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1. Introduction

Let X be a reflexive, strictly convex and smooth Banach space with dual space X*. Consider the
optimization problem:

min ®(x) =1 f(x) + g(v), (1.1)
X€

where, the following assumptions are made throughout the paper:

o f: X — (—o0, +00] is proper, lower semicontinuous and convex.

e g : X — R is convex Gateaux differentiable, and its gradient is Lipschitz continuous with constant
L:
IVg(x) = VeIl < Lilx - yll, Vx,y € X.

e The set of solutions to Problem (1.1), denote by Sol(P), is nonempty. The optimal value is denoted
by @*.

Recently problem (1.1) together with many variants of it has been received much attention from
optimization community due to its broad applications to many disciplines such as optimal control,
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signal processing, system identification, machine learning, and image analysis; see e.g., [1,2] and the
references therein. It is known that problem (1.1) is characterized by the fixed point equation:

x = prox’;(x — tVg(x)).
where, t > 0 and
Prox( (x) = argmin, 1) + 3llx — ).
This equation suggests the possibility of iterating(see [3]):

Xn+l = pI'OX;f(Xn - t,,Vg(xn))

This method is called the forward-backward splitting method and includes, in particular, the
proximal point method and the gradient method. The forward-backward splitting method is an effective
method to solve (1.1), which allows to decouple the contributions of the functions f and g in a gradient
descent step determined by f and in a backward implicit step induced by g taking the advantage of
some Lipschitz assumption on the derivative of g at each iteration. Forward-backward methods belong
to the class of proximal splitting methods. These methods require the computation of the proximity
operator and the approximation of proximal points (see [4]).

In 2020, Malitsky and Tam [5] introduced the forward-reflected-backward algorithm. Given 4, >
0,6 € (0,1),y € {1, 3} and B € (0, 1). Compute

Xne1 = PrOXY (%, = A,V8(x) = An-1(V8(X) — VE(X01))) (1.2)

where the stepsize A, = yA,_,8 with i being the smallest nonnegative integer satisfying 4,||Vg(x,.+1) —
Veg(x)) < gllxmr 1| — X,||. Very recently, Padcharoen et al. [6] proposed the modified forward-backward
splitting method. Give {4,} c (0, %), {a,} C [0,a] C [0, 1). Let xy, x; € H and compute

Wy = Xy + gn(xn - xn—l),
Yu = PIOXy (@, = 2,Yg(wy)),
Xn+l = Yn — /ln(vg(yn) - Vg(wn))

They established weak convergence of the proposed method.

Generalization of this method from Hilbert space to Banach space is not immediate. In [7],
the following generalization of the forward-backward iteration procedure was proposed in reflexive
Banach spaces X:

1
Xo € X, Xp+1 € argminyeX{;”y - xn”p + tn(<vg(xn)’ }’> + f(y))}9 (13)

where, the gradient operator Vg is (p — 1) Holder-continuous on X, i.e., there exists a constant L such
that
IVg(x) = Vgl < Lllx —ylI”™", ¥ x,y € X.

In [8], Guan and Song replace the square of the norm distance with Bregman distance proposed
another type generalization of the forward-backward method in Banach spaces

1 1
Xn+l = argminyeX{zlnxn”p + ;H)’Hp - <Jp(xn)’ y> + tn(<vg(xn) + Jp(Zn)’ y> + f(y))}»
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where, J, is the p-duality mapping and ¢ is the dual exponent.
In [9], Guan and Song further extended forward-backward splitting method (1.3) to more general
case, i.e., by taking a convex combination of the current step and the previous step:

Yo = argmin {1, = ¥IIP + (Vg (x,) + Jp(z), y) + FOD),
Xn+l = (1 - /ln)xn + /lnyn-

In [7-9], they respectively proved that the sequence of functional values converges with the
convergence rate n'~? to the optimal value of Problem (1.1).

Inspired and motivated by previous works, we replace x,_; with x,,; and the square of the norm
distance with Bregman distance in (1.2) to study non-traditional schemes of the forward-backward
splitting algorithm for minimization problems with nonsmooth convex functionals in a Banach space.
This non-traditional algorithm is an implicit algorithm. The traditional forward backward splitting
algorithm is explicit algorithm, and the forward step and the backward step are completely separated.
After simple calculation (see Remark 3.1), the implicit algorithm can be converted into an explicit
algorithm, but the forward step and the backward step of the explicit algorithm are partially separated.
Our main goal is to prove the criterial convergence of these algorithms and obtain estimates of the
convergence rate under different stepsize assumptions.

2. Mathematical toolbox

Let f : X — (—o0,+0c0] be an extended real valued function. The subdifferential of f is the set
valued operator df : X — X* the value of which at x € X is

If(x) ={x" e X" : (x",y —x) < f(y) - f(%), ¥y € X}.
Let D be a closed convex set. For every x € D, we define the set of normals to D at x by
Np(x) ={x" e X" : (x",y—x) <0,Vy e D}.
The function 7 : X — (—o0, +00] defined by

0, if x e D,
+00, otherwise,

Tp(x) = {

is called the indicator function of D. Clearly, 7 is a proper convex function and for every x € D, we
have drp(x) = Np(x).
The duality mapping J : X — X" is defined by

J) = {x" € X", x) = [Ix7llIxd] ) = 1l Ve X,

The Hahn-Banach theorem guarantees that J(x) # () for every x € X. It is clear that J(x) = 8(%” .
I*)(x) for all x € X. It is well known that if X is smooth, then J is single valued and is norm-to-weak
star continuous. X is reflexive if and only if J is surjective. X is strictly convex if and only if J is
injective. In particular, J is a monotone operator in any Banach space, that is,

Jx)—-J»),x—y)y>0,¥x,y € X.
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The duality mapping J is said to be weakly continuous on a smooth Banach space if x, — x implies
J(x,) — J(x). This happens, for example, if X is a Hilbert space, or finite dimensional and smooth,
or [P, 1 < p < +oo. This property of Banach spaces was introduced by Browder [10]. It is also well
known that if a Banach space X is reflexive, strictly convex and smooth, then the duality mapping J*
from X* into X is the inverse of J, that is, J~! = J*. Properties of the duality mapping have been given
in [11-14].

Let X be a smooth Banach space. Alber ( [15]) considered the following function:

W(x,y) =[xl = 2¢J(x), y) + [IylI% Vx,y € X.
It is obvious from the definition of W that
(i = 1IyID* < W(x,y) < (lxll + [IyID?, ¥ x,y € X.

Consider the Moreau envelope env,(x) and the set-valued proximal mapping 7;¢(x) defined by
) 1
env,s = inf{rf(y) + S W(x, y)}, 2.1)
yeX 2

1
7ip(%) = argmin, o, {1f(y) + S W(x, y)}.

The operator 7/ is called the proximity operator. For every x € X, the infimum in (2.1) is achieved at
a unique point 7r,+(x) which is characterized by the inclusion

J(x) = J(7p(x)) € Ot f)(,p(x)). (2.2)

Let us introduce some concepts and characteristics of Banach space geometry [15, 16]. Denote the
modulus of convexity of X by 6x(€) and modulus of smoothness of X by px(7) and set

hy(7) = £ XT(T). (2.3)

We recall that a Banach space X is uniformly convex if and only if 6x(e) > O for all € > 0 and it is
uniformly smooth if and only if lim,_,y 2x(7) = 0. The space X is said to be 2-uniformly convex (resp.
2-uniformly smooth) if there is a constant ¢ > 0 such that 6x(e) > ce? (resp. px(7) < c1?).

If ||x|]| < M and |ly|| < M, then J is uniformly monotone in a uniformly convex Banach space in the
form

J&x) = J),x—y) 2 (2M)_1M25x(%), 2.4)

where 1 < u < 1.7 is Figiel constant, it is uniformly continuous in a uniformly smooth Banach space
in the form
16u]lx — yll
I7(x) = JWIl < 8th(T), (2.5)

Next we present some auxiliary lemmas on the recursive numerical inequalities which are often
used in the proofs below.
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Lemma 2.1. [17] If X is a reflexive, strictly convex and smooth Banach space and A is a maximal
monotone operator, then for each A > 0 and x € X, there is a unique element X satisfying J(x) €
J(%) + AA(X).

Lemma 2.2. [I8] Assume that

(1) z(2) : [1,00) — [0, ) is a continuous decreasing function satisfying flw z(t)dt = +o0;

(1) () : [0, 00) — [0, ), (0) = 0 is continuous and strictly increasing;

(ii1) {u(n)} is a sequence of nonnegative real numbers such that the implicit recursive inequality

HMn+1 < Mn — a/nQO(llnH) (26)

holds, where a, = z(n), then lim,_,, i, = 0, and there exists ¢ > 1 such that for all n=1,2,- - -

- c
l‘li’l S QD n .
i=1 @i

Lemma 2.3. [I8] Assume that {u,} is a sequence of non-negative real numbers such that p,,; <
My — c,ui .1 With a constant ¢ > 0, then there exists ¢ > 0 such that

fhn <

S| o

Lemma 2.4. [19] Let {a,},{b,} and {€,} be real sequences. Assume that {a,} is bounded from below,
{b,} is nonnegative, Y, | |€,| < +o0 and a,+\ — a, + b, < €,. Then {a,} converges and }.;" | b, < +co.

Lemma 2.5. [20] Let X be a uniformly convex Banach space. If lim,_. W(x,, x,+1) — 0, then
limnaoo ”xn - xn+l|| - 0.

Lemma 2.6. [21] If g : X — R is convex Gateaux differentiable, and its gradient is Lipschitz
continuous with constant L, then we have

1
(Ve(x) = Ve(), x—y) 2 ZIIVg(x) - VeI, Yx,y € X.

Lemma 2.7. [22] (Descent lemma) Let g : X — R be a continuously differentiable function whose
gradient is Lipschitz continuous with constant L. Then, for any x,y € X, we have

L
8(x) < g0 +(Vg(), ¥ =) + Sl - yII>.

Lemma 2.8. [23] Let X be a 2-uniformly convex and 2-uniformly smooth Banach space. Then there
exists two constants a > 0 and 8 > 0 such that

allx =P < W(x,y) < Bllx =P, ¥ x,y € X.

Remark 2.1. If X is a 2-uniformly convex and 2-uniformly smooth Banach space, then X is also a
2-uniformly convex and 2-uniformly smooth Banach space. Hence, there exists a constant ¢ > 0 such
that

(J(x) = J(), x = y) 2 emax{[|lJ(x) = JQ)IP, llx = yIP}, Y,y € X.

AIMS Mathematics Volume 8, Issue 5, 12195-12216.



12200

3. Main results

Algorithm 3.1. Modified forward reflected backward splitting algorithm
Take xy € X. Given x,, define x,.11 by the inclusion

Xn+l = ﬂ't,,f-]_l(-](-xn) - tnvg(xn) - Arl(Vg(-an) - Vg(-xn))), (31)
where, {t,} and {A,} are two sequences of nonnegative real numbers.

Remark 3.1. By (2.2), we have

Xnet = 0,007 (T () = 1,V 8(x) = Au(V8(Xe1) — VE(x)))

J(xn) = 1,V8(xa) = Au(V8(Xe1) = V(X)) = J(Xu11) € 1,0f (Xui1)
J(xn) = 1,V8(x,) + ,V8(x) € J (X)) + 2, V8(Xus1) + 1,0 f (Xar1)
JIT' J(x) = 1,Y8(x,) + 2,V8(xa)) € J(Xpat) + (A,VE + 1,0) (i1
Xor1 = g pd (J(x) = 1,Vg(x,) + 4,Vg(x,).

t 00 ¢

Hence, the iterative sequence {x,} defined by Algorithm 3.1 is well-defined, that is, for each x,, there is
a unique element x,,1 satisfying Eq (3.1).

Remark 3.2. Notice that

Xn+1 = ﬂ'tnf‘]_l(-](xn) - tnvg(xn) - /ln(vg(an) - Vg(xn)))
< JJ_I(J(xn) - tnvg(xn) + /lnvg(xn)) € J(xn+1) + (/ang + tnaf)(xnﬂ)
& Xpt € (J+ 4,V + 1,01) 7 (J(xn) = 1,98(x,) + 2, Vg(x)).

Hence, by Lemma 2.1, we also know that the iterative sequence {x,} defined by Algorithm 3.1 is well-
defined.

Proposition 3.1. Let {x,} be a sequence generated by Algorithm 3.1 and define

h(x,) 1 = f(x) = fOe) +(V8(x0), X — X))

Assume that (J(x) = J(y), x—y) > cllx—yl?, ¥x,y € X with some constant ¢ > 0.If 0 < 7 < 1, < 2=tb,

then we have

(i) [ = a2 < - h(x,).

(i) P(xpe1) < D(x,) = (1 = 5250)h(,).

Proof. (i). By Remark 3.1, we have that
J(xn) = 1,V 8(xn) = (V8 (Xn41) — V&(x1)) = J(Xns1) € 1,0f (X41) (3.2)
and so that
J(x) = 6,V 8(xn) — i(VE(Xn41) — VE(x)) — J (K1), Xn = Xna1) < 1a(f(X) — f(Xa1))-
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Hence, by the Lipschitz continuity of Vg(-), we have

1
t_<-](xn) - J(xn+1)’ Xn — xn+1>

An
< f(-xn) - f(xn+1) + <Vg(-xn)’ Xn — xn+1> + t_<Vg(xn+l) - Vg(-xn)v Xn — -xn+1>
An
< f) = f(xna) + (V8(X), X — Xur1) + t—llvg(xnﬂ) = Vg(xpllllxn = Xn1ll
LA,
< h(xn) + P ”xn - xn+1||2-

n

By condition (J(x) — J(y), x — y) > c|lx — y|I*, Yx,y € X, we can get

1 c
?(J(xn) - J(xn+l)’ Xn — xn+1> = t_”-xn - xn+1||2-

Hence we have
ty

c— LA,

h(xy).

2
”-xn - xn+1|| <

(i1). Using the definition of A(x,), we have

D(xy) = P(xni1) = h(xy) + 8(x0) = 8(Xni1) = (VE(X), Xy = X1 (3.3)
By the Lipschitz continuity of Vg(-) and Lemma 2.7, we get that
lg(xn) — &(xns1) = (VE(Xn), X0 — Xpi)| < %”xn — X[ < Zci"—gunh(xn)- (3.4)
It follows from (3.3) and (3.4) that
D) € D) = (1 = 2 Jh(x, ).
2c —2LA,
O
Proposition 3.2. Let {x,} be a sequence generated by Algorithm 3.1. Assume that
(J(x) = J(), x = y) 2 emax{llx = yI*, IV (x) = JWIP), Yx,y € X
with some constant ¢ > 0 and the sequence {x,} is bounded. If 0 <t <t, < @, then the following

hold.
(1) lim ®(x,) = O*.
(i1) all weak accumulation points of {x,} belong to Sol(P).

(iii) D(x,) — ®* < Bn~! for some > 0.
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Proof. (1). Let X € Sol(P). Since
8(xn) — g(%) < (Vg(xy), x, — £)

and
(D(xn) - (D* = f(-xn) - f()?) + g(xn) - g(fc),
we have that

D(x,) — @

IA

() = f(X) +(Vg(xy), x5 — %)
h(xn) + f(Xni1) = F(R) + (VE(xn), Xns1 = X). (3.5)

Then, by (3.5) and (3.2), we have

Dd(x,) — O
< h(xp) +(Vg(x,), Xue1 — X)
J -xn) - J(-xn ) /ln o
- <¥ - Vg(xn) - l_(Vg(er—l) - Vg(xn))’ X — xn+l>
J(x,) = J(x, A .
= h(x) - <% ~ 22 (Vgxn) - Ve, £ - xn+1>
J(xn) - J(xn ) A /ln A
= h(x,) +|| ; NIE = ]l + t—IIVg(an) = Vg(x)IlIX = xpeall
1 A n 2~
< h(x,)+ 7||xn = XnrtllIX = Xl + Xne1 = XallllX = X ]

n n
< h(xn) + Clller—I - xn||7

where, ¢; > #II)? — Xpr1ll + Lf" ||X — x,+1]|- Hence, by Proposition 3.1, we have
* tl’l
O(x,) - D" < h(x,) +c h(x,)
c— LA,

<1>(xn>—<1>(xn+1)+c1 \/ th D(x,) — D(x,s1)

(- 557) c=Ld, (1-55)
L1
< (D(x,) - <1><x,,+1>)%<c—>%, (3.6)
2
where, (é)% > —w +c #fln—un Then we have
e(D(x,) — D7) < (D(x,) — D) — (D(x,01) — D). 3.7)

By Lemma 2.4 and (3.7), we obtain, lim ®(x,) = ®".

(i1). Since lim,,., ®(x,) = ®*, the sequence {x,} is a minimizing sequence, thus, due to the weak
lower semicontinuity of @, all weak accumulation points of {x,} belong to Sol(P).

(ii1). By (3.7), we have
(@ (xp11) — D) < (D) — D7) < (D(x;,) — D) — (P(x41) — D).
Then, by Lemma 2.3, there exists 8 > 0, such that ®(x,) — ®* < n~". O
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Proposition 3.3. Let {x,} be a sequence generated by Algorithm 3.1. If A, =t, >t > 0, then we have
(i) the sequence {x,} is bounded.

(ii) }erolo D(x,) = O".

(ii1) all weak accumulation points of {x,} belong to Sol(P).

(iv) if the duality mapping J is weakly continuous, then {x,} convergence weakly as n — +oo to a point
in Sol(P).

Proof. (1). For all X € Sol(P),

W(-xn+1 > -)_C) < W(xn’ )_C) + 2<J(-xn+l) - J(xn)’ Xn+l — )_C>
= W(xn’ X—) - 2tn<aq)(-xn+l)’ Xn+l — )_C>
< Wi, %) — 26(D(x41) — D(X)). (3.8)

Then we have
W(.Xn+1, X) < W(Xn, )_C) < W(X1, X‘)

Hence, the sequence {x,} is bounded.

(ii). By (3.8) and 1, > 7, we have 113)1O O(x,) = O

(iii). Since lim,_,,, ®(x,) = ®*, tﬁe sequence {x,} is a minimizing sequence, thus, due to the weak
lower semicontinuity of @, all weak accumulation points of {x,} belong to Sol(P).

(iv). The space being reflexive, it suffices to prove that {x,} has only one weak cluster point as
n — +o0. Suppose otherwise that x,; — X; € Sol(P) and x,, ; — X, € Sol(P). By part (1), we know that
there exists nonnegative numbers n; and n, such that

lim W(x,, %) — n, and il_)rg W(x,, %) — n,.

n—oo

Hence

lim (W, 1) = W 32)) = 1P = [BIP +2 lim (J(r,), % - 51)

= ny —njp.

Since the duality mapping J is weakly continuous, we have

~ 112 ~ 112 ~ ~ ~
1% 117 = 1% + 2¢J(X1), X2 — X1) = ny —ny

and
151117 = [|Z2l* + 2¢J (%), %y — 1) = 1y — np.

Hence
(J(X) = J(%1), X% — %) = 0.

Since X is strictly convex, according to the properties of the duality mapping J, we conclude that

X =Xy,

which establishes the uniqueness of the weak accumulation point. O
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Proposition 3.4. Let {x,} be defined by Algorithm 3.1. Assume that t, < t,,; and h,(x) = 2t+_1||3c||2 -
gx), n=1,2,--- is a convex function. Then we have the following:

(i) if the sequence {x,} is bounded and Y, 2| A; < +oo, then lim ®(x,) = ®* and all weak accumulation
points of {x,} belong to Sol(P).

(i1) if A, = 0 and t,,1 < 1, then the sequence {x,} is bounded.

Proof. Let

1 y .
Gu(x) = BOx) + = W(X-1, X) = Dy, X-p) + = ~(Vg(x,) = Vg(x-1), x)

n—1 n—1
and

Ap—
5— W1, 2) = Dyl %,1) + = L(Vg(x,) = Vg(Xno1), X),
n—1 n—1

where, D, (x, x,-1) = g(x) — g(x,-1) — (Vg(x,-1), X — x,-1) 1s a Bregman distance function.

Since h,(x) = 3 [1_] ||lx||I> — g(x) is a convex function, we have that

gn(x) =

A, A
8(X) = Dy (1. 3,1) + 1<Vg(xn>—Vg<xn_1>,x>zt 1

n—1 n—1

(Vg(xn) = Vg(xp-1), X)

and so that

A A,
Gu(x) 2 D) + - L(Vg(x,) = Vg(xa1), x) > O + t L(Vg(x,) = Vg(x,1), x).

n—1 n—1

Then we have,

Gn(x) - Gn(xn)
= Ox)+

A
2t W(-xn—l’ X) - Dg(-xa xn—l) + P 1 <Vg(xn) - Vg(-xn—l)’ .X'>
n—1 n—1

1 A
~®05) = 57— W, %) + Dy ) = L(Vg(x,) = V&(Xno1), X
n-1 n—1

1
= T W(Xn,x)+f(x)_f(xn)
n—1
J(x%-1) = J(x, Ap—
_< e (X)_Vg(xnl)_t 1

Ih-1 n—1

(Ve(xn) = Vg(xp-1)), x = xn> :

Since L=l — Vg(x, 1) — 2=L(Vg(x,) — Vg(xs-1)) € Of(x,), then we have

J(x,—1) = J(x, Ap—
f(X)—f(xn)—< (x 1;) .

n—1 n—1

(Vg(x,) — Vg(x,-1)), x — xn> > 0.

Hence,

Gn(x) - Gn(xn) 2

1
W(x,, x) =2 =—W(x,,
3 (X, x) o (X, X)

Ay
81 (%) = == (Vg (1) = VELxn), X). (3.9)

\%
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Let X € Sol(P), then we have

Gn(ﬁ) - Gn(xn)
D(R) + gu(R) — D(x,) — gulX)

A
(%) = B(x,) = 8(5) + Gt (8) = Gt (1) + 1

n—1

IA

(Vg(xn) = Vg (Xp-1), X).

Hence, by g,(x,) > f:—_‘l'(Vg(xn) — Vg(x,-1), x,) and ®(X) < O(x,), we have
(Gn(j‘\:) - Gn(-xn)) - (Gn—l()’e) - Gn—l(-xn—l))

A A
< O = Bx) = o) + (V) = V1), D)

Ap— A, )
< =700 = Vg0, %) + TR — V), D) (3.10)

By (3.9), we have that the sequence {G,(X) — G,(x,)} is bounded from below. Since {x,} is bounded,
then by Lemma 2.4 and (3.10), we obtain that {G, (%) — G,(x,)} is converges. Hence, by (3.10), we have
that lim ®(x,) = ®*, and so that, all weak accumulation points of {x,} belong to Sol(P).

(i1) If A, = 0, then g,(x) = f_lW(xn_l, x)—D,(x, x,-1) > 0. Then, once again from inequalities (3.9)
and (3.10), we get that

- >
Gu(x) = Gulon) 2 5 -

W(x,, x)
and
(Gn()?:) - Gn(-xn)) - (Gn(ﬁ) - Gn(-xn—l)) < (D()?) - (D(-xn)-
Hence, {x,} is bounded. O

Remark 3.3. If there exist ¢ > 0 such that (Jx — Jy, x — y) > c||x — y||* and Vg is Lipschitz continuous

with constant L, then for 0 < t, < ¢ we have

1
;(J(X) —JO), x-y) 2 tﬁllx =yl = Lilx = yIP* = (Vg(x) = Vg(), x = ).

Then by
1
t—<J(X) = J(), x —y) 2 (Vg(x) = Vg(y), x —y) & (Vh(x) — Vh(y),x —y) 2 0,

we have that, h,(x) = %HXII2 —-g(x),n=1,2,--- is a convex function. O

We have proved that existence of solutions of Problem (1.1) is sufficient to guarantee convergence
of the sequence generated by Algorithm 3.1. The next proposition shows that it is also a necessary
condition.

Proposition 3.5. Let {x,} be a sequence generated by Algorithm 3.1. Assume that
1
2tn—l

is convex function. If the sequence {x,} is bounded and t, < t,.1 and Y, A; < +oo, then Sol(P) is
nonempty.

hn(x) = Ixdl® = g0, n=1,2,---
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Proof. Since {x,} is bounded, then weak closure mw of {x,} is also bounded and there exists a bounded
closed convex set D C X such that ,
{x,} cintD, (3.11)

where intD is the interior of D. It follows that any weak accumulation points of {x,} belong to intD.
Let f = f +1p and

Xo €X, Xpy1 = ﬂ;nf-]_l(J(jén) = 1,Vg(X,) — 4,(Vg(Xns1) — Vg(%0)))-

We will first prove by induction that the sequence {X,} coincides with the sequence {x,} when X, = xj.
Suppose that %, = x,,. By (3.11), we have that x,,; € intD, and so that,

Np(xp+1) = 0.

Hence, we have that

M - Vg(x,) - %(Vg(xnﬂ) = Vg(xa))

€ af(xn+l) = af(-xnﬂ) + ND(xn+1) = af:(-xnﬂ)

and so that
Xr1 = 70, 11T (T () = 1,98(x)) = ,(V8(X41) — VE(x))).
Then, by Remark 3.1, we have

in+] = Xn+l-

Consider the optimization problem:
min F(x) + g(x). (3.12)
Xe

Since D is a bounded closed convex set and X is a reflexive Banach space, the solution set of problem
(3.12) is nonempty. Then by Proposition 3.4, all weak accumulation points of {X,} are solutions to
problem (3.12). Since the sequence {X,} and the sequence {x,} are coincidences, the weak accumulation
point X of {x,} is also solution to problem (3.12).

We prove next that X € Sol(P). Since X € {xn}w C intD, we obtain Np(x) = 0. Hence,

0 € A(f(®) + g(&) = Af(R) + Np(%) + Vg(2) = 0D(%),
that is, X € Sol(P). O

Proposition 3.6. Let X be a uniformly convex and uniformly smooth Banach space. Let {x,} be a
sequence generated by Algorithm 3.1. Assume that (J(x) — J(¥),x —y) > cllx = y|*>, Vx,y € X with
some constant ¢ > 0 and assume that the sequence {x,} is bounded. Assume that) < A1 < A, <t, <t
and (% -(1- %)%) > (. Then the following estimate holds

D(x,) - D < o(5), (3.13)
n
where ¢ is some positive constant and ¢ is defined by (3.17).
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Proof. Using
g(xn+l) - g(xn) < <Vg(xn+l)a Xn+l — xn)

and
J(xn) - tnvg(xn) - /ln(Vg(an) - Vg(xn)) - J(xn+1) € tnaf(xnﬂ)’

we calculate
DO(xp11) — P(x,)

g(-xn+l) - g(-xn) + f(xn+]) - f(xn)
<Vg(xn+1), Xn+l — xn>

1 Ay
) = JCen)) = V() = =(Ve (K1) = V&), Xt = )

IA

1 An
= t_<J(xn) - J(xn+1)a Xn+1 — xn> + (1 - t_)<vg(xn+l) - Vg(xn)’ Xn+1 — xn)

n n

1 Ay
< U0 = JO0)s X = Xn) + (1= V(1) = VECrlllner = xall

n n

1 Ay
< ?(J(xn) - J(xn+1)’ Xn+l — xn> + (1 - t_)L”xn+1 - xn”z- (314)

n n

Then by condition {(J(x) — J(y), x —y) > c|lx — y||*>, ¥x,y € X, we have

D(Xp41) = P(xy)

1 A,
< t—<J(xn) = J(Xp41), Xps1 — X0 + (1 = t_)Lllxn+1 — xlI?
1 A, L
< t_<J(xn) - J(-xn+1), Xn+l — xn> + (1 - t_)Z<J(xn) - J(xn+1)’ Xn — Xn+1>
1 A, L
< (t_ -(1- I_)Z)U(x”) = J(Xn41), Xps1 — Xp)
< CL’(J(Xn) - J(xn+l)7 Xn+1 — xn>- (315)

where, 0 < a = (% -(1- %)%). Due to the monotonicity property of J,
<J(xn) - J(xn+l)’ Xn+l — xn) <0.

Thus, from (3.15) we obtain the inequality ®(x,,;) < ®(x,) and ®* < d(x,) < D(x;). Therefore,
the sequence {®(x,)} has a limit. Since the sequence {x,} is bounded, there exists M > 0 such that
lx.|l < M. By (2.4)

(1262 — Xl

(J(X) = J(Xns1)s X = Xns1) = (2/J)_IM25X(T)-
This implies the estimate
D(x01) — D(x,) < —a(zm‘lMZax(w). (3.16)

By analogy with (3.14), we can write down
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D(x,11) — D(X)
(Vg(xy41), Xp1 — X)

1 /1]1 —
+<t_(~](xn) = J(xn1)) — Vg(x,) — I—(Vg(xnn) = Vg(x,)), Xp41 — X)

IA

1 _ Ay _
< t—IIJ(xn) = J (X DX = X+ (1 = t—)Lllan = XullllXns1 — X|.
By condition (J(x) — J(¥), x — ¥) > c|lx — y|I*>, Vx,y € X, we have
1
EIIJ(X) —JOI = llx=yll, Yx,y € X.
Hence,

D(xp1) = D(X)
1 _ /ln L -
G = T DMl = X+ (= =)=l () = J)HlIxnr = X

IA

= (U= YOI = It = 3
< B = T D1 — .
where, 8 = (3 + (1 — 4)£). Hence, we obtain
O(xp41) — D(X) < Cohx(C3llxpe1 — Xall),

where, C, = 88M(M + ||x||), C3 = 16uM~" and hx(¢) is defined by (2.3).
From (3.16), we now deduce

R (C3H(@(x11) = D(X)))

D(xp41) — P(x,) < —C16x( 3MCs )-
where C; = a(2u)~' M?. If we denote u, = ®(x,) — O(x) and
—1(-1
@(1) = 5X(}%Cé3t)), (3.17)
then we obtain
Hns1 < fn — Cro(ns1)-
By Lemma 2.2, we conclude that ®(x,) — ®* with the estimate (3.13). O

Proposition 3.7. Let {x,} be a sequence generated by Algorithm 3.1. Assume that there exists ¢ > 0
such that
(J(x) = J(), x = y) 2 emax{|[J(x) = JQI, llx = 7}, Yx,y € X (3.18)

and assume that L|t, — A,] < 1 < c. Then there exists a constant C > 0 such that the estimate

D(x,) - D* s( ¢ )

i=1 Li
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holds. If 0 <t < t, in the Algorithm 3.1, then there exists a constant ¢ > O such that the following the
estimate of the convergence rate holds:

D(x,) - O < <.
n

Proof. Using
J(xn) - J(xn+1) - tnvg(xn) - ﬂn(Vg(er—l) - Vg(xn)) € tnaf(xnﬂ),

we have
J(xn) - J(xn+1) + (tn - ﬁn)(vg(erl) - Vg(xn)) € ang(-erl) + tnaf(xnﬂ) = tnaq)(xnﬂ)-
Hence,

J(-xn) - J(xn+1) + (tn - /1n)

tl’l n

(D(xn+1) - (D(xn) < < (Vg(an) - Vg(xn))’ Xn+l — xn> .

By condition (3.18), there exists ¢ > 0, such that

D(xp41) — D(xy)

1 t,— A,
< t_ <J(-xn) - J(xn+1)’ Xn+l — xn> + (t—)<vg(xn+1) - Vg(xn)’ Xn+l — xn>
c t, — A,
< _t_”xn - xn+1||2 + | |||Vg(xn+l) - Vg(xn)””xn+l - Xn”
c t,— A,
< _(t_ - L] ; DIlXet = 2l (3.19)

By Remark 3.1 and the definition of subdifferential , we have

D(xp+1) — D(X)
< <J(xn) - J(xn+1) + (tn - /ln)

tl’l n

(Vg(xnﬂ) - Vg(xn))a Xn+1 — )_C>

1 _ t, — A, _
< t—IIJ(xn) = J (X DIXns1 = X[ + | NIVg(xns1) — Vgl X — Xl
— tn - /ln —
< —tllxn = Xps1llllXne1 — Xl + L 1%n+1 = XallllXns1 — XI|
1 t, — A, _
< (; + L DM+ [|XIDIxn = X [l (3.20)

Then by (3.19) and (3.20), there exists a constant A > 0, such that
D(x41) = D(x,) < = D(641) = O(E))*.
Let us to denote u, = ®(x,) — ®(x). Then
Mt < fin = Alaft . (3.21)
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We now use Lemma 2.2. In the case of (3.21), we have ¢(¢) = >, a, = At,, z(t) =t (up to a constant)
and then we conclude that there exists a constant C > 0 such that

C 2

If0 <t <t,,then by (3.21) we have

fnet S fn = Apgiply,y < pn — AfpLl .
Then by Lemma 2.3, we obtain .
O(x,) - 0" < =
n
with some constant ¢ > 0. O

Proposition 3.8. Let {x,} be a sequence generated by Algorithm 3.1. Assume that there exists ¢ > 0
such that
(J(x) = J), x = y) 2 emax{[J(x) = JWIP, llx = yI*), Yx,y € X. (3.22)

If0<t<t, < fand A, = t, in the Algorithm 3.1, then there exists a constant C > 0 such that the
following the estimate of the convergence rate holds:

C 2
Ox,) -0 < | ————| . 3.23
(xa) (ln(n+ 1)) (3:23)
Proof. As in Proposition 3.7, we assert that ®(x,,) < ®(x;). Moreover,
1 c
q)(xn+1) - q)(xn) < t_<J(-xn) - J(xn+1)’ Xn+l — xn> < _t_llj(xn) - J(-xn+1)||2-

Hence, .
(D(xp41) — D) = (P(x,) — D) < —t—IIJ(xn) — J DI (3.24)

Therefore, the sequence {®(x,) — ®*} has a limit and there exists a constant C such that
D) = Tl < €y,
i=1

Letting x € Sol(P). Assume that x,, # X, otherwise the Algorithm 3.1 terminates at finite steps. We
calculate

IV (s) = JEOIF < () = TN+ 1) = I QeI
< (JG) =IO+ Z 1) = J (i )ID?
i=1
< 2W0) = J@IP + 2(2 I7(x) = J e DID?. (3.25)
i=1
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Since

O G = el < (D) DI 0) = TP,
i=1 i=1

we deduce
1 (Xs1) = JE)IP < 21J(x1) = JE)|P +2C1(n + 1).

By making use of the inequalities
. oL _
(1) = @7 < (OP(Kne1), Xt = X < [ () = Tl — A1

and (3.24), one gets

., @) - 02

n

D(xp41) = D(x)

IA

||xn+1 - 3_C||2
—C3t (D(xp41) — (D*)z
" Gner) = SR
Ety(D(xy41) — OF)?
2l (x) — J@IP +2C 1+ 1)’

(3.26)

It is not difficult to verify that there exists a constant C, > 0 such that

C3ln S C,
21J(x) = JX)P+2Ci(n+1)  n+1"

It is clear that
ct,

G, < 3
2= 20 (xy) - JRIP +2C

The following recurrence inequality is established from (3.26):

C,
n+1

D(x,41) — O < D(x,) — O - (D(xy41) — D).

This is the particular case of (2.6) with @, = n% and ¢(f) = £*. Thus, there exists a constant C > 0 such
that

: c
D(x,) — D" < (27:1(i n 1)_1) .
Since & > In(é + 1), V€ > 0,

T 1 d 1
Z?>;ln(1+7):lnl;[(1+;):ln(n+l).

i=1

Hence, (3.23) holds and the proof is accomplished. O
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Proposition 3.9. Let {x,} be a sequence generated by Algorithm 3.1. Assume that there exists ¢ > 0
such that
(J(x) = J(), x = y) 2 emax{||lJ(x) = JQ)IP, llx = yIP}, Y,y € X. (3.27)

If0<t<t, < f< ¢ and Yooy An < +o00, then, for every k > 1, one has

1
min d)(xn+1) -0 = 0(—1) .

1<n<k 7

In particular, if A, = 0 for all n in the Algorithm 3.1, then there exists a constant ¢ > 0 such that the
following the estimate of the convergence rate holds:

D(x,) - D" < <.
n

Proof. Using
J(xn) - J(xn+1) - tnvg(xn) - /ln(Vg(er—l) - Vg(xn)) € tnaf(xnﬂ)’

we have
J(xn) - J(-xn+1) + (ln - An)(vg(-xnﬂ) - Vg(-xn)) € ang(an) + [naf(xnﬂ) = tnaq)(xnﬂ)-

Hence,
D(x,11) — D(x,) <K

J(xn) _ J(Xn+1) + Z ; /l” (Vg(an) - Vg(xn))a Xn+l — xn)'

tn n

By condition (3.27), there exists ¢ > 0, such that

(D(xn+l ) - (D(xn)

1
< ?(J(xn) - J(-xn+l)’ Xn+l — xn) + <Vg(-xn+l) - Vg(-xn)a Xn+l — xn)
An
_t_<vg(xn+1) - Vg(xn)a Xn+l — Xn)
¢ 2 2
< _t_”xn - xn+1|| + Lllxn+l - xn” - t_<Vg(~xn+l) - Vg(xn), Xn+l — xn>
c , A
< (L- t—)llxn = Xpn1ll” — t—(Vg(xnn) = Vg(xn), Xps1 — Xn)- (3.28)

By Remark 3.1 and the definition of subdifferential, we have

D(x,41) — D(X)
J(xn) = J(xne1)

< (t—, Xpe1 = X) + (Vg(Xn11) — VE(Xn), X1 — X)
An _
_t_<vg(-xn+l) - Vg(-xn)’ Xn+l — X>
< ;”xn = Xpa X1 = Xl + Lllxper = xallll X041 — Xl

n

Ay _
—t—<Vg(xn+1) = Vg(x,), Xpe1 — X)
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1 I _
< (_t + D)||xn = Xpet |l — X[ = I_<Vg(xn+l) = Vg(xp), Xpe1 — X).

cn n

Then by (3.28), we have

D(xy41) — D(X)

1 _ /ln —
< (o * Dl = Xnalllbner = %l = —=(Ve(aer) = V(). Xue1 = X)
1
1 (D(xn) - (D(-xn+1) - %(Vg(xnﬂ) - Vg(xn)a Xn+1 — xn> ’ _
< (; +1L) c-7 141 — XlI

In

Ay _
—t—<Vg(xn+1) = Vg(xp), Xpe1 — X).

Since {x,} is bounded and 0 < 7 < t, <7 < Ty 2t An < +oo, there exists § > 0 and a, > 0 with
Yy @, < +oo such that

(@(x041) = O()* < O(D(x,) = P(X)) = OP(Xy41) = D(E)) + @ (3.29)

Hence, we get that

k k
D (@Cx,1) = D) < H@(x) — DF)) — H(@(xi1) = D) + ),

n=1 n=1

from which we obtain that

k
k lrélniélk(d)(xnﬂ) — (%))’ < 0(D(x)) — D(X)) + Z @, < +0o,

n=1
This implies that
1
min (D(X,H_]) -d"=0 (—1) .

1<n<k 3

In particular, if 4, = 0, then we can take @, = 0. Hence by Lemma 2.3 and (3.29), there exists ¢ > 0
such that

(D(xn) - (D* <

S | o

2

which proves the desired result. O

4. Numerical experiment

Let X = {x = (x1, %) : |lx|l = (x;]"° + |x2]'%)75}. Then we know that X is finite dimensional, but || - |
is not an euclidean norm, and J(x) = ||x]|%(x]x117%3, x2|x2| %) (see [14]). For simplicity, consider the
following Tikhonov-type optimization problem:

in lI(x1, %) — (2,3)]'?
(x1,X2)€X 1.5

+ x| + |xal. (4.1)
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Simple computations show that

. l1Cxr, x2) = (2,3
Argmin ey ——— — + [x1] + Il = {(1,2)}.

Lett, = 0.5, 4, = 0.25, take x° = (0, 0), then Algorithm 3.1 becomes
X" =(0,0), (", ) = (0.6x7 + 0.4,0.6x5 + 0.8).

We denote by Iter the number of iterations and Iter-Sequ the iterative sequence.
The data in Table 1 shows that Algorithm 3.1 after 21 iterations converges to the optimal solution
within a 0.0001 error, and the function value converge to the optimal value after only 11 iterations.

Table 1. Numerical results for solving the problem (4.1).
Iter(n) Iter-Sequ(x") O(x")  Iter(n) Iter-Sequ(x") O(x")

0 (0, 0) 5.3497 11 (0.9960, 1.9927) 4.3333
1 (0.4000, 0.8000) 4.7247 12 (0.9978, 1.9956) 4.3333
2 (0.6400, 1.2800) 4.4812 13 (0.9987, 1.9974) 4.3333
3 (0.7840, 1.5680) 4.3884 14 (0.9992, 1.9984) 4.3333
4 (0.8704, 1.7408) 4.3536 15 (0.9995, 1.9991) 4.3333
5 (0.9222, 1.8445) 4.3407 16 (0.9997, 1.9994) 4.3333
6 (0.9533, 1.9067) 4.3360 17 (0.9998, 1.9997) 4.3333
7 (0.9720, 1.9440) 4.3343 18 (0.9999, 1.9998) 4.3333
8 (0.9832,1.9664) 4.3337 19 (0.9999, 1.9999) 4.3333
9 (0.9899, 1.9798) 4.3335 20 (1.0000, 1.9999) 4.3333
10 (0.9940, 1.9879) 4.3334 21 (1.0000, 2.0000) 4.3333
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