Research article

A Derivative Hilbert operator acting from Bergman spaces to Hardy spaces

  • Received: 29 September 2022 Revised: 01 February 2023 Accepted: 07 February 2023 Published: 15 February 2023
  • MSC : 47B35, 30H10, 30H20

  • Let $ \mu $ be a positive Borel measure on the interval $ [0, 1) $. The Hankel matrix $ \mathcal{H}_{\mu} = (\mu_{n, k})_{n, k\geq 0} $ with entries $ \mu_{n, k} = \mu_{n+k} $, where $ \mu_{n} = \int_{[0, 1)}t^nd\mu(t) $, formally induces the operator as follows:

    $ \mathcal{DH}_\mu(f)(z) = \sum\limits_{n = 0}^\infty\left(\sum\limits_{k = 0}^\infty \mu_{n,k}a_k\right)(n+1)z^n , \; z\in \mathbb{D}, $

    where $ f(z) = \sum_{n = 0}^\infty a_nz^n $ is an analytic function in $ \mathbb{D} $. In this article, we characterize those positive Borel measures on $ [0, 1) $ such that $ \mathcal{DH}_\mu $ is bounded (resp., compact) from Bergman spaces $ \mathcal{A}^p $ into Hardy spaces $ H^q $, where $ 0 < p, q < \infty $.

    Citation: Yun Xu, Shanli Ye. A Derivative Hilbert operator acting from Bergman spaces to Hardy spaces[J]. AIMS Mathematics, 2023, 8(4): 9290-9302. doi: 10.3934/math.2023466

    Related Papers:

  • Let $ \mu $ be a positive Borel measure on the interval $ [0, 1) $. The Hankel matrix $ \mathcal{H}_{\mu} = (\mu_{n, k})_{n, k\geq 0} $ with entries $ \mu_{n, k} = \mu_{n+k} $, where $ \mu_{n} = \int_{[0, 1)}t^nd\mu(t) $, formally induces the operator as follows:

    $ \mathcal{DH}_\mu(f)(z) = \sum\limits_{n = 0}^\infty\left(\sum\limits_{k = 0}^\infty \mu_{n,k}a_k\right)(n+1)z^n , \; z\in \mathbb{D}, $

    where $ f(z) = \sum_{n = 0}^\infty a_nz^n $ is an analytic function in $ \mathbb{D} $. In this article, we characterize those positive Borel measures on $ [0, 1) $ such that $ \mathcal{DH}_\mu $ is bounded (resp., compact) from Bergman spaces $ \mathcal{A}^p $ into Hardy spaces $ H^q $, where $ 0 < p, q < \infty $.



    加载中


    [1] C. Chatzifountas, D. Girela, J. $\acute{A}$. Pel$\acute{a}$ez, A generalized Hilbert matrix acting on Hardy spaces, J. Math. Anal. Appl., 413 (2014), 154–168. https://doi.org/10.1016/j.jmaa.2013.11.046 doi: 10.1016/j.jmaa.2013.11.046
    [2] D. Girela, N. A. Merch$\acute{a}$n, A generalized Hilbert operator acting on conformally invariant spaces, Banach J. Math. Anal., 12 (2018), 374–398. https://doi.org/10.1215/17358787-2017-0023 doi: 10.1215/17358787-2017-0023
    [3] E. Diamantopoulos, Operators induced by Hankel matrices on Dirichlet spaces, Analysis, 24 (2004), 345–360. https://doi.org/10.1524/anly.2004.24.14.345 doi: 10.1524/anly.2004.24.14.345
    [4] P. Duren, A. Schuster, Bergman spaces, Mathematical Surveys and Monographs, Vol. 100, American Mathematical Society, Providence, 2004.
    [5] P. Galanopoulos, J. $\acute{A}$. Pel$\acute{a}$ez, A Hankel matrix acting on Hardy and Bergman spaces, Studia Math., 200 (2010), 201–220. https://doi.org/10.4064/sm200-3-1 doi: 10.4064/sm200-3-1
    [6] K. Zhu, Operator theory in function spaces, Mathematical Surveys and Monographs, Vol. 138, 2 Eds., American Mathematical Society, Providence, 2007.
    [7] S. Ye, Z. Zhou, A Derivative-Hilbert operator acting on the Bloch space, Complex Anal. Oper. Theory, 15 (2021), 88. https://doi.org/10.1007/s11785-021-01135-1 doi: 10.1007/s11785-021-01135-1
    [8] S. Ye, Z. Zhou, A Derivative-Hilbert operator acting on Bergman spaces, J. Math. Anal. Appl., 506 (2022), 125553. https://doi.org/10.1016/j.jmaa.2021.125553 doi: 10.1016/j.jmaa.2021.125553
    [9] M. Pavlovi$\acute{c}$, Logarithmic Bloch space and its predual, Publ. Inst. Math., 114 (2016), 90–97. https://doi.org/10.2298/PIM1614001P doi: 10.2298/PIM1614001P
    [10] S. Ye, Weighted composition operator between different weighted Bloch-type spaces, Acta Math. Sin., 50 (2007), 927–942.
    [11] P. Duren, Theory of $H^p$ spaces, New York: Academic Press, 1970.
    [12] B. W. Romberg, P. L. Duren, A. L. Shields, Linear functionals on $H^p$ spaces with $0 < p < 1$, J. Reine Angew. Math., 238 (1969), 32–60. https://doi.org/10.1515/crll.1969.238.32 doi: 10.1515/crll.1969.238.32
    [13] D. Girela, Analytic functions of bounded mean oscillation, Univ. Joensuu Dept. Math. Rep. Ser., 4 (2001), 61–170.
    [14] B. MacCluer, R. Zhao, Vanishing logarithmic Carleson measures, Illinois J. Math., 46 (2002), 507–518. https://doi.org/10.1215/ijm/1258136207 doi: 10.1215/ijm/1258136207
    [15] R. Zhao, On logarithmic Carleson measures, Acta Sci. Math., 69 (2003), 605–618.
    [16] W. W. Hastings, A Carleson measure theorem for Bergman spaces, Proc. Amer. Math. Soc., 52 (1975), 237–241. https://doi.org/10.1090/s0002-9939-1975-0374886-9 doi: 10.1090/s0002-9939-1975-0374886-9
    [17] S. Li, J. Zhou, Essential norm of generalized Hilbert matrix from Bloch type spaces to BMOA and Bloch space, AIMS Math., 6 (2021), 3305–3318. https://doi.org/10.3934/math.2021198 doi: 10.3934/math.2021198
    [18] C. Cowen, B. MacCluer, Composition operators on spaces of analytic functions, CRC Press, 1995. https://doi.org/10.4028/www.scientific.net/SSP.47-48.223
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(854) PDF downloads(57) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog