Research article

New fixed point results in controlled metric type spaces based on new contractive conditions

  • Received: 06 December 2022 Revised: 23 January 2023 Accepted: 01 February 2023 Published: 15 February 2023
  • MSC : 37C25, 47H10, 54H25

  • In the present work, we will establish and prove some fixed point theorems for mappings that satisfy a set of conditions in controlled metric type spaces introduced by Mlaiki et al. [N. Mlaiki, H. Aydi, N. Souayah, T. Abdeljawad, Controlled metric type spaces and the related contraction principle. Mathematics 2018, 6,194]. Our technique in constructing our new contraction conditions is to insert the control function $ \theta(u, l) $ that appears on the right hand side of the triangular inequality of the definition of the controlled metric spaces in the right hand side of our proposed contraction conditions. Our results enrich the field of fixed point theory with novel findings that generalize many findings found in the literature. We provide an example to show the usefulness of our results. Also, we present an application to our results to show their significance.

    Citation: Wasfi Shatanawi, Taqi A. M. Shatnawi. New fixed point results in controlled metric type spaces based on new contractive conditions[J]. AIMS Mathematics, 2023, 8(4): 9314-9330. doi: 10.3934/math.2023468

    Related Papers:

  • In the present work, we will establish and prove some fixed point theorems for mappings that satisfy a set of conditions in controlled metric type spaces introduced by Mlaiki et al. [N. Mlaiki, H. Aydi, N. Souayah, T. Abdeljawad, Controlled metric type spaces and the related contraction principle. Mathematics 2018, 6,194]. Our technique in constructing our new contraction conditions is to insert the control function $ \theta(u, l) $ that appears on the right hand side of the triangular inequality of the definition of the controlled metric spaces in the right hand side of our proposed contraction conditions. Our results enrich the field of fixed point theory with novel findings that generalize many findings found in the literature. We provide an example to show the usefulness of our results. Also, we present an application to our results to show their significance.



    加载中


    [1] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equation int egrals, Fundam. Math., 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181 doi: 10.4064/fm-3-1-133-181
    [2] I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal., 30 (1989), 26–37.
    [3] S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Math. Inform. Univ. Ostra., 1 (1993), 5–11.
    [4] H. Huang, G. Deng, S. Radevovic, Fixed point theorems in $b$-metric spaces with applications to differential equations, J. Fix. Point Theory A., 20 (2018), 1–24. https://doi.org/10.1007/s11784-018-0491-z doi: 10.1007/s11784-018-0491-z
    [5] J. R. Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei, W. Shatanawi, Common fixed points of almost generalized $(\psi, \varphi)_{s}$-contractive mappings in ordered b-metric spaces, Fixed Point Theory A., 2013 (2013), 159. http://dx.doi.org/10.1186/1687-1812-2013-159 doi: 10.1186/1687-1812-2013-159
    [6] A. Mukheimer, N. Mlaiki, K. Abodayeh, W. Shatanawi, New theorems on extended $b$-metric spaces under new contractions, Nonlinear Anal.-Model., 24 (2019), 870–883. http://doi.org/10.15388/NA.2019.6.2 doi: 10.15388/NA.2019.6.2
    [7] W. Shatanawi, A. Pitea, R. Lazovic, Contraction conditions using comparison functions on b-metric spaces, Fixed Point Theory A., 2014 (2014), 135. https://doi.org/10.1186/1687-1812-2014-135 doi: 10.1186/1687-1812-2014-135
    [8] M. Younis, D. Singh, L. Shi, Revisiting graphical rectangular $b$-metric spaces, Asian-Eur. J. Math., 15 (2022), 2250072. https://doi.org/10.1142/S1793557122500723 doi: 10.1142/S1793557122500723
    [9] T. Abdeljawad, K. Abodayeh, N. Mlaiki, On fixed point generalizations to partial b-metric spaces, J. Comput. Anal. Appl., 19 (2015), 883–891.
    [10] W. Shatanawi, Z. Mustafa, N. Tahat, Some coincidence point theorems for nonlinear contraction in ordered metric spaces, Fixed Point Theory A., 2011 (2011), 68. https://doi.org/10.1186/1687-1812-2011-68 doi: 10.1186/1687-1812-2011-68
    [11] T. Rasham, S. Shabbir, P. Agarwal, S. Momani, On a pair of fuzzy dominated mappings on closed ball in the multiplicative metric space with applications, Fuzzy Set. Syst., 437 (2022), 81–96. https://doi.org/10.1016/j.fss.2021.09.002 doi: 10.1016/j.fss.2021.09.002
    [12] V. Gupta, A. Gondhi, Fixed points of weakly compatible maps on modified intuitionistic fuzzy soft metric spaces, Int. J. Syst. Assur. Eng. Mang., 13 (2022), 1232–1238. https://doi.org/10.1007/s13198-021-01423-1 doi: 10.1007/s13198-021-01423-1
    [13] V. Gupta, N. Mani, R. Sharma, A. K. Tripathi, Some fixed point results and their applications on integral type contractive condition in fuzzy metric spaces, Bol. Soc. Paran. Mat., 40 (2022), 1–9. https://doi.org/10.5269/bspm.51777 doi: 10.5269/bspm.51777
    [14] S. Chauhan, V. Gupta, Banach contraction theorem on fuzzy cone b-metric space, J. Appl. Res. Technol., 18 (2020), 154–160. https://doi.org/10.22201/icat.24486736e.2020.18.4.1188 doi: 10.22201/icat.24486736e.2020.18.4.1188
    [15] M. Gamal, T. Rasham, W. Cholamjiak, F. Shi, C. Park, New iterative scheme for fixed point results of weakly compatible maps in multiplicative $G_{M}$-metric space via various contractions with application, AIMS Math., 7 (2022), 13681–13703. https://doi.org/10.3934/math.2022754 doi: 10.3934/math.2022754
    [16] T. Rasham, M. Nazam, H. Aydi, A. Shoaib, C. Park, J. R. Lee, Hybrid pair of multivalued mappings in modular-like metric spaces and applications, AIMS Math., 7 (2022), 10582–10595. https://doi.org/10.3934/math.2022590 doi: 10.3934/math.2022590
    [17] M. Younis, D. Singh, L. Chen, M. Metwal, A study on the solutions of notable engineering models, Math. Model. Anal., 27 (2022), 492–509. https://doi.org/10.3846/mma.2022.15276 doi: 10.3846/mma.2022.15276
    [18] T. Kamran, M. Samreen, Q. U. L. Ain, A generalization of b-metric space and some fixed point theorems, Mathematics, 5 (2017), 1–7. https://doi.org/10.3390/math5020019 doi: 10.3390/math5020019
    [19] N. Mlaiki, H. Aydi, N. Souayah, T. Abdeljawad, Controlled metric type spaces and the related contraction principle, Mathematics, 6 (2018), 1–7. https://doi.org/10.3390/math6100194 doi: 10.3390/math6100194
    [20] S. S. Aiadi, W. A. M. Othman, K. Wang, N. Mlaiki, Fixed point theorems in controlled $J$-metric spaces, AIMS Math., 8 (2023), 4753–4763. https://doi.org/10.3934/math.2023235 doi: 10.3934/math.2023235
    [21] H. Ahmad, M. Younis, M. E. Köksal, Double controlled partial metric type spaces and convergence results, J. Math., 2021 (2021), 1–11. https://doi.org/10.1155/2021/7008737 doi: 10.1155/2021/7008737
    [22] T. Rasham, A. Shoaib, S. Alshoraify, C. Park, J. R. Lee, Study of multivalued fixed point problems for generalized contractions in double controlled dislocated quasi metric type spaces, AIMS Math., 7 (2022), 1058–1073. https://doi.org/10.3934/math.2022063 doi: 10.3934/math.2022063
    [23] A. Z. Rezazgui, A. Tallafha, W. Shatanawi, Common fixed point results via $A_\theta$-$\alpha$-contractions with a pair and two pairs of self-mappings in the frame of an extended quasi $b$-metric space, AIMS Math., 8 (2023), 7225–7241. https://doi.org/10.3934/math.2023363 doi: 10.3934/math.2023363
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1226) PDF downloads(115) Cited by(23)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog