Based on panel data from 31 provinces in China between 2011 and 2020, we empirically studied the impact of the digital economy on urban resilience using fixed-effects models, threshold-effects models and spatial Durbin models. Our research findings indicate that (1) the development of the digital economy has a significant positive impact on the enhancement of urban resilience; (2) the promotional effect of the digital economy on urban resilience varies significantly across different regions; (3) the promotional effect of the digital economy on urban resilience exhibits a typical double-threshold characteristic due to the different levels of development in digital financial inclusion and (4) the digital economy has a positive spillover effect on the urban resilience of surrounding areas. Therefore, we should actively promote the development of the digital economy and digital financial inclusion, making the digital economy a new driving force for promoting urban resilience.
Citation: Qingsheng Zhu, Changwen Xie, Jia-Bao Liu. On the impact of the digital economy on urban resilience based on a spatial Durbin model[J]. AIMS Mathematics, 2023, 8(5): 12239-12256. doi: 10.3934/math.2023617
Based on panel data from 31 provinces in China between 2011 and 2020, we empirically studied the impact of the digital economy on urban resilience using fixed-effects models, threshold-effects models and spatial Durbin models. Our research findings indicate that (1) the development of the digital economy has a significant positive impact on the enhancement of urban resilience; (2) the promotional effect of the digital economy on urban resilience varies significantly across different regions; (3) the promotional effect of the digital economy on urban resilience exhibits a typical double-threshold characteristic due to the different levels of development in digital financial inclusion and (4) the digital economy has a positive spillover effect on the urban resilience of surrounding areas. Therefore, we should actively promote the development of the digital economy and digital financial inclusion, making the digital economy a new driving force for promoting urban resilience.
[1] | J. Ma, Z. Li, Measuring China's urban digital economy, National Accounting Review, 4 (2022), 329–361. https://doi.org/10.3934/NAR.2022019 doi: 10.3934/NAR.2022019 |
[2] | Y. Xu, T. Li, Measuring digital economy in China, National Accounting Review, 4 (2022), 251–272. https://doi.org/10.3934/NAR.2022015 doi: 10.3934/NAR.2022015 |
[3] | G. Liao, Z. Li, M. Wang, K. Albitar, Measuring China's urban digital finance, Quant. Financ. Econ., 6 (2022), 385–404. https://doi.org/10.3934/QFE.2022017 doi: 10.3934/QFE.2022017 |
[4] | G. J. Prah, Innovation and economic performance: the role of financial development, Quant. Financ. Econ., 6 (2022), 696–721. https://doi.org/10.3934/QFE.2022031 doi: 10.3934/QFE.2022031 |
[5] | Y. Liu, J. Liu, L. Zhang, Enterprise financialization and R&D innovation: a case study of listed companies in China, Electron. Res. Arch., 31 (2023), 2447–2471. https://doi.org/10.3934/era.2023124 doi: 10.3934/era.2023124 |
[6] | T. Zhao, Z. Zhang, S. Liang, Digital economy, entrepreneurial activity and high-quality development—empirical evidence from Chinese cities, (Chinese), Management World, 36 (2020), 65–76. https://doi.org/10.19744/j.cnki.11-1235/f.2020.0154 doi: 10.19744/j.cnki.11-1235/f.2020.0154 |
[7] | J. Wang, B. Wang, K. Dong, X. Dong, How does the digital economy improve high-quality energy development? The case of China, Technol. Forecast. Soc., 184 (2022), 121960. https://doi.org/10.1016/j.techfore.2022.121960 doi: 10.1016/j.techfore.2022.121960 |
[8] | M. Ghasemaghaei, G. Calic, Does big data enhance firm innovation competency? The mediating role of data-driven insights, J. Bus. Res., 104 (2019), 69–84. https://doi.org/10.1016/j.jbusres.2019.07.006 doi: 10.1016/j.jbusres.2019.07.006 |
[9] | K. L. Lo, J. Zhang, F. Xia, Does digital technology innovation work better for industrial upgrading? An empirical analysis of listed Chinese manufacturing firms, Appl. Econ. Lett., in press. https://doi.org/10.1080/13504851.2022.2098238 |
[10] | A. Goldfarb, C. Tucker, Digital economics, J. Econ. Lit., 57 (2019), 3–43. https://doi.org/10.1257/jel.20171452 doi: 10.1257/jel.20171452 |
[11] | R. Li, J. Rao, L. Wan, The digital economy, enterprise digital transformation, and enterprise innovation, Manag. Decis. Econ., 43 (2022), 2875–2886. https://doi.org/10.1002/mde.3569 doi: 10.1002/mde.3569 |
[12] | C. S. Holling, Resilience and stability of ecological systems, Annu. Rev. Ecol. Evol. Syst., 4 (1973), 1–23. https://doi.org/10.1146/annurev.es.04.110173.000245 doi: 10.1146/annurev.es.04.110173.000245 |
[13] | M. Alberti, J. M. Marzluff, E. Shulenberger, G. Bradley, C. Ryan, C. Zumbrunnen, Integrating humans into ecology: opportunities and challenges for studying urban ecosystems, BioScience, 53 (2003), 1169–1179. https://doi.org/10.1641/0006-3568(2003)053[1169:IHIEOA]2.0.CO;2 doi: 10.1641/0006-3568(2003)053[1169:IHIEOA]2.0.CO;2 |
[14] | K. C. Desouza, T. H. Flanery, Designing, planning, and managing resilient cities: a conceptual framework, Cities, 35 (2013), 89–99. https://doi.org/10.1016/j.cities.2013.06.003 doi: 10.1016/j.cities.2013.06.003 |
[15] | S. L. Cutter, C. G. Burton, C. T. Emrich, Disaster resilience indicators for benchmarking baseline conditions, J. Homel. Secur. Emerg. Manag., 7 (2010), 1–22. https://doi.org/10.2202/1547-7355.1732 doi: 10.2202/1547-7355.1732 |
[16] | M. Suárez, E. Gómez-Baggethun, J. Benayas, D. Tilbury, Towards an urban resilience index: a case study in 50 Spanish cities, Sustainability, 8 (2016), 774. https://doi.org/10.3390/su8080774 doi: 10.3390/su8080774 |
[17] | X. Wang, J. Shi, F. Ci, Spatial and temporal evolutionary characteristics of the resilience of urban agglomerations in the Yellow River basin, (Chinese), Statistics and Decision Making, 38 (2022), 70–74. https://doi.org/10.13546/j.cnki.tjyjc.2022.05.013 doi: 10.13546/j.cnki.tjyjc.2022.05.013 |
[18] | X. Chen, J. Lou, Y. Wang, Study on the evolution of spatio-temporal pattern of urban resilience in Ha-Chang city cluster and dynamic simulation, (Chinese), Geoscience, 40 (2020), 2000–2009. https://doi.org/10.13249/j.cnki.sgs.2020.12.006 doi: 10.13249/j.cnki.sgs.2020.12.006 |
[19] | X. Zhang, J. Song, J. Peng, J. Wu, Landslides-oriented urban disaster resilience assessment—A case study in ShenZhen, China, Sci. Total Environ., 661 (2019), 95–106. https://doi.org/10.1016/j.scitotenv.2018.12.074 doi: 10.1016/j.scitotenv.2018.12.074 |
[20] | L. Jing, The theoretical connotation and operational logic of resilient cities and their new opportunities in the context of digital economy, (Chinese), Guizhou Social Science, 2021 (2021), 108–115. https://doi.org/10.13713/j.cnki.cssci.2021.01.014 doi: 10.13713/j.cnki.cssci.2021.01.014 |
[21] | I. Semenenko, Y. Bilous, R. Halhash, The compliance of the regional development strategies and funding with the sustainable development concept: the case of Ukraine, Green Finance, 4 (2022), 159–178. https://doi.org/10.3934/GF.2022008 doi: 10.3934/GF.2022008 |
[22] | Z. Li, C. Yang, Z. Huang, How does the fintech sector react to signals from central bank digital currencies?, Financ. Res. Lett., 50 (2022), 103308. https://doi.org/10.1016/j.frl.2022.103308 doi: 10.1016/j.frl.2022.103308 |
[23] | Y. Liu, C. Ma, Z. Huang, Can the digital economy improve green total factor productivity? An empirical study based on Chinese urban data, Math. Biosci. Eng., 20 (2023), 6866–6893. https://doi.org/10.3934/mbe.2023296 doi: 10.3934/mbe.2023296 |
[24] | T. Li, J. Wen, D. Zeng, K. Liu, Has enterprise digital transformation improved the efficiency of enterprise technological innovation? A case study on Chinese listed companies, Math. Biosci. Eng., 19 (2022), 12632–12654. https://doi.org/10.3934/mbe.2022590 doi: 10.3934/mbe.2022590 |
[25] | Z. Li, Z. Huang, Y. Su, New media environment, environmental regulation and corporate green technology innovation: evidence from China, Energ. Econ., 119 (2023), 106545. https://doi.org/10.1016/j.eneco.2023.106545 doi: 10.1016/j.eneco.2023.106545 |
[26] | Z. Li, F. Zou, B. Mo, Does mandatory CSR disclosure affect enterprise total factor productivity?, Economic Research-Ekonomska Istraživanja, 35 (2022), 4902–4921. https://doi.org/10.1080/1331677X.2021.2019596 doi: 10.1080/1331677X.2021.2019596 |
[27] | J. Zhu, Z. Li, Can digital financial inclusion effectively stimulate technological innovation of agricultural enterprises?—A case study on China, National Accounting Review, 3 (2021), 398–421. https://doi.org/10.3934/NAR.2021021 doi: 10.3934/NAR.2021021 |
[28] | Z. Li, H. Chen, B. Mo, Can digital finance promote urban innovation? Evidence from China, Borsa Istanb. Rev., in press. https://doi.org/10.1016/j.bir.2022.10.006 |
[29] | Y. Liu, Z. Li, M. Xu, The influential factors of financial cycle spillover: evidence from China, Emerg. Mark. Financ. Tr., 56 (2020), 1336–1350. https://doi.org/10.1080/1540496X.2019.1658076 doi: 10.1080/1540496X.2019.1658076 |
[30] | Y. Liu, P. Failler, Z. Liu, Impact of environmental regulations on energy efficiency: a case study of China's air pollution prevention and control action plan, Sustainability, 14 (2022), 3168. https://doi.org/10.3390/su14063168 doi: 10.3390/su14063168 |
[31] | Y. Liu, L. Chen, L. Lv, P. Failler, The impact of population aging on economic growth: a case study on China, AIMS Mathematics, 8 (2023), 10468–10485. https://doi.org/10.3934/math.2023531 doi: 10.3934/math.2023531 |
[32] | Y. Liu, P. Failler, Y. Ding, Enterprise financialization and technological innovation: mechanism and heterogeneity, PLoS ONE, 17 (2022), e0275461. https://doi.org/10.1371/journal.pone.0275461 doi: 10.1371/journal.pone.0275461 |
[33] | Z. Li, J. Zhu, J. He, The effects of digital financial inclusion on innovation and entrepreneurship: a network perspective, Electron. Res. Arch., 30 (2022), 4697–4715. https://doi.org/10.3934/era.2022238 doi: 10.3934/era.2022238 |
[34] | J.-B. Liu, B. Y. Zhao, Study on environmental efficiency of Anhui province based on SBM—DEA model and fractal theory, Fractals, in press. https://doi.org/10.1142/S0218348X23400728 |
[35] | J.-B. Liu, Q. Xie, J.-J. Gu, Statistical analyses of a class of random pentagonal chain networks with respect to several topological properties, J. Funct. Space., 2023 (2023), 6675966. https://doi.org/10.1155/2023/6675966 doi: 10.1155/2023/6675966 |
[36] | J.-B. Liu, Y. Bao, W.-T. Zheng, Analyses of some structural properties on a class of hierarchical scale-free networks, Fractals, 30 (2022), 2250136. https://doi.org/10.1142/S0218348X22501365 doi: 10.1142/S0218348X22501365 |
[37] | B. E. Hansen, Threshold effects in non-dynamic panels: estimation, testing, and inference, J. Econom., 93 (1999), 345–368. https://doi.org/10.1016/S0304-4076(99)00025-1 doi: 10.1016/S0304-4076(99)00025-1 |
[38] | S. L. Cutter, K. D. Ash, C. T. Emrich, The geographies of community disaster resilience, Global Environ. Chang., 29 (2014), 65–77. https://doi.org/10.1016/j.gloenvcha.2014.08.005 doi: 10.1016/j.gloenvcha.2014.08.005 |
[39] | C. Z. Li, A. S. Crépin, C. Folke, The economics of resilience, Int. Rev. Environ. Reso., 11 (2018), 309–353. https://doi.org/10.1561/101.00000096 doi: 10.1561/101.00000096 |
[40] | M. Moghadas, A. Asadzadeh, A. Vafeidis, A. Fekete, T. Kötter, A multi-criteria approach for assessing urban flood resilience in Tehran, Iran, Int. J. Disast. Risk. Re., 35 (2019), 101069. https://doi.org/10.1016/j.ijdrr.2019.101069 doi: 10.1016/j.ijdrr.2019.101069 |
[41] | S. Guo, W. Zhang, Y. Xiong, An empirical study of digital economy empowering coordinated urban-rural development, (Chinese), Journal of Nanjing Audit University, 19 (2022), 81–89. |