Research article

On submodule transitivity of QTAG-modules

  • Received: 10 November 2022 Revised: 27 December 2022 Accepted: 08 February 2023 Published: 15 February 2023
  • MSC : 20K10

  • In this paper, we generalize a suitable transformation from an element-based to a submodule-based interpretation of the traditional idea of transitivity in QTAG modules. We examine QTAG modules that are transitive in the sense that the module has an automorphism that sends one isotype submodule $ K $ onto any other isotype submodule $ K' $, unless this is impossible because either the submodules or the quotient modules are not isomorphic. Additionally, the classes of strongly transitive and strongly $ U $-transitive QTAG modules are defined using a slight adaptations of this. This work investigates the latter class in depth, demonstrating that every $ \alpha $- module is strongly transitive with regard to countably generated isotype submodules.

    Citation: Fahad Sikander, Firdhousi Begam, Tanveer Fatima. On submodule transitivity of QTAG-modules[J]. AIMS Mathematics, 2023, 8(4): 9303-9313. doi: 10.3934/math.2023467

    Related Papers:

  • In this paper, we generalize a suitable transformation from an element-based to a submodule-based interpretation of the traditional idea of transitivity in QTAG modules. We examine QTAG modules that are transitive in the sense that the module has an automorphism that sends one isotype submodule $ K $ onto any other isotype submodule $ K' $, unless this is impossible because either the submodules or the quotient modules are not isomorphic. Additionally, the classes of strongly transitive and strongly $ U $-transitive QTAG modules are defined using a slight adaptations of this. This work investigates the latter class in depth, demonstrating that every $ \alpha $- module is strongly transitive with regard to countably generated isotype submodules.



    加载中


    [1] K. Benabdallah, S. Singh, On torsion Abelian groups like modules, In: Abelian group theory, Berlin, Heidelberg: Springer, 1983,639–653. https://doi.org/10.1007/978-3-662-21560-9_45
    [2] S. Singh, M. Z. Khan, TAG-modules with complement submodules H-pure, Int. J. Math. Math. Sci., 21 (1998), 801–814. https://doi.org/10.1155/S0161171298001112 doi: 10.1155/S0161171298001112
    [3] S. Singh, Abelian groups like modules, Acta Math. Hung., 50 (1987), 85–95. https://doi.org/10.1007/BF01903367
    [4] I. Kaplansky, Infinite Abelian groups, Ann Arbor: University of Michigan Press, 1954.
    [5] A. R. Chekhlov, P. V. Danchev, P. W. Keef, Generalizations of fully transitive and valuated Abelian $p$-groups, J. Algebra, 566 (2021), 187–204. https://doi.org/10.1016/j.jalgebra.2020.09.014 doi: 10.1016/j.jalgebra.2020.09.014
    [6] A. R. Chekhlov, P. V. Danchev, P. W. Keef, Universally fully and Krylov transitive torsion-free Abelian groups, Monatsh. Math., 198 (2022), 517–534. https://doi.org/10.1007/s00605-021-01632-7 doi: 10.1007/s00605-021-01632-7
    [7] D. Carroll, B. Goldsmith, On transitive and fully transitive Abelian $p$-groups, Proc. R. Ir. Acad., 96A (1996), 33–41.
    [8] V. M. Misyakov, Full transitivity of Abelian groups, J. Math. Sci., 154 (2008), 350–373. https://doi.org/10.1007/s10958-008-9177-1 doi: 10.1007/s10958-008-9177-1
    [9] P. A. Krylov, A. A. Tuganbaev, Modules over discrete valuation rings, De Gruyter, 2018. https://doi.org/10.1515/9783110611144
    [10] B. Goldsmith, K. Gong, Quotient-transitivity and cyclic submodule-transitivity for $p$-adic modules, Colloq. Math., 166 (2021), 187–197. https://doi.org/10.4064/cm8348-1-2021 doi: 10.4064/cm8348-1-2021
    [11] P. Hill, J. K. West, Subgroup transitivity in Abelian groups, Proc. Amer. Math. Soc., 126 (1998), 1293–1303.
    [12] H. A. Mehran, S. Singh, On $\sigma$-pure submodules of QTAG-modules, Arch. Math., 46 (1986), 501–510. https://doi.org/10.1007/BF01195018 doi: 10.1007/BF01195018
    [13] S. Singh, Some decomposition theorems in Abelian groups and their generalizations, In: Ring theory: Proceedings of Ohio university conference, New York: Marcel Dekker, 1976,183–189.
    [14] A. Mehdi, M. Y. Abbasi, F. Mehdi, On $(\omega+n)$-projective modules, Ganita Sandesh, 20 (2006), 27–32.
    [15] L. Fuchs, Infinite Abelian groups, Volume I, Academic Press, 1970.
    [16] L. Fuchs, Infinite Abelian groups, Volume II, Academic Press, 1973.
    [17] A. Hasan, Some characterizations of QTAG-modules, Ph.D. thesis, Aligarh, 2012.
    [18] S. A. R. K. Naji, A study of different structures in QTAG-modules, Ph.D. thesis, Aligarh, 2010.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1136) PDF downloads(49) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog