S1366-5545(01)00020-5
    [2] A. Nagurney, Z. G. Liu, M. G. Cojocaru, P. Daniele, Dynamic electric power supply chains and transportation networks: an evolutionary variational inequality formulation, Transport. Res. E-Log., 43 (2007), 624–646. https://doi.org/10.1016/j.tre.2006.03.002 doi: 10.1016/j.tre.2006.03.002
    [3] M. Yu, A. Nagurney, Competitive food supply chain networks with application to fresh produce, Eur. J. Oper. Res., 224 (2013), 273–282. https://doi.org/10.1016/j.ejor.2012.07.033 doi: 10.1016/j.ejor.2012.07.033
    [4] S. Saberi, J. M. Cruz, J. Sarkis, A. Nagurney, A competitive multiperiod supply chain network model with freight carriers and green technology investment option, Eur. J. Oper. Res., 266 (2018), 934–949. https://doi.org/10.1016/j.ejor.2017.10.043 doi: 10.1016/j.ejor.2017.10.043
    [5] Y. X. Yang, X. Xu, A differential game model for closed-loop supply chain participants under carbon emission permits, Comput. Ind. Eng., 135 (2019), 1077–1090. https://doi.org/10.1016/j.cie.2019.03.049 doi: 10.1016/j.cie.2019.03.049
    [6] A. Nagurney, E. A. Flores, C. Soylu, A Generalized Nash Equilibrium network model for post-disaster humanitarian relief, Transport. Res. E-log., 95 (2016), 1–18. https://doi.org/10.1016/j.tre.2016.08.005 doi: 10.1016/j.tre.2016.08.005
    [7] A. Nagurney, Attracting international migrant labor: investment optimization to alleviate supply chain labor shortages, Operations Research Perspectives, 9 (2022), 100233. https://doi.org/10.1016/j.orp.2022.100233 doi: 10.1016/j.orp.2022.100233
    [8] D. Bertsimas, M. Sim, The price of robustness, Oper. Res., 52 (2004), 35–53. https://doi.org/10.1287/opre.1030.0065 doi: 10.1287/opre.1030.0065
    [9] Y. T. Guo, G. J. Ye, W. Liu, D. F. Zhao, S. Treanţă, On symmetric gH-derivative: applications to dual interval-valued optimization problems, Chaos Soliton. Fract., 158 (2022), 112068. https://doi.org/10.1016/j.chaos.2022.112068 doi: 10.1016/j.chaos.2022.112068
    [10] S. Treanţă, On a class of constrained interval-valued optimization problems governed by mechanical work cost functionals, J. Optim. Theory Appl., 188 (2021), 913–924. https://doi.org/10.1007/s10957-021-01815-0 doi: 10.1007/s10957-021-01815-0
    [11] S. Treanţă, Efficiency in uncertain variational control problems, Neural Comput. Appl., 33 (2021), 5719–5732. https://doi.org/10.1007/s00521-020-05353-0 doi: 10.1007/s00521-020-05353-0
    [12] S. Treanţă, Saddle-point optimality criteria involving (p, b, d)-invexity and (p, b, d)-pseudoinvexity in interval-valued optimisation problems, Int. J. Control, 95 (2022), 1042–1050. https://doi.org/10.1080/00207179.2020.1837960 doi: 10.1080/00207179.2020.1837960
    [13] H. Deng, Y. X. Li, Z. M. Wan, Z. Wan, Partially smoothing and gradient-based algorithm for optimizing the VMI system with competitive retailers under random demands, Math. Probl. Eng., 2020 (2020), 1–18. https://doi.org/10.1155/2020/3687471 doi: 10.1155/2020/3687471
    [14] S. H. Deng, Z. Wan, Y. J. Zhou, Optimization model and solution method for dynamically correlated two-product newsvendor problems based on Copula, Discrete and Continuous Dynamical Systems-S, 13 (2020), 1637–1652. https://doi.org/10.3934/dcdss.2020096 doi: 10.3934/dcdss.2020096
    [15] C. M. Hu, Z. M. Wan, S. H. Zhu, Z. Wan, An integrated stochastic model and algorithm for constrained multi-item newsvendor problems by two-stage decision-making approach, Math. Comput. Simulat., 193 (2022), 280–300. https://doi.org/10.1016/j.matcom.2021.10.018 doi: 10.1016/j.matcom.2021.10.018
    [16] Z. M. Wan, S. H. Zhu, Z. Wan, An integrated stochastic model and algorithm for multi-product newsvendor problems, Int. J. Model. Simul. Sc., 11 (2020), 2050027. https://doi.org/10.1142/S1793962320500270 doi: 10.1142/S1793962320500270
    [17] A. H. Golsefidi, M. R. A. Jokar, A robust optimization approach for the production-inventory-routing problem with simultaneous pickup and delivery, Comput. Ind. Eng., 143 (2020), 106388. https://doi.org/10.1016/j.cie.2020.106388 doi: 10.1016/j.cie.2020.106388
    [18] X. T. Shang, G. Q. Zhang, B. Jia, M. Almanaseer, The healthcare supply location-inventory-routing problem: a robust approach, Transport. Res. E-log., 158 (2022), 102588. https://doi.org/10.1016/j.tre.2021.102588 doi: 10.1016/j.tre.2021.102588
    [19] Y. Shi, Y. J. Zhou, W. H. Ye, Q. Q. Zhao, A relative robust optimization for a vehicle routing problem with time-window and synchronized visits considering greenhouse gas emissions, J. Clean. Prod., 275 (2020), 124112. https://doi.org/10.1016/j.jclepro.2020.124112 doi: 10.1016/j.jclepro.2020.124112
    [20] Y. T. Guo, G. J. Ye, W. Liu, D. F. Zhao, S. Treanţă, Optimality conditions and duality for a class of generalized convex interval-valued optimization problems, Mathematics, 9 (2021), 2979. https://doi.org/10.3390/math9222979 doi: 10.3390/math9222979
    [21] S. Treanţă, LU-optimality conditions in optimization problems with mechanical work objective functionals, IEEE T. Neur. Ne. Lear., 33 (2022), 4971–4978. https://doi.org/10.1109/TNNLS.2021.3066196 doi: 10.1109/TNNLS.2021.3066196
    [22] S. Treanţă, Characterization results of solutions in interval-valued optimization problems with mixed constraints, J. Global. Optim., 82 (2022), 951–964. https://doi.org/10.1007/s10898-021-01049-4 doi: 10.1007/s10898-021-01049-4
    [23] J. Dong, D. Zhang, A. Nagurney, A supply chain network equilibrium model with random demands, Eur. J. Oper. Res., 156 (2004), 194–212. https://doi.org/10.1016/S0377-2217(03)00023-7 doi: 10.1016/S0377-2217(03)00023-7
    [24] Z. G. Liu, A. Nagurney, Supply chain networks with global outsourcing and quick-response production under demand and cost uncertainty, Ann. Oper. Res., 208 (2013), 251–289. https://doi.org/10.1007/s10479-011-1006-0 doi: 10.1007/s10479-011-1006-0
    [25] Y. X. Xiao, R. Q. Zhang, Supply chain network equilibrium considering coordination between after-sale service and product quality, Comput. Ind. Eng., 175 (2023), 108848. https://doi.org/10.1016/j.cie.2022.108848 doi: 10.1016/j.cie.2022.108848
    [26] Y. Zhou, C. K. Chan, K. H. Wong, A multi-period supply chain network equilibrium model considering retailers' uncertain demands and dynamic loss-averse behaviors, Transport. Res. E-log., 118 (2018), 51–76. https://doi.org/10.1016/j.tre.2018.06.006 doi: 10.1016/j.tre.2018.06.006
    [27] Z. Wan, H. Wu, L. Dai, A polymorphic uncertain equilibrium model and its deterministic equivalent formulation for decentralized supply chain management, Appl. Math. Model., 58 (2018), 281–299. https://doi.org/10.1016/j.apm.2017.06.028 doi: 10.1016/j.apm.2017.06.028
    [28] Y. Kou, Z. Wan, A new data-driven robust optimization approach to multi-item newsboy problems, J. Ind. Manag. Optim., 19 (2022), 197–223. https://doi.org/10.3934/jimo.2021180 doi: 10.3934/jimo.2021180
    [29] S. Zokaee, A. Jabbarzadeh, B. Fahimnia, S. J. Sadjadi, Robust supply chain network design: an optimization model with real world application, Ann. Oper. Res., 257 (2017), 15–44. https://doi.org/10.1007/s10479-014-1756-6 doi: 10.1007/s10479-014-1756-6
    [30] Z. M. Liu, Data-driven two-stage sparse distributionally robust risk optimization model for location allocation problems under uncertain environment, AIMS Math., 8 (2022), 2910–2939. https://doi.org/10.3934/math.2023152 doi: 10.3934/math.2023152
    [31] T. Hirano, Y. Narushima, Robust supply chain network equilibrium model, Transport. Sci., 53 (2019), 1196–1212. https://doi.org/10.1287/trsc.2018.0843 doi: 10.1287/trsc.2018.0843
    [32] P. Rosenblum, B. Kilcourse, Supply chain management 2018: In service of the customer, Retail Systems Research, 2018. Available from: https://www.rsrresearch.com/research/supply-chain-management-2018.
    [33] S. Ahmadi, S. H. Amin, An integrated chance-constrained stochastic model for a mobile phone closed-loop supply chain network with supplier selection, J. Clean. Prod., 226 (2019), 988–1003. https://doi.org/10.1016/j.jclepro.2019.04.132 doi: 10.1016/j.jclepro.2019.04.132
    [34] M. A. Quddus, S. Chowdhury, M. Marufuzzaman, F. Yu, L. K. Bian, A two-stage chance-constrained stochastic programming model for a bio-fuel supply chain network, Int. J. Prod. Econ., 195 (2018), 27–44. https://doi.org/10.1016/j.ijpe.2017.09.019 doi: 10.1016/j.ijpe.2017.09.019
    [35] T. Dinh, R. Fukasawa, J. Luedtke, Exact algorithms for the chance-constrained vehicle routing problem, Math. Program., 172 (2018), 105–138. https://doi.org/10.1007/s10107-017-1151-6 doi: 10.1007/s10107-017-1151-6
    [36] P. B. Chen, G. H. Lin, X. Zhu, F. S. Bai, Smoothing Newton method for nonsmooth second-order cone complementarity problems with application to electric power markets, J. Glob. Optim., 80 (2021), 635–659. https://doi.org/10.1007/s10898-021-00993-5 doi: 10.1007/s10898-021-00993-5
    [37] Z. J. Hao, Z. P. Wan, X. N. Chi, Z. F. Jin, Generalized lower-order penalty algorithm for solving second-order cone mixed complementarity problems, J. Comput. Appl. Math., 385 (2021), 113168. https://doi.org/10.1016/j.cam.2020.113168 doi: 10.1016/j.cam.2020.113168
    [38] S. Hayashi, N. Yamashita, M. Fukushima, A combined smoothing and regularization method for monotone second-order cone complementarity problems, SIAM J. Optimiz., 15 (2005), 593–615. https://doi.org/10.1137/S1052623403421516 doi: 10.1137/S1052623403421516
    [39] S. Hayashi, Manual of ReSNA, 2013. Available from: http://optima.ws.hosei.ac.jp/hayashi/ReSNA/manual/manual_ReSNA.pdf.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1024) PDF downloads(55) Cited by(4)

Article outline

Figures and Tables

Figures(5)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog