Let $ \mu $ be a positive Borel measure on the interval $ [0, 1) $. The Hankel matrix $ \mathcal{H}_{\mu} = (\mu_{n, k})_{n, k\geq 0} $ with entries $ \mu_{n, k} = \mu_{n+k} $, where $ \mu_{n} = \int_{[0, 1)}t^nd\mu(t) $, formally induces the operator as follows:
$ \mathcal{DH}_\mu(f)(z) = \sum\limits_{n = 0}^\infty\left(\sum\limits_{k = 0}^\infty \mu_{n,k}a_k\right)(n+1)z^n , \; z\in \mathbb{D}, $
where $ f(z) = \sum_{n = 0}^\infty a_nz^n $ is an analytic function in $ \mathbb{D} $. In this article, we characterize those positive Borel measures on $ [0, 1) $ such that $ \mathcal{DH}_\mu $ is bounded (resp., compact) from Bergman spaces $ \mathcal{A}^p $ into Hardy spaces $ H^q $, where $ 0 < p, q < \infty $.
Citation: Yun Xu, Shanli Ye. A Derivative Hilbert operator acting from Bergman spaces to Hardy spaces[J]. AIMS Mathematics, 2023, 8(4): 9290-9302. doi: 10.3934/math.2023466
Let $ \mu $ be a positive Borel measure on the interval $ [0, 1) $. The Hankel matrix $ \mathcal{H}_{\mu} = (\mu_{n, k})_{n, k\geq 0} $ with entries $ \mu_{n, k} = \mu_{n+k} $, where $ \mu_{n} = \int_{[0, 1)}t^nd\mu(t) $, formally induces the operator as follows:
$ \mathcal{DH}_\mu(f)(z) = \sum\limits_{n = 0}^\infty\left(\sum\limits_{k = 0}^\infty \mu_{n,k}a_k\right)(n+1)z^n , \; z\in \mathbb{D}, $
where $ f(z) = \sum_{n = 0}^\infty a_nz^n $ is an analytic function in $ \mathbb{D} $. In this article, we characterize those positive Borel measures on $ [0, 1) $ such that $ \mathcal{DH}_\mu $ is bounded (resp., compact) from Bergman spaces $ \mathcal{A}^p $ into Hardy spaces $ H^q $, where $ 0 < p, q < \infty $.
[1] | C. Chatzifountas, D. Girela, J. $\acute{A}$. Pel$\acute{a}$ez, A generalized Hilbert matrix acting on Hardy spaces, J. Math. Anal. Appl., 413 (2014), 154–168. https://doi.org/10.1016/j.jmaa.2013.11.046 doi: 10.1016/j.jmaa.2013.11.046 |
[2] | D. Girela, N. A. Merch$\acute{a}$n, A generalized Hilbert operator acting on conformally invariant spaces, Banach J. Math. Anal., 12 (2018), 374–398. https://doi.org/10.1215/17358787-2017-0023 doi: 10.1215/17358787-2017-0023 |
[3] | E. Diamantopoulos, Operators induced by Hankel matrices on Dirichlet spaces, Analysis, 24 (2004), 345–360. https://doi.org/10.1524/anly.2004.24.14.345 doi: 10.1524/anly.2004.24.14.345 |
[4] | P. Duren, A. Schuster, Bergman spaces, Mathematical Surveys and Monographs, Vol. 100, American Mathematical Society, Providence, 2004. |
[5] | P. Galanopoulos, J. $\acute{A}$. Pel$\acute{a}$ez, A Hankel matrix acting on Hardy and Bergman spaces, Studia Math., 200 (2010), 201–220. https://doi.org/10.4064/sm200-3-1 doi: 10.4064/sm200-3-1 |
[6] | K. Zhu, Operator theory in function spaces, Mathematical Surveys and Monographs, Vol. 138, 2 Eds., American Mathematical Society, Providence, 2007. |
[7] | S. Ye, Z. Zhou, A Derivative-Hilbert operator acting on the Bloch space, Complex Anal. Oper. Theory, 15 (2021), 88. https://doi.org/10.1007/s11785-021-01135-1 doi: 10.1007/s11785-021-01135-1 |
[8] | S. Ye, Z. Zhou, A Derivative-Hilbert operator acting on Bergman spaces, J. Math. Anal. Appl., 506 (2022), 125553. https://doi.org/10.1016/j.jmaa.2021.125553 doi: 10.1016/j.jmaa.2021.125553 |
[9] | M. Pavlovi$\acute{c}$, Logarithmic Bloch space and its predual, Publ. Inst. Math., 114 (2016), 90–97. https://doi.org/10.2298/PIM1614001P doi: 10.2298/PIM1614001P |
[10] | S. Ye, Weighted composition operator between different weighted Bloch-type spaces, Acta Math. Sin., 50 (2007), 927–942. |
[11] | P. Duren, Theory of $H^p$ spaces, New York: Academic Press, 1970. |
[12] | B. W. Romberg, P. L. Duren, A. L. Shields, Linear functionals on $H^p$ spaces with $0 < p < 1$, J. Reine Angew. Math., 238 (1969), 32–60. https://doi.org/10.1515/crll.1969.238.32 doi: 10.1515/crll.1969.238.32 |
[13] | D. Girela, Analytic functions of bounded mean oscillation, Univ. Joensuu Dept. Math. Rep. Ser., 4 (2001), 61–170. |
[14] | B. MacCluer, R. Zhao, Vanishing logarithmic Carleson measures, Illinois J. Math., 46 (2002), 507–518. https://doi.org/10.1215/ijm/1258136207 doi: 10.1215/ijm/1258136207 |
[15] | R. Zhao, On logarithmic Carleson measures, Acta Sci. Math., 69 (2003), 605–618. |
[16] | W. W. Hastings, A Carleson measure theorem for Bergman spaces, Proc. Amer. Math. Soc., 52 (1975), 237–241. https://doi.org/10.1090/s0002-9939-1975-0374886-9 doi: 10.1090/s0002-9939-1975-0374886-9 |
[17] | S. Li, J. Zhou, Essential norm of generalized Hilbert matrix from Bloch type spaces to BMOA and Bloch space, AIMS Math., 6 (2021), 3305–3318. https://doi.org/10.3934/math.2021198 doi: 10.3934/math.2021198 |
[18] | C. Cowen, B. MacCluer, Composition operators on spaces of analytic functions, CRC Press, 1995. https://doi.org/10.4028/www.scientific.net/SSP.47-48.223 |