This paper deals with a two-step explicit predictor-corrector approach so-called the two-step MacCormack formulation, for solving the one-dimensional nonlinear shallow water equations with source terms. The proposed two-step numerical scheme uses the fractional steps procedure to treat the friction slope and to upwind the convection term in order to control the numerical oscillations and stability. The developed scheme uses both forward and backward difference formulations in the predictor and corrector steps, respectively. The linear stability of the constructed technique is deeply analyzed using the Von Neumann stability approach whereas the convergence rate of the proposed method is numerically obtained in the $ L^{2} $-norm. A wide set of numerical examples confirm the theoretical results.
Citation: Rubayyi T. Alqahtani, Jean C. Ntonga, Eric Ngondiep. Stability analysis and convergence rate of a two-step predictor-corrector approach for shallow water equations with source terms[J]. AIMS Mathematics, 2023, 8(4): 9265-9289. doi: 10.3934/math.2023465
This paper deals with a two-step explicit predictor-corrector approach so-called the two-step MacCormack formulation, for solving the one-dimensional nonlinear shallow water equations with source terms. The proposed two-step numerical scheme uses the fractional steps procedure to treat the friction slope and to upwind the convection term in order to control the numerical oscillations and stability. The developed scheme uses both forward and backward difference formulations in the predictor and corrector steps, respectively. The linear stability of the constructed technique is deeply analyzed using the Von Neumann stability approach whereas the convergence rate of the proposed method is numerically obtained in the $ L^{2} $-norm. A wide set of numerical examples confirm the theoretical results.
[1] | D. D. Franz, C. S. Melching, Full equations (FEQ) model for the solution of the full, dynamic equations of motion for one-dimensional unsteady flow in open channels and through control structures, Michigan: U.S. Department of the Interior, U.S. Geological Survey, 1997. |
[2] | D. R. Basco, Computation of rapidly varied unsteady free surface flow, Michigan: U.S. Department of the Interior, U.S. Geological Survey, 1987. |
[3] | P. Brufau, J. Burguete, P. García-Navarro, J. Murillo, The shallow water equations: An example of hyperbolic system, Monografías de la Real Academia de Ciencias de Zaragoza, 31 (2008), 89–119. |
[4] | G. Cannata, L. Lasaponara, F. Gallerano, Nonlinear shallow water equations numerical integration on curvilinear boundary-conforning grids, WSEAS Trans. Fluids Mech., 10 (2015), 13–25. |
[5] | G. Li, V. Caleffi, J. Gao, High-order well-balanced central WENO scheme for pre-balanced shallow water equations, Comput. Fluids, 99 (2014), 182–189. https://doi.org/10.1016/j.compfluid.2014.04.022 doi: 10.1016/j.compfluid.2014.04.022 |
[6] | F. Gallerano, G. Cannata, L. Lasaponara, A new numerical model for simulations of wave transformation, breaking and long-shore, currents in complex coastal regions, Int. J. Numer. Meth. Fluids, 80 (2016), 571–613. https://doi.org/10.1002/fld.4164 doi: 10.1002/fld.4164 |
[7] | Q. Zhou, J. Zhan, Y. Li, High-order finite-volume WENO schemes for Boussinesq modelling of nearshore wave processes, J. Hydraul. Res., 54 (2016), 646–662. https://doi.org/10.1080/00221686.2016.1175520 doi: 10.1080/00221686.2016.1175520 |
[8] | A. J. C. Barré de Saint Venant, Théorie du mouvement non-permanent des eaux, avec application aux crues des rivières et à l'introduction des marées dans leur lit, Compte. Rendu de l'Académie des Sciences, 73 (1871), 147–154. |
[9] | A. Kurganov, G. Petrova, A second-order well-balanced positivity preserving central-upwind schemes for the Saint-Venant system, Commun. Math. Sci., 5 (2007), 133–160. |
[10] | R. W. Maccormack, The effect of viscosity in hypervelocity impact cratering, In: Frontiers of computational fluid dynamics, 2002, 27–43. |
[11] | P. D. Lax, B. Wendrof, Systems of conservation laws, J. Commun. Pure. Appl. Math., 13 (1959), 217–237. |
[12] | F. T. Namio, E. Ngondiep, R. Ntchantcho, J. C. Ntonga, Mathematical models of complete shallow water equations with source terms, stability analysis of Lax-Wendroff scheme, J. Theor. Comput. Sci., 2 (2015), 1000132. 10.4172/2376-130X.1000132 doi: 10.4172/2376-130X.1000132 |
[13] | E. Ngondiep, Stability analysis of MacCormack rapid solver method for evolutionary Stokes-Darcy problem, J. Comput. Appl. Math., 345 (2019), 269–285. https://doi.org/10.1016/j.cam.2018.06.034 doi: 10.1016/j.cam.2018.06.034 |
[14] | E. Ngondiep, A robust three-level time-split MacCormack scheme for solving two-dimensional unsteady convection-diffusion equation, J. Appl. Comput. Mech., 7 (2021), 559–577. |
[15] | E. Ngondiep, An efficient three-level explicit time-split scheme for solving two-dimensional unsteady nonlinear coupled Burgers equations, Int. J. Numer. Methods Fluids, 92 (2020), 266–284. https://doi.org/10.1002/fld.4783 doi: 10.1002/fld.4783 |
[16] | E. Ngondiep, An efficient three-level explicit time-split approach for solving $2$D heat conduction equations, Appl. Math. Inf. Sci., 14 (2020), 1075–1092. http://dx.doi.org/10.18576/amis/140615 doi: 10.18576/amis/140615 |
[17] | R. Hixon, E. Turkel, Compact implicit MacCormack type schemes with high accuracy, J. Comput. Phys., 158 (2000), 51–70. https://doi.org/10.1006/jcph.1999.6406 doi: 10.1006/jcph.1999.6406 |
[18] | G. S. Jiang, D. Levy, C. T. Lin, S. Osher, E. Tadmor, High-resolution non-oscillatory central schemes with Non-staggered grids for hyperbolic conservation laws, SIAM J. Numer. Anal., 35 (1998), 2147–2168. https://doi.org/10.1137/S0036142997317560 doi: 10.1137/S0036142997317560 |
[19] | D. Levy, G. Puppo, G. Russo, Central WENO schemes for hyperbolic systems of conservation laws, ESAIM Math. Model. Numer. Anal., 33 (1999), 547–571. https://doi.org/10.1051/m2an:1999152 doi: 10.1051/m2an:1999152 |
[20] | G. S. Jiang, C. W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126 (1996), 202–228. https://doi.org/10.1006/jcph.1996.0130 doi: 10.1006/jcph.1996.0130 |
[21] | F. Bianco, G. Puppo, G. Russo, High order central schemes for hyperbolic systems of conservation laws, SIAM J. Sci. Comput., 21 (1999), 294–322. https://doi.org/10.1137/S10648275973249 doi: 10.1137/S10648275973249 |
[22] | A. Kurganov, D. Levy, Central-upwind schemes for the Saint-Venant system, ESAIM Math. Model. Numer. Anal., 36 (2002), 397–429. https://doi.org/10.1051/m2an:2002019 doi: 10.1051/m2an:2002019 |
[23] | R. Sanders, A. Weiser, A high resolution staggered mesh approach for nonlinear Hyperbolic systems of conservation laws, J. Comput. Phys., 101 (1992), 314–329. https://doi.org/10.1016/0021-9991(92)90009-N doi: 10.1016/0021-9991(92)90009-N |
[24] | F. A. Anderson, R. H. Pletcher, J. C. Tannehill, Computational fluid mechanics and Heat Transfer, New York: Taylor and Francis, 1997. |
[25] | F. R. Fiedler, J. A. Ramirez, A numerical method for simulating discontinuous shallow flow over an infiltrating surface, Int. J. Numer. Meth. Fluids, 32 (2000), 219–240. https://doi.org/10.1002/(SICI)1097-0363(20000130)32:2<219::AID-FLD936>3.0.CO;2-J doi: 10.1002/(SICI)1097-0363(20000130)32:2<219::AID-FLD936>3.0.CO;2-J |
[26] | E. Ngondiep, A novel three-level time-split MacCormack method for solving two-dimensional viscous coupled Burgers equations, preprint paper, 2019. https://doi.org/10.48550/arXiv.1906.01544 |
[27] | E. Ngondiep, A novel three-level time-split approach for solving two-dimensional nonlinear unsteady convection-diffusion-reaction equation, J. Math. Comput. Sci., 26 (2022), 222–248. |
[28] | E. Ngondiep, A fourth-order two-level factored implicit scheme for solving two-dimensional unsteady transport equation with time-dependent dispersion coefficients, Int. J. Comput. Method. Eng. Sci. Mech., 22 (2021), 253–264. https://doi.org/10.1080/15502287.2020.1856972 doi: 10.1080/15502287.2020.1856972 |
[29] | E. Ngondiep, Long time stability and convergence rate of MacCormack rapid solver method for nonstationary Stokes-Darcy problem, Comput. Math. Appl., 75 (2018), 3663–3684. https://doi.org/10.1016/j.camwa.2018.02.024 doi: 10.1016/j.camwa.2018.02.024 |
[30] | E. Ngondiep, A novel three-level time-split MacCormack scheme for two-dimensional evolutionary linear convection-diffusion-reaction equation with source term, Int. J. Comput. Math., 98 (2021), 47–74. https://doi.org/10.1080/00207160.2020.1726896 doi: 10.1080/00207160.2020.1726896 |
[31] | E. Ngondiep, A robust numerical two-level second-order explicit approach to predict the spread of COVID-$2019$ pandemic with undetected infectious cases, J. Comput. Appl. Math., 403 (2022), 113852. https://doi.org/10.1016/j.cam.2021.113852 doi: 10.1016/j.cam.2021.113852 |
[32] | E. Ngondiep, N. Kerdid, M. A. M. Abaoud, I. A. I. Aldayel, A three-level time-split MacCormack method for two-dimensional nonlinear reaction-diffusion equations, Int. J. Numer. Meth. Fluids, 92 (2020), 1681–1706. https://doi.org/10.1002/fld.4844 doi: 10.1002/fld.4844 |
[33] | E. Ngondiep, A six-level time-split Leap-Frog/Crank-Nicolson approach for two-dimensional nonlinear time-dependent convection diffusion reaction equation, Int. J. Comput. Meth., 2023. https://doi.org/10.1142/S0219876222500645 |
[34] | E. Ngondiep, Long time unconditional stability of a two-level hybrid method for nonstationary incompressible Navier-Stokes equations, J. Comput. Appl. Math., 345 (2019), 501–514. https://doi.org/10.1016/j.cam.2018.05.023 doi: 10.1016/j.cam.2018.05.023 |
[35] | E. Ngondiep, Error estimate of MacCormack rapid solver method for $2$D incompressible Navier-Stokes problems, preprint paper, 2019. https://doi.org/10.48550/arXiv.1903.10857 |
[36] | E. Ngondiep, Asymptotic growth of the spectral radii of collocation matrices approximating elliptic boundary problems, Int. J. Appl. Math. Comput., 4 (2012), 199–219. |
[37] | E. Ngondiep, A two-level factored Crank-Nicolson method for two-dimensional nonstationary advection-diffusion equation with time dependent dispersion coefficients and source sink/term, Adv. Appl. Math. Mech., 13 (2021), 1005–1026. https://doi.org/10.4208/aamm.OA-2020-0206 doi: 10.4208/aamm.OA-2020-0206 |
[38] | E. Ngondiep, Unconditional stability over long time intervals of a two-level coupled MacCormack/Crank-Nicolson method for evolutionary mixed Stokes-Darcy model, J. Comput. Appl. Math., 409 (2022), 114148. https://doi.org/10.1016/j.cam.2022.114148 doi: 10.1016/j.cam.2022.114148 |
[39] | E. Ngondiep, A two-level fourth-order approach for time-fractional convection-diffusion-reaction equation with variable coefficients, Commun. Nonlinear Sci. Numer. Simul., 111 (2022), 106444. https://doi.org/10.1016/j.cnsns.2022.106444 doi: 10.1016/j.cnsns.2022.106444 |
[40] | E. Ngondiep, Unconditional stability of a two-step fourth-order modified explicit Euler/Crank-Nicolson approach for folving time-variable fractional mobile-immobile advection-dispersion equation, preprint paper, 2022. https://doi.org/10.48550/arXiv.2205.05077 |
[41] | K. Ye, Y. Zhao, F. Wu, W. Zhong, An adaptive artificial viscosity for the displacement shallow water wave equation, Appl. Math. Mech., 43 (2022), 247–262. https://doi.org/10.1007/s10483-022-2815-7 doi: 10.1007/s10483-022-2815-7 |
[42] | M. D. Saiduzzaman, S. K. Ray, Comparison of numerical schemes for shallow water equation, Glob. J. Sci. Front. Res., 13 (2013), 28–46. |
[43] | F. Wu, W. Zhong, On displacement shallow water wave equation and symplectic solution, Comput. Method. Appl. Mech. Eng., 318 (2017), 431–455. https://doi.org/10.1016/j.cma.2017.01.040 doi: 10.1016/j.cma.2017.01.040 |
[44] | H. O. Kreiss, On difference approximations of the dissipative type for hyperbolic differential equations, Comm. Pure Appl. Math., 17 (1964), 335–353. |
[45] | R. Garcia, R. A. Kahawaita, Numerical solution of the Saint-Venant equations with MacCormack finite-difference scheme, Int. J. Numer. Meth. Fluids, 6 (1986), 259–274. |
[46] | O. Delestre, C. Lucas, P. A. Ksinant, F. Darboux, C. Laguerre, T. N. Tuoi Vo, et al., SWASHES: a compilation of shallow water analytic solutions for hydraulic and environmental studies, Int. J. Numer. Meth. Fluids, 72 (2013), 269–300. https://doi.org/10.1002/fld.3741 doi: 10.1002/fld.3741 |