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Abstract: In the present work, we will establish and prove some fixed point theorems for mappings
that satisfy a set of conditions in controlled metric type spaces introduced by Mlaiki et al. [N. Mlaiki, H.
Aydi, N. Souayah, T. Abdeljawad, Controlled metric type spaces and the related contraction principle.
Mathematics 2018, 6, 194]. Our technique in constructing our new contraction conditions is to insert
the control function θ(u, l) that appears on the right hand side of the triangular inequality of the
definition of the controlled metric spaces in the right hand side of our proposed contraction conditions.
Our results enrich the field of fixed point theory with novel findings that generalize many findings
found in the literature. We provide an example to show the usefulness of our results. Also, we present
an application to our results to show their significance.
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1. Introduction

The fixed point (FP) theory technique is widely used by scientists to prove the existence of solutions
to problems in science involving integral equations or differential equations. So, the appeal of fixed
point theory to a large number of scientists is understandable. After Banach [1] launched and proved
Banach’s contraction theorem, many mathematicians extended this well-known theorem into more
general forms either by enhancing Banach’s contraction into more general forms or by extending metric
space (MS) into new ones, such as cone MS, G-MS, partial MS and so on.

One of the important generalizations of MS is the idea of b-MS introduced by Baktain [2] and
Czerwik [3]. Some authors have obtained many FP theorems in b-MS; for some results see [4–8].
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Abdeljawad et al. [9] used the idea of partial b-MS to enhance some known FP results. Shatanawi et
al. [10] made use of ordered relations to present a new type of Banach’s contraction theorem.

Rasham et al. [11] established a generalization of Banach’s contraction theorem on fuzzy metric
spaces. Also, Gupta at el. [12–14] initiated several fixed point results in the setting of fuzzy metric
spaces. Gamal et al. [15] took the advantage of weakly compatible maps to present new fixed point
findings via various contractions in multiplicative metric spaces and to examine some applications.
Meanwhile, other authors introduced different types of contraction conditions, and to examine some
applications in their obtained results, see for example [16, 17].

In the last few years, Kamran et al. [18] presented a good idea to extend the concept of b-MS in
a clever way based on a control function with domain [1,+∞) and named their concept “extended b-
metric spaces (EbMS)”. Recently, Mlaiki et al. [19] extended the idea of b-MS to a new idea, which
they named “controlled metric type space (CMTS)” by inserting a control function θ in the triangular
inequality of the definition of the metric space in a luminous way. Also, Mlaiki et al. [19] provided an
example showing that the concept of a CMTS is not an EbMS. For more results in extended b-metric
spaces and controlled metric spaces, see [20–23].

From now on, F stands for a non-empty set.

Definition 1.1. [2, 3] For b ≥ 1, the function ν : F × F → [0,∞) is called a b-metric if ∀ v, l, s ∈ F,
we have

(1) ν(v, l) = 0 ⇐⇒ l = v,

(2) ν(v, l) = ν(l, v),

(3) ν(v, l) ≤ b[ν(v, s) + ν(s, l)].

The pair (F, ν) is called a b-MS.

The above concept has been generalized by two different ways. The first way was given by Kamran
et al. [18] as follows:

Definition 1.2. [18] Consider the function θ : F × F → [1,∞), and the function ν : F × F → [0,∞)
is called an extended b-metric if ∀ v, l, s ∈ F, we have

(1) ν(v, l) = 0 ⇐⇒ l = v,

(2) ν(v, l) = ν(l, v),

(3) ν(v, l) ≤ θ(v, l)[ν(v, s) + ν(s, l)].

The pair (F, ν) is referred to as an EbMS.

For some examples on EbMS, see [6, 18].
The second way for generalizing the b-MS was given by Mlaiki et al. [19] as follows:

Definition 1.3. [19] Consider the function θ : F × F → [1,∞), and the function ν : F × F → [0,∞)
is called a controlled metric type if ∀ v, l, s ∈ F, we have

(1) ν(v, l) = 0 ⇐⇒ l = v,

(2) ν(v, l) = ν(l, v),
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(3) ν(v, l) ≤ θ(v, s)ν(v, s) + θ(s, l)ν(s, l).

The pair (F, ν) is called a CMTS.

Mlaiki et al. [19] introduced the following notable example to show the big difference between the
EbMS and the CMTS.

Example 1.1. Let F = {1, 2, 3, . . .}. Define θ : F × F → [1,∞) by

θ(v, l) =


v, if v is even and l is odd

l, if v is odd and l is even

1, otherwise.

Also, define ν : F × F → [0,+∞) via

ν(v, l) =


v, if v is even and l is odd

l, if v is odd and the l is even

1, otherwise.

Then (F, ν) is a CMTS which is not an EbMS.

The aim of the present work is to take advantage of the notion of CMTS to present new contractive
conditions and making use of our new contractions to formulate new results related to FP of a mapping
that satisfies a set of conditions.

2. Main results

From now on, CCMTS is a complete controlled metric type space, and CbMS is a complete b-metric
space with constant b.

Theorem 2.1. On CCMTS (F, ν), assume there exists r ∈ (0, 1] such that Q : F → F satisfies

ν(Ql,Qv) ≤ rθ(l, v)ν(l, v), (2.1)

for all l, v ∈ F. Assume

lim sup
i→∞

θ(li+1, lm)θ(li+1, li+2) exists and less than
1
r
, (2.2)

where li = Qil0 for l0 ∈ F. Also, suppose that for any v, l ∈ F, we have

lim sup
i→+∞

θ(v,Qil) and lim sup
i→+∞

θ(Qil, v) exist and are finite.

Then, Q has a FP in F.

Proof. Let l0 ∈ Q. Then, we construct a sequence (lt) in Q by putting lt = Qtl0. For t ∈ N,
Condition (2.1) gives

ν(lt, lt+1) = ν(Qlt−1,Qlt)
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≤ rθ(lt−1, lt)ν(lt−1, lt)
≤ r2θ(lt−1, lt)θ(lt−2, lt−1)ν(lt−2, lt−1)
...

≤ rtθ(lt−1, lt)θ(lt−2, lt−1) . . . θ(l0, l1)ν(l0, l1)

= rt
t∏

j=1

θ(l j−1, l j)ν(l0, l1). (2.3)

For t,m ∈ N with m > t, we choose k ∈ N with m = t + k. The triangular inequality of the definition
ν produces

ν(lt, lt+k) ≤ θ(lt, lt+1)ν(lt, lt+1) + θ(lt+1, lt+k)ν(lt+1, lt+k)
≤ θ(lt, lt+1)ν(lt, lt+1) + θ(lt+1, lt+k)θ(lt+1, lt+2)ν(lt+1, lt+2)
+ θ(lt+1, lt+k)θ(lt+2, lt+k)ν(lt+2, lt+k)
≤ θ(lt, lt+1)ν(lt, lt+1) + θ(lt+1, lt+k)θ(lt+1, lt+2)ν(lt+1, lt+2)
+ θ(lt+1, lt+k)θ(lt+2, lt+3)θ(lt+2, lt+3)ν(lt+2, lt+3)
+ θ(lt+1, lt+k)θ(lt+2, lt+k)θ(lt+3, lt+k)ν(lt+3, lt+k)
≤

...

≤ θ(lt, lt+1)ν(lt, lt+1) + θ(lt+1, lt+k)θ(lt+1, lt+2)ν(lt+1, lt+2)
+ θ(lt+1, lt+k)θ(lt+2, lt+k)θ(lt+2, lt+3)ν(lt+2, lt+3)
+ θ(lt+1, lt+k)θ(lt+2, lt+k)θ(lt+3, lt+k)θ(lt+3, lt+4)ν(lt+3, lt+4)
+

...

+ θ(lt+1, lt+k)θ(lt+2, lt+k) . . . θ(lt+k−2, lt+k)θ(lt+k−2, lt+k−1)ν(lt+k−2, lt+k−1)
+ θ(lt+1, lt+k)θ(lt+2, lt+k) . . . θ(lt+k−2, lt+k)θ(lt+k−1, lt+k)ν(lt+k−1, lt+k).

In light of the values of θ(lt, lt+k) ≥ 1 and θ(lt+k−1, lt+k) ≥ 1, the above inequalities imply

ν(lt, lt+k) ≤ θ(lt, lt+k)θ(lt, lt+1)ν(lt, lt+1)
+θ(lt, lt+k)θ(lt+1, lt+k)θ(lt+1, lt+2)ν(lt+1, lt+2)
+θ(lt, lt+k)θ(lt+1, lt+k)θ(lt+2, lt+k)θ(lt+2, lt+3)ν(lt+2, lt+3)
+θ(lt, lt+k)θ(lt+1, lt+k)θ(lt+2, lt+k)θ(lt+3, lt+k)θ(lt+3, lt+4)ν(lt+3, lt+4)
+
...

+θ(lt, lt+k)θ(lt+1, lt+k)θ(lt+2, lt+k) . . . θ(lt+k−2, lt+k)θ(lt+k−2, lt+k−1)ν(lt+k−2, lt+k−1)
+θ(lt, lt+k)θ(lt+1, lt+k)θ(lt+2, lt+k) . . . θ(lt+k−2, lt+k)θ(lt+k−1, lt+k)θ(lt+k−1, lt+k)ν(lt+k−1, lt+k)

=

t+k−1∑
j=t

j∏
i=t

θ(li, lt+k)θ(l j, l j+1)ν(l j, l j+1). (2.4)
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Taking advantage of inequalities (2.3) and (2.4) yields

ν(lt, lm) ≤
t+k−1∑

j=t

j∏
i=t

θ(li, lt+k)θ(l j, l j+1)r j
j∏

y=1

θ(ly−1, ly)ν(l0, l1). (2.5)

Define

j∏
i=t

θ(li, lt+k)θ(l j, l j+1)r j
j∏

y=1

θ(ly−1, ly)ν(l0, l1) := A j. (2.6)

Then,

lim
j→+∞

A j+1

A j
= lim

j→+∞
θ(l j+1, lt+k)θ(l j, l j+1)r < 1.

As t → +∞, the ratio test implies that

S t =

+∞∑
j=t

j∏
i=t

θ(li, lt+k)θ(l j, l j+1)r j
j+1∏
y=1

θ(ly−1, ly)ν(l0, l1)→ S =

+∞∑
j=1

j∏
i=t

θ(li, lt+k)θ(l j, l j+1)r j
j+1∏
y=1

θ(ly−1, ly)ν(l0, l1).

Inequality (2.5) implies that
lim

t,m→+∞
ν(lt, lm) = 0,

which means that the sequence (lt) is Cauchy in (F, ν). As a result of the completeness of (F, ν), ∃ l′ ∈ F
such that

lim
t→∞

ν(lt, l′) = 0. (2.7)

Now, the triangular inequality and (2.1) yield

ν(l′,Ql′) ≤ θ(l′, lt+1)ν(l′, lt+1) + θ(lt+1,Ql′)ν(lt+1,Ql′)
≤ θ(l′, lt+1)ν(l′, lt+1) + rθ(lt+1,Ql′)θ(lt, l′)ν(lt, l′).

(2.8)

Permitting t → +∞ and keeping in our mind that

lim sup
t→+∞

θ(l′, lt+1) and lim sup
t→+∞

θ(tt+1,Ql′) exist and are finite,

(2.8) implies ν(l′,Ql′) = 0, and hence Ql′ = l′. �

In Theorem 2.1, we can remove the conditions

lim
t→+∞

θ(v,Qtl) and lim
t→+∞

θ(Qtl, v) both exist and are finite

from the context if θ is assumed to be continuous in its variables. So, we have the following theorem:
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Theorem 2.2. On CCMTS (F, ν), assume there exists r ∈ (0, 1] such that Q : F → F satisfies

ν(Ql,Qv) ≤ rθ(l, v)ν(l, v), (2.9)

for all l, v ∈ Q. Suppose that for any m ∈ N,

lim sup
i→∞

θ(li, lm)θ(li, li+1) exists and is less than
1
r
,

where li = Qil0 for l0 ∈ F. If θ is continuous in its variables, then Q has a FP in F.

Proof. Create a sequence (lt = Qtl0) in F in similar way to Theorem 2.1 such that lt → l′ ∈ F and

lim
t→+∞

ν(lt, lt+1) = lim
t→+∞

ν(lt, l′) = lim
t→+∞

ν(l, lt) = 0.

Take advantage of the continuity of θ in its variables to obtain:

lim
t→+∞

θ(lt,Ql′) = θ(l′,Ql′),

and

lim
t→+∞

θ(l′, lt) = lim
t→+∞

θ(lt, l′) = θ(l′, l′).

Claim: Ql′ = l′. To achieve that, we benefit from the triangular inequality of ν and (2.9) to get

ν(l′,Ql′) ≤ θ(l′, lt+1)ν(l′, lt+1) + θ(lt+1,Ql′)ν(lt+1,Ql′)
≤ θ(l′, lt+1)ν(l′, lt+1) + rθ(lt+1,Ql′)θ(lt, l′)ν(lt, l′).

(2.10)

Allow t → +∞ in (2.10) to obtain

ν(l′,Ql′) ≤ θ(l′, l′) lim
t→+∞

ν(l′, lt+1) + rθ(l′,Ql′)θ(l′, l′) lim
t→+∞

ν(lt, l′).

= 0.

This means that Ql′ = l′. Thus, the desired result is obtained. �

The uniqueness of the FP in Theorem 2.1 or 2.2 can be obtained if an appropriate condition is added.

Theorem 2.3. On CCMTS (F, ν), assume there exists r ∈ (0, 1] such that Q : F → F satisfies

ν(Ql,Qv) ≤ rθ(l, v)ν(l, v),

for all l, v ∈ F. Assume that

lim sup
i→∞

θ(li, lm)θ(li, li+1) exists and is less than
1
r
,

where li = Qil0 for l0 ∈ Q. Moreover, assume that for any l, s0 ∈ M,

lim sup
i→+∞

θ(l,Qil0) exists and is finite, or θ is continuous.

If ∀l, s ∈ F, we have

lim sup
i→+∞

θ(Qiv,Qil) exists and is less than
1
r
,

then T has only one FP in Q.
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Proof. The existence of the FP of Q in F follows from Theorem 2.1 (Theorem 2.2), say, s′ ∈ Q. So,
Qs′ = s′.
To verify that Q has only one FP, let l′ ∈ F such that Ql′ = l′ with s′ , l′. Now,

ν(l′, s′) = ν(Ql′,Qs′) ≤ rθ(l′, s′)ν(l′, s′)
= rθ(Qtl′,Qts′)ν(l′, s′).

Once allowing t → +∞ in the above inequality, we get the following contradiction:

ν(l′, s′) < ν(l′, s′).

Thus l′ = s′, and we deduce that T has only one FP. �

The following known result can be obtained immediately from our Theorem 2.3 by simply defining
θ to be the constant function b.

Corollary 2.1. On CbMS (F, ν), assume there exists r ∈ (0, 1] with b2r < 1 such that Q : F → F
satisfies

ν(Ql,Qv) ≤ rbν(l, v), (2.11)

for all l, v ∈ F. Then, Q has only one FP in F.

Proof. Define θ : F × F → [0,+∞) via θ(s, p) = b ∀ l, v ∈ F. Now, for l0 ∈ F, we have

lim
i→∞

sup
m≥1

θ(li, lm)θ(li, li+1) = b2 <
1
r
.

Moreover, for v ∈ F, we notice

lim sup
i→+∞

θ(v,Qil0) = b <
1
r
.

So, all conditions of Theorem 2.3 are met. So, the result also follows. �

Theorem 2.4. On CCMTS (F, ν), assume there exist r, a ∈ [0, 1] (both are not 0) and h ∈ [0, 1) such
that Q : F → F satisfies

ν(Ql,Qv) ≤ rθ(l, v)ν(l, v) + aθ(l,Ql)ν(l,Ql) + hν(v,Qv), (2.12)

for all l, v ∈ F. Also, suppose that for any m ∈ N,

lim sup
j→+∞

θ(l j+1, lm)θ(l j+1, l j+2) <
1 − h
r + a

, (2.13)

where li = Qil0 for l0 ∈ F. Moreover, assume that for any v ∈ F, we have lim supi→+∞ θ(v, li) exists and
is finite, and lim supi→+∞ θ(li, v) exists, is less than 1

h and is finite. Then, T has a FP in F.

Proof. Construct a sequence (lt) in F by choosing lo ∈ F and putting lt = Qtl0.
For t ∈ N, condition (2.12) gives

ν(lt, lt+1) = ν(Qlt−1,Qlt)
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≤ rθ(lt−1, lt)ν(lt−1, lt) + aθ(lt−1,Qlt−1)ν(lt−1,Qlt−1) + hν(lt,Qlt)
= rθ(lt−1, lt)ν(lt−1, lt) + aθ(lt−1, lt)ν(lt−1, lt) + hν(lt, lt+1). (2.14)

Inequality (2.14) yields

ν(lt, lt+1) ≤
( r + a
1 − h

)
θ(lt−1, lt)ν(lt−1, lt). (2.15)

The induction leads to

ν(st, st+1) ≤
t∏

y=1

( r + a
1 − h

)t

θ(ly−1, ly)ν(l0, l1). (2.16)

Choose t,m ∈ N in such a way that m > t. Select k ∈ N such that m = t + k. Similar to those arguments
given in the proof of Theorem 2.1, at the end of the day, we get to:

ν(lt, lm) ≤
t+k−1∑

j=t

j∏
i=t

θ(li, lt+k)θ(l j, l j+1)
( r + a
1 − h

) j j∏
y=1

θ(ly−1, ly)ν(l0, l1).

Define

j∏
i=t

θ(li, lt+k)θ(l j, l j+1)
( r + a
1 − h

) j j∏
y=1

θ(ly−1, ly)ν(l0, l1) := I j. (2.17)

Then,

lim
j→+∞

I j+1

I j
= lim

j→+∞
θ(l j+1, lt+k)θ(l j+1, l j+2)

( r + a
1 − h

)
< 1.

Ratio test implies that

lim
t,m→+∞

ν(lt, lm) = 0,

and hence (lt) is Cauchy in (F, ν). As a result of the completeness of (F, ν), we find l′ ∈ F such that
lt → l′; that is,

lim
t→∞

ν(lt, l′) = lim
t→∞

ν(l′, lt) = 0. (2.18)

Our task is to verify Ql′ = l′. Now, triangular inequality implies that

ν(lt, lt+1) ≤ θ(lt, l′)ν(lt, l′) + θ(l′, lt+1)ν(l′, lt+1).

By allowing n→ +∞ in the above inequality, we get

lim
n→+∞

ν(lt, lt+1) = 0.

Also, employ the triangular inequality to get

ν(lt+1,Ql′) = ν(Qlt,Ql′)
≤ rθ(lt, l′)ν(lt, l′) + aθ(lt,Qlt)ν(lt,Qlt) + hν(l′,Ql′)
= rθ(lt, l′)ν(lt, l′) + aθ(lt, lt+1)ν(lt, lt+1) + hν(l′,Ql′)
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≤ rθ(lt, l′)ν(lt, l′) + aθ(lt, lt+1)ν(lt, lt+1) + hθ(l′, lt+1)ν(l′, lt+1) + hθ(lt+1,Ql′)ν(lt+1,Ql′).

By allowing n → +∞ in the above inequalities and taking into account that lim supt→+∞ θ(lt, l′),
lim supt→+∞ θ(l

′, lt) and lim supn→+∞ θ(lt, lt+1) exist and are bounded, we get

lim
t→+∞

ν(lt+1,Ql′) ≤ h lim
t→+∞

θ(lt+1,Ql′) lim
t→+∞

ν(lt+1,Ql′).

Since
h lim

t→+∞
θ(lt+1,Ql′) < 1,

we get

lim
t→+∞

ν(lt+1,Ql′) = 0.

On the other hand,

ν(l′,Ql′) ≤ θ(l′, ln+1)ν(l′, ln+1) + θ(ln+1,Ql′)ν(ln+1,Ql′).

Again, by allowing t → +∞ in above inequality, we get ν(l′,Ql′) = 0. Accordingly, Ql′ = l′. �

In our next result, we assume that θ is continuous in its variables.

Theorem 2.5. On CCMTS (F, ν), assume there exist r, a ∈ [0, 1] (both are not 0) and h ∈ [0, 1) such
that Q : F → F satisfies

ν(Ql,Qv) ≤ rθ(l, v)ν(l, v) + aθ(l,Ql)ν(l,Ql) + hν(v,Qv), (2.19)

for all l, v ∈ F. Also, suppose that for any m ∈ N,

lim sup
j→+∞

θ(l j+1, lm)θ(l j+1, l j+2) <
1 − h
r + a

, (2.20)

where li = Qil0 for l0 ∈ F. Also, suppose for v ∈ Q, we have θ(v,Qv) < 1
h . If θ is continuous in its

variables, then Q has a FP in F.

Proof. Begin with l0 ∈ F to construct a sequence (ln) as in the proof of Theorem 2.4 such that there
exists l′ ∈ F with

lim
t→+∞

ν(lt, l′) = lim
t→+∞

ν(l′, lt) = lim
t→+∞

ν(lt, lt+1) = 0.

Now, we show that Ql′ = l′. Benefiting from the triangular inequality, we get

ν(l′,Ql′) ≤ θ(l′, lt+1)ν(l′, lt+1) + θ(lt+1,Ql′)ν(lt+1,Ql′)

= θ(l′, lt+1)ν(l′, lt+1) + θ(lt+1,Ql′)ν(Qlt,Ql′)

≤ θ(l′, lt+1)ν(l′, lt+1) + rθ(lt+1,Ql′)θ(lt, l′)ν(lt, l′) + aθ(lt+1,Ql′)θ(lt, lt+1)ν(lt, lt+1) + hθ(lt+1,Ql′)ν(l′,Ql′).

Permitting t → +∞ in above the inequalities yields

ν(l′,Ql′) ≤ hθ(l′,Ql′)ν(l′,Ql′).

Since hθ(l′,Ql′) < 1, we deduce ν(l′,Ql′) = 0, and hence l′ = Ql′. �

The uniqueness of FP can be achieved in Theorem 2.4 or 2.5 if a suitable condition is added.
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Theorem 2.6. On CCMTS (F, ν), assume there exist r ∈ (0, 1], a ∈ [0, 1] and h ∈ [0, 1) such that
Q : F → F satisfies

ν(Ql,Qv) ≤ rθ(l, v)ν(l, v) + aθ(l,Ql)ν(l,Ql) + hν(v,Qv), (2.21)

for all l, v ∈ F. To the addition of all conditions in Theorem 2.4 or 2.5, suppose Q satisfies

lim sup
t→+∞

θ(Qtl,Qtv) <
1
r
,

for all l, v ∈ F. Then, Q has only one FP in F.

Proof. Theorem 2.4 [Theorem 2.5] ensures that there exists l′ ∈ F with Ql′ = l′. To verify that Q
achieves only one fixed point, we suppose there exists v′ ∈ F with l′ , v′ such that Qv′ = v′. Now,

ν(l′, v′) = ν(Ql′,Qv′)
≤ rθ(l′, v′)ν(l′, v′) + aθ(l′, l′)ν(l′, l′) + hν(v′, v′)
= rθ(l′, v′)ν(l′, v′)
= r lim sup

t→+∞

θ(Qtl′,Qtv′)ν(l′, v′).

Since
lim sup

t→+∞

θ(Qtl′,Qtv′) <
1
r
,

we get a contradiction. Thus, ν(l′, v′) = 0, and hence l′ = v′. Thus, T has only one FP in Q. �

Corollary 2.2. On CCMTS (F, ν), assume there exist a ∈ (0, 1] and h ∈ [0, 1) such that Q : F → F
satisfies

ν(Ql,Qv) ≤ aθ(l,Ql)ν(l,Ql) + hν(v,Qv),

for all l, v ∈ F. Also, suppose that for any m ∈ N,

lim
j→+∞

θ(l j+1, lm)θ(l j+1, l j+2) <
1 − h

a
,

where li = Qil0 for l0 ∈ F. Moreover, assume that for any v ∈ F, we have lim supi→+∞ θ(v, li) exists,
and is finite and lim supi→+∞ θ(li, v) exists, is less than 1

h and is finite. Then, T has a FP in F.

Proof. The result follows from Theorem 2.4 by taking a = 0. �

The following known result can be obtained immediately from our Theorem 2.6 by simply defining
θ to be the constant function b.

Corollary 2.3. On CbMS (F, ν), assume there exist r, a ∈ [0, 1] (both are not zero) and h ∈ [0, 1) with
b2r + b2a + h < 1 such that Q : F → F satisfies

ν(Ql,Qv) ≤ rbν(s, v) + abν(l,Ql) + hν(v,Qv), (2.22)

for all l, v ∈ F. Then, Q has only one FP in F.
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Proof. Define θ : F × F → [0,+∞) by θ(l, v) = b. For m ∈ N and l0 ∈ F, we have

lim
j→+∞

θ(l j+1, lm)θ(l j+1, l j+2) = b2 <
1 − h
r + a

.

Also, from br ≤ b2r + b2a + h < 1, we figure out

θ(v,Qv) = b <
1
r
,

and
lim

t→+∞
θ(Qtl,Qtv) <

1
r
.

Also, note that θ is continuous in its variables. So, all conditions of Theorem 2.6 are met. So, the result
also follows. �

Now, we present the following example to show the significance of our results.

Example 2.1. Let F = {0, 1, 2, 3, . . .}. Define Q : F → F via

Q(v) =


√

v, if v is a perfect square and v , 1,
0, otherwise,

and θ : F × F → [1,∞) by

θ(v, l) =

v + l, if (v, l) , (0, 0),
1, if (v, l) = (0, 0).

Also, define ν : F × F → [0,+∞) via

ν(v, l) =


0, if v = l,

1, if one is even and the other is odd,

max{v, l}, if both are even or both are odd.

Then:

(1) (F, ν) is CCMTS.

(2) Let l0 ∈ F, and take (lt) = (Qtl0). Then, for m ∈ N, we have

lim sup
i→+∞

θ(li, li+m)θ(li, li+1) = 1 < 2 =
1
r
.

(3) For any v, l0 ∈ F, we have

lim sup
t→+∞

θ(v,Qtl0) = v exists and is finite.

(4) For any v, l ∈ F, we have

lim sup
t→+∞

θ(Qtv,Qtl) = 1 < 2 =
1
r
.

AIMS Mathematics Volume 8, Issue 4, 9314–9330.



9325

(5) For v, l ∈ F, we have

ν(Qv,Ql) ≤
1
2
θ(v, l)ν(v, l).

We note that the hypotheses of Theorem 2.3 have been fulfilled for r = 1
2 .

Proof. The proof that ν is a controlled metric type has been left to the reader. To prove (F, ν) is
complete, let (lt) be Cauchy in F. For ε = 1

2 , there exists t0 ∈ F such that

ν(lt, lm) ≤
1
2
∀m ≥ t ≥ t0.

Thus, (lt) has a constant tail, say, l′. So, (lt) converges to l′. Thus, (F, ν) is complete.
To prove (2), let l0 ∈ F. Then,
Case 1: If l0 = 1 or l0 = 0, then lt = Qtl0 = 0 for all t ∈ N. Thus,

lim sup
i→+∞

θ(li, li+m)θ(li, li+1) = 1 < 2 =
1
r
.

Case 2: If l0 ∈ {2, 3, 4, . . .}, then we find j ∈ N such that l j is not a perfect square. So lt = 0 for all
t > j, so

lim sup
i→+∞

θ(li, li+m)θ(li, li+1) = 1 < 2 =
1
r
.

To prove (3), given v, l0 ∈ F, there exists a large integer number j such that Q jl0 = l j is not a perfect
square. So, Qtl0 = 0 for all t > j. Thus,

lim sup
t→+∞

θ(v,Qtl0) = θ(v, 0) exists and is finite.

To prove (4), given v, l ∈ F, then,
Case 1: If v = l = 1 or v = l = 0, then Qtv = Qtl = 0. Thus,

lim sup
t→+∞

θ(Qtv,Qtl) = θ(0, 0) = 1 < 2 =
1
r
.

Case 2: If v, l ∈ {2.3.4. . . .}, then we can find two integers j0, j1 such that Q j
0v and Q j

1l are not perfect
squares. Then, Qtv = Qtl = 0 for all v, t ≥ max{ j0, j1}. Thus,

lim sup
t→+∞

θ(Qtv,Qtl) = θ(0, 0) = 1 < 2 =
1
r
.

To prove (5), given v, l ∈ F, then,
Case 1: If v = l, then

ν(Qv,Ql) = 0 ≤
1
2
θ(v, l)ν(v, l) = 0.

Case 2: If v and l are not perfect squares, then Qv = Ql = 0. So,

ν(Qv,Ql) = 0 ≤
1
2
θ(v, l)ν(v, l).
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Case 3: If v is a perfect square, v , 1, and l is not a perfect square, then Qv =
√

v, and Ql = 0.
Sub-case I: If

√
v is even, then v is even, and hence v ≥ 4. Thus,

√
v ≤ 1

2v. Therefore,

ν(Qv,Ql) = ν(
√

v, 0) =
√

v ≤
1
2

v ≤
1
2

(v + l)ν(v, l) =
1
2
θ(v, l)ν(v, l).

Sub-case II: If
√

v is odd, then v is odd. Thus, v ≥ 9, and hence
√

v ≤ 1
3v. Therefore,

ν(Qv,Ql) = ν(
√

v, 0) = 1 ≤
1
2

v ≤
1
2

(v + l)ν(v, l).

Case 4: If v = 1, and l is not a perfect square, then Qv = 0, and Ql = 0. Thus,

ν(Qv,Ql) = 0 ≤
1
2
θ(v, l)ν(v, l).

Case 5: If v = 1, and l is a perfect square, then Qv = 0, and Ql =
√

l. So,
Sub-case 1: If

√
l is even, then l is even. Thus, l ≥ 4, and hence

√
l ≤ 1

2 l. Therefore,

ν(Qv,Ql) =
√

l ≤
1
2

l ≤
1
2
θ(v, l)ν(v, l).

Sub-case 2: If
√

l is odd, then l is odd. Thus, l ≥ 9, and hence
√

l ≤ 1
3 l. Therefore,

ν(Qv,Ql) = ν(0,
√

l) = 1 ≤
1
2

l ≤
1
2
θ(v, l)ν(v, l).

Case 6: If v and l are perfect squares with v > l, then Qv =
√

v, and Ql =
√

l. So,
Sub-case I: If v and l are both even, then

√
v and

√
l are both even, v ≥ 16, and l ≥ 4. So,

ν(Qv,Ql) = ν(
√

v,
√

l) =
√

v ≤
1
4

v ≤
1
2

(v + l)v =
1
2
θ(v, l)ν(v, l).

Sub-case II: If v and l are both odd, and l , 1, then
√

v and
√

l are both odd, v ≥ 25, and l ≥ 9. So,

ν(Qv,Ql) = ν(
√

v,
√

l) =
√

v ≤
1
5

v ≤
1
2

(v + l)v =
1
2
θ(v, l)ν(v, l).

Sub-case III: If v is odd, and l = 1, then
√

v, is odd and v ≥ 9. So,

ν(Qv,Q1) = ν(
√

v, 0) = 1 ≤
1
2

(v + 1)v =
1
2
θ(v, 1)ν(v, 1).

Sub-case IV: If v, is even and l = 1, then
√

v is even, and v ≥ 4. So
√

v ≤ 1
2v. So,

ν(Qv,Q1) = ν(
√

v, 0) =
√

v ≤
1
2

v ≤
1
2

(v + 1)v =
1
2
θ(v, 1)ν(v, 1). �
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3. Application

Now, we will support our results with the following application:

Theorem 3.1. For an integer m with m ≥ 2, the equation

(v + 1)m + 1 = (4m + 1)v(v + 1)m + 4mv

has a unique real solution v′ in [0,+∞).

Proof. Let F = [0,+∞). Define Q : F → F by

Qv =
(v + 1)m + 1

(4m + 1)(v + 1)m + 4m .

Also, define θ : Q × Q→ [1,+∞) by

θ(v, l) = (v + 1)m−1 + (v + 1)m−2(l + 1) + (v + 1)m−3(l + 1)2 + . . . + (v + 1)(l + 1)m−2 + (l + 1)m−1.

Now, consider the CCMT (F, ν), where ν : Q × Q→ [0,+∞) is defined by

ν(v, l) = |v − l|.

Then,

(1) For l, v ∈ Q, we have

ν(Qv,Ql) ≤
1

16m θ(v, l)ν(v, l).

Indeed,

ν(Qv,Ql) = |Qv − Ql|

=

∣∣∣∣∣ (v + 1)m + 1
(4m + 1)(v + 1)m + 4m −

(l + 1)m + 1
(4m + 1)(l + 1)m + 4m

∣∣∣∣∣
=

∣∣∣∣∣ (v + 1)m − (l + 1)m(
(4m + 1)(v + 1)m + 4m)(

(4m + 1)(l + 1)m + 4m) ∣∣∣∣∣
=

∣∣∣∣∣ ((v + 1)m−1 + (v + 1)m−2(l + 1) + . . . + (v + 1)(l + 1)m−2 + (l + 1)m−1)(v − l)(
(4m + 1)(v + 1)m + 4m)(

(4m + 1)(l + 1)m + 4m) ∣∣∣∣∣
≤

1
16m

(
(v + 1)m−1 + (v + 1)m−2(l + 1) + . . . + (v + 1)(l + 1)m−2 + (l + 1)m−1)|v − l|

=
1

16m θ(v, l)ν(v, l).

(2) For l0 ∈ Q, put li+1 = Qil0. Then, for j ∈ N, we have

lim sup
i→∞

θ(li+1, l j)θ(li+1, li+2) exists and less than
1
r

= 16m.

AIMS Mathematics Volume 8, Issue 4, 9314–9330.



9328

Indeed, note that Q(v) < 1 for each v ∈ M. Thus, li = Qil0 < 1 for all i ∈ N. Thus,

θ(li+1, l j) = (li+1 + 1)m−1 + (li+1 + 1)m−2(l j + 1) + . . . + (li+1 + 1)(l j + 1)m−2 + (l j + 1)m−1 ≤ m(2)m−1

and

θ(li+1, li+2) = (li+1 +1)m−1 + (li+1 +1)m−2(li+2 +1)+ . . .+ (li+1 +1)(li+1 +1)m−2 + (li+2 +1)m−1 ≤ m(2)m−1.

Thus,

lim sup
i→∞

θ(li+1, l j)θ(li+1, li+2) ≤ m2(4)m−1 < (4m)(4m) = 16m =
1
r
.

(3) It is clear that θ is continuous in its variables.

(4) For v, l ∈ Q, we have

lim sup
i→+∞

θ(Qiv,Qil) exists and less than
1
r

= 16m.

Indeed, for v, l ∈ M, we have Qiv < 1 and Qil < 1. So,

lim sup
i→+∞

θ(Qiv,Qil) ≤ m(2)m−1 < 16.

Thus, all conditions of Theorem 2.3 are met. Hence, Q has a unique fixed point. �

Example 3.1. The equation
(257v − 1)(v + 1)4 + 256v − 1 = 0

has a unique real solution v′ in [0,+∞).

Proof. The equation
(257v − 1)(v + 1)4 + 256v − 1 = 0

is equivalent to
(v + 1)4 + 1 = (44 + 1)v(v + 1)4 + 44v.

The result follows from Theorem 3.1 by taking m = 4. �

4. Conclusions

In our work, we established and proved some fixed point theorems for mappings that satisfy a
set of conditions in controlled metric type spaces. We relied on the function θ that appears in the
triangular inequality of the definition of the controlled metric type function to construct our contraction
conditions. Our results enriched the field of fixed point theory with novel findings that generalize many
findings found in the literature. We provided an example to show the usefulness of our results. Also,
we presented an application to our results to show their significance.
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