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Abstract: This paper deals with a two-step explicit predictor-corrector approach so-called the two-
step MacCormack formulation, for solving the one-dimensional nonlinear shallow water equations
with source terms. The proposed two-step numerical scheme uses the fractional steps procedure to
treat the friction slope and to upwind the convection term in order to control the numerical oscillations
and stability. The developed scheme uses both forward and backward difference formulations in the
predictor and corrector steps, respectively. The linear stability of the constructed technique is deeply
analyzed using the Von Neumann stability approach whereas the convergence rate of the proposed
method is numerically obtained in the L2-norm. A wide set of numerical examples confirm the
theoretical results.
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1. Introduction

Most open-channel flows of interest in the physical, hydrological, biological, engineering and social
sciences are unsteady and can be considered to be one-dimensional (1D). In this paper, we are interested
in the numerical solutions of one-dimensional shallow water equations with source terms introduced
in [1,2] and still widely used in modeling flows in rivers, lakes and coastal areas as well as atmospheric
and oceanic flows in some regimes. In the case of a prismatic channel, the shallow water equations
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with source terms read as follows
∂A
∂t +

∂Q
∂x = v, for t ∈ (0,T1) and x ∈ Ω = (0, L),

∂Q
∂t + g A

T
∂A
∂x +

∂
∂x

(
Q2

A

)
= gA(S 0 − S f ), for t ∈ (0,T1) and x ∈ Ω = (0, L),

(1.1)

where the bottom (or bed) slope (S 0) and the friction slope (S f ) (see [1]) are defined as

S 0 =
τP
ρgA

and S f =
Q|Q|
K2 , (1.2)

where v = v(t, x) is the lateral inflow per unit length along the channel, T1 represents the time interval
length, L denotes the rod interval length, A = A(t, x) and Q = Q(t, x) are the cross-section and the
discharge, respectively, g denotes the acceleration of gravity. T = T (t, x) represents the top width
assumed to be constant, τ designates the average shear stress on the water from the channel boundary,
ρ is the fluid density and P = P(x, y(t, x)) denotes the wetted perimeter (i.e., the length of the boundary
of the cross-section that is underwater for a given height of water (y)). As in [1], the conveyance for a
compact channel is defined as

K := K(x, y) =
1.49
n1

A(x, y)R(x, y)2/3, (1.3)

where R = A/P (see for example, [1, 3]) denotes the hydraulic radius and n1 represents the manning’s
roughness coefficient.

Since the parameters g and T are positive constants, it is easy to see that g A
T
∂A
∂x =

∂
∂x

(
gA2

2T

)
. Using

this equation together with equality ∂
∂x

(
gA2

2T

)
+ ∂
∂x

(
Q2

A

)
= ∂
∂x

(
gA2

2T +
Q2

A

)
, the second equation of the

system (1.1) is equivalent to

∂Q
∂t
+
∂

∂x

(
gA2

2T
+

Q2

A

)
= gA(S 0 − S f ), for t ∈ (0,T1) and x ∈ Ω = (0, L).

This equation combined with the first equation in (1.1) results in

∂A
∂t +

∂Q
∂x = v, for t ∈ (0,T1) and x ∈ Ω = (0, L),

∂Q
∂t +

∂
∂x

(
gA2

2T +
Q2

A

)
= gA(S 0 − S f ), for t ∈ (0,T1) and x ∈ Ω = (0, L),

which can be rewritten as
∂W
∂t
+
∂F
∂x
= S , (1.4)

where W = (A,Q)T , F = (Q, gA2

2T +
Q2

A )T , and S = (v, gA(S 0 − S f ))T . Equation (1.4) emphasizes the
conservative character of system (1.1).

The one-dimensional shallow water equations with source terms (1.4) are highly nonlinear and
therefore do not have global analytical solutions [1]. When solving the system of balance laws (1.4)
numerically, one typically faces several difficulties. One difficulty stems from the fact that many
physically relevant solutions of (1.4) are small perturbations of steady-state solutions. So, using a
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wrong balance between the flux and geometric source term in Eq (1.4), the solution may develop
spurious waves of a magnitude that can become larger than the exact solution. Another drawback
occurs when the cross-section is very small. In that case, even small numerical oscillations in the
computed solution can result in a very large discharge, which is not only physically irrelevant, but
cause the numerical scheme to break down. To overcome these numerical challenges, one needs to
use a numerical scheme that is both well-balanced and positivity-preserving.

A number of well-balanced and positivity-preserving numerical methods frequently used in the
models based on the shallow water equations have been proposed in the literature [4, 5], or on the
boussinesq equations, which are reduced to shallow water equations, in order to simulate breaking
waves [6–9]. Although the MacCormack scheme is less accurate than the more recent methods, it is
commonly used for engineering problems due to its greater simplicity. So, we have to approximate
the exact solution of problem (1.4) by a numerical method based on a two-level predictor-corrector
scheme. This algorithm lies in the class of higher order finite difference methods (temporal
second-order convergent and fourth-order accurate in space) which provide an effective way of
joining the spectral method for accuracy and robust characteristics of finite difference schemes. For
example, to compute unsteady flow specifically in the presence of discontinuity, inherent dissipation
and stability, one such widely used method is the MacCormack method [10]. This technique has been
used successfully to provide a time-accurate solution for fluid flow and aeroacoustics problems. The
applications of this technique to 1D shock tubes and 2D acoustic scattering problems provide good
results when compared with the analytical solution. The original MacCormack introduces a simpler
variation of the Lax-Wendroff scheme which is basically a two-step scheme with second order Taylor
series expansion in time and fourth order in spatial accuracy [10, 11]. This algorithm is
computationally efficient and easy to implement which can be appropriate to obtain reliable results.
By using this scheme with two nodes, the flow field can be simulated for unsteady flows especially for
shallow water problems in the presence of discontinuity and strict gradient conditions. Furthermore,
to capture the fluid flow in transition over long periods of time and distance, numerical spatial
derivative are required to be determined in a few grid points while error-controlled can be accurately
computed. The authors [12–17] extended the MacCormack scheme [10] to an implicit-explicit
scheme (by coupling the original MacCormack approach with Crank-Nicolson method), an implicit
compact differencing scheme and a three-level time-split MacCormack procedure (by splitting the
derivative operator of the scheme into one-sided forward and backward difference formulations). The
one-sided nature of the time-split MacCormack approach is an essential advantage especially when
severe gradients are present.

In [18–20] the authors compared the Lax-Wendroff scheme to many numerical methods of high
order accuracy, such as, the linear Central Weighed Essential Non-Oscillatory (CWENO) scheme
which is superior to full nonlinear CWENO method, to high-resolution TVD conservative procedures
along with high order Central Schemes for hyperbolic systems of conservative Laws [3, 21] and to
Central-upwind schemes for the shallow water system [22]. In a search for stable and more accurate
shock capturing numerical approach, they observed that the Lax-Wendroff technique is one of the
most frequently encountered in the literature related to classical shock-capturing schemes. However,
difficulties have been reported when trying to include source terms in the discretization and to keep
the second order accuracy at the same time [23]. The proposed two-level solver which can be
considered a predictor-corrector version of the Lax-Wendroff algorithm provides a reasonably good
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result at discontinuities. The developed method is more easier to apply than the Lax-Wendroff method
because the Jacobian does not appear. For linear equations, both algorithms provide similar
amplification factors and stability constraints (for instance, see [24], P. 202–206). It is worth noticing
to mention that the solutions obtained for a given problem at the same courant number are different
from those obtained using the Lax-Wendroff scheme. This situation is due to the switched
differencing in the predictor, corrector and the nonlinear nature of the governing equations. It should
be noted that reversing the differencing in the predictor and corrector steps leads to quite different
results. Furthermore, the explicit MacCormack time discretization for nonlinear Burgers equations
(which can serve as model equations for a wide set of nonlinear PDEs: Navier-Stokes equations,
Stokes-Darcy equations, Parabolized Navier-Stokes equations,...) give a suitable stability restriction
which should be used with an appropriate safety factor (see [24], P. 227–228). As regards the
proposed predictor-corrector formulation, like other explicit approaches, it requires a time-step
limitation. In general, the maximum time-step allowable in the natural MacCormack scheme applied
to linear hyperbolic equations is limited by the CFL condition, as for all explicit finite difference
methods. However, the considered overland flow equations are nonlinear and a rigorous stability
analysis of numerical techniques is exceedingly difficult. The source terms place additional and
problem-dependent restrictions on the maximum admissible time-step for stability. Therefore, the
CFL condition can only be considered as a general guideline here, and the maximum allowable
time-step for any particular problem will be less than predicted by the CFL condition and determined
by numerical experimentation (see [25], page 223).

Most recently, several researchers have deeply analyzed implicit/explicit (for example:
Crank-Nicolson/MacCormack) approach, compact finite difference methods, two-level factored
Crank-Nicolson scheme, three-level time-split MacCormack algorithms, central upwing schemes and
Lax-Wendroff technique in the approximate solutions of mixed Stokes-Darcy’s model, evolutionary
reaction-diffusion equation, nonstationary convection-diffusion equation, time-dependent
convection-diffusion-reaction problems, unsteady coupled Burgers’equations, Navier-Stokes
equations, time fractional equations and shallow water problems. For more details, we refer the
readers to [5, 9, 12, 13, 17, 22, 26–41]. In this paper, we are interested in a computed solution of a
nonlinear system (1.1), but in the sense of a linear stability condition and convergence rate of the
numerical scheme. In particular, we consider the case where the channel is prismatic and the
interesting result is that the algorithm is second-order accurate in time and spatial fourth-order
convergent, whereas the stability limitation is not similar to the CFL condition widely studied in the
literature for hyperbolic PDEs. However, while the stability requirement is highly unusual, the result
has a potential positive implication since the stability constraint controls the CFL condition. Indeed
the nice feature is that, as required in a stability context, we normally find a linear stability
requirement which can be considered as a necessary condition. In addition, it follows from this
analysis that instability occurs when ∆t is greater than ∆tmax = (∆t)CFL. More specifically, the
attention is focused in the following three items:

(i1) Full description of a two-step predictor-corrector method for solving one-dimensional shallow
water equations with source terms.

(i2) Stability analysis of the proposed algorithm: this item together with item (i1) represent our original
contributions and they improve some works studied in the literature [3, 12, 42, 43].
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(i3) Numerical experiments which considers the convergence rate of the method, the simulation of
the numerical solution together with the analytical ones, and regarding the effectiveness of the
proposed algorithm according to the theoretical analysis given in the first two items.

The paper is organized as follows. Section 2 deals with a full description of a two-step predictor-
corrector formulation for one-dimensional shallow water equations with source terms. A necessary
condition of stability of the proposed numerical scheme is deeply analyzed in Section 3. In Section 4,
some numerical experiments which consider the convergence rate of the developed approach and some
simulations are presented and discussed. We draw the general conclusion and present the future works
in Section 5.

2. Full description of a two-level explicit predictor-corrector method

In this section, we give a detailed description of a two-step explicit predictor-corrector algorithm
for the system of nonlinear Eq (1.4). The proposed scheme uses the forward difference in the predictor
step while the corrector step considers the backward difference. Since the aim of this section is to
analyze the linear stability of the method, without loss of generality we should use a constant time
step ∆t and mesh size ∆x. However, this assumption does not compromise the result on the stability.
Let K1 and M1 be two positive integers. Set xr = r∆x, ti = i∆t be the discrete points and let the
superscript and subscript be the time level and space level, respectively, of the approximation. We
denote W i

r = (Ai
r,Q

i
r)

T be the approximate solution of equations (1.4), provided by the constructed two-
step MacCormack technique and W(ti, xr) = (A(ti, xr),Q(ti, xr))T be the analytical ones. Furthermore,
the domain Ω = (0, L) is partitioned into M1 + 1 grid points {xr : r = 0, 1, ...,M1}, whereas the
time interval (0,T ) is subdivided into K1 + 1 discrete points {ti : i = 0, 1, ...,K1}. Using this, a full
description of the proposed method for solving the system (1.4) reads: Given W i

r, find an approximate
solution wi+1

r , for 0 ≤ i ≤ K1 − 1 and 0 ≤ r ≤ M1, satisfying
Predictor step: solve Eq (2.1) for predicted value

W i+1
r = W i

r −
∆t
∆x

(F i
r+1 − F i

r) + ∆tS i
r. (2.1)

Corrector step: use the predicted value obtained in Eq (2.1) to compute the corrected one

W i+1
r =

1
2

[
W i

r +W i+1
r −

∆t
∆x

(F i+1
r − F i+1

r−1) + ∆tS i+1
r

]
. (2.2)

Lemma 2.1. Let K1 and M1 be two positive integers. Setting ti = i∆t, for i = 0, 1, ...,K1, and xr =

r∆x, for r = 0, 1, ...,M1, where ∆t and ∆x are time step and mesh size, respectively. The proposed
numerical scheme for solving the system of nonlinear Eq (1.4) is given by: for i = 0, 1, ...,K1 − 1, and
r = 0, 1, ...,M1 − 1,
Predictor step: solve Eqs (2.3) and (2.4) for predicted values Ai+1

r and Qi+1
r

Ai+1
r = Ai

r −
∆t
∆x

(Qi
r+1 − Qi

r) + ∆tvi
r, (2.3)

Qi+1
r = Qi

r −
∆t
∆x

{
g

2T
((Ai

r+1)2 − (Ai
r)

2) +
(Qi

r+1)2

Ai
r+1

−
(Qi

r)
2

Ai
r

}
+ gP∆t

 τ
ρg
−

n2
1

1.492 P
1
3

Qi
r|Q

i
r|

(Ai
r)

7
3

 . (2.4)
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Corrector step: use Ai+1
r and Qi+1

r obtained in Eqs (2.3) and (2.4) to compute Ai+1
r and Qi+1

r

Ai+1
r =

1
2

{
Ai

r + Ai+1
r −

∆t
∆x

(Qi+1
r − Qi+1

r−1) + ∆tvi+1
r

}
, (2.5)

Qi+1
r =

1
2

Qi
r + Qi+1

r −
∆t
∆x

 g
2T

[
(Ai+1

r )2 − (Ai+1
r−1)2

]
+

(Qi+1
r )2

Ai+1
r

−
(Qi+1

r−1)2

Ai+1
r−1

 +
gP∆t

 τρg − n2
1

1.492 P
1
3

Qi+1
r |Q

i+1
r |

(Ai+1
r )

7
3


 . (2.6)

Approximations (2.3)–(2.6) are subjects to appropriate initial and boundary conditions.

Proof. Since W = (A,Q)T , combining Eqs (2.1) and (2.2) to get

Ai+1
r = Ai

r −
∆t
∆x

(Qi
r+1 − Qi

r) + ∆tvi
r, (2.7)

Qi+1
r = Qi

r −
∆t
∆x

{
g

2T
((Ai

r+1)2 − (Ai
r)

2) +
(Qi

r+1)2

Ai
r+1

−
(Qi

r)
2

Ai
r

}
+ g∆tAi

r

(
(S 0)i

r − (S f )i
r

)
, (2.8)

Ai+1
r =

1
2

{
Ai

r + Ai+1
r −

∆t
∆x

(Qi+1
r − Qi+1

r−1) + ∆tvi+1
r

}
, (2.9)

Qi+1
r =

1
2

Qi
r + Qi+1

r −
∆t
∆x

 g
2T

[
(Ai+1

r )2 − (Ai+1
r−1)2

]
+

(Qi+1
r )2

Ai+1
r

−
(Qi+1

r−1)2

Ai+1
r−1


+ g∆tAi+1

r

(
(S 0)i+1

r − (S f )i+1
r

)}
. (2.10)

Substituting Eq (1.3) into relation (1.2) yields

S f =
n2

1

1.492

Q|Q|
A2R4/3 =

n2
1

1.492

Q|Q|
A10/3 P4/3. (2.11)

In a similar way, substituting (1.2) and (2.11) into Eqs (2.8) and (2.10), respectively, results in

Qi+1
r = Qi

r −
∆t
∆x

{
g

2T
((Ai

r+1)2 − (Ai
r)

2) +
(Qi

r+1)2

Ai
r+1

−
(Qi

r)
2

Ai
r

}
+ gP∆t

 τ
ρg
−

n2
1

1.492 P
1
3

Qi
r|Q

i
r|

(Ai
r)

7
3

 , (2.12)

and

Qi+1
r =

1
2

Qi
r + Qi+1

r −
∆t
∆x

 g
2T

[
(Ai+1

r )2 − (Ai+1
r−1)2

]
+

(Qi+1
r )2

Ai+1
r

−
(Qi+1

r−1)2

Ai+1
r−1


+ gP∆t

 τρg − n2
1

1.492 P
1
3

Qi+1
r |Q

i+1
r |

(Ai+1
r )

7
3


 . (2.13)

A combination of Eqs (2.7), (2.9), (2.12) and (2.13) provides a full description of the developed two-
step predictor-corrector scheme, that is,

Ai+1
r = Ai

r −
∆t
∆x

(Qi
r+1 − Qi

r) + ∆tvi
r,
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Qi+1
r = Qi

r −
∆t
∆x

{
g

2T
((Ai

r+1)2 − (Ai
r)

2) +
(Qi

r+1)2

Ai
r+1

−
(Qi

r)
2

Ai
r

}
+ gP∆t

 τ
ρg
−

n2
1

1.492 P
1
3

Qi
r|Q

i
r|

(Ai
r)

7
3

 .
Ai+1

r =
1
2

{
Ai

r + Ai+1
r −

∆t
∆x

(Qi+1
r − Qi+1

r−1) + ∆tvi+1
r

}
,

Qi+1
r =

1
2

Qi
r + Qi+1

r −
∆t
∆x

 g
2T

[
(Ai+1

r )2 − (Ai+1
r−1)2

]
+

(Qi+1
r )2

Ai+1
r

−
(Qi+1

r−1)2

Ai+1
r−1


+ gP∆t

 τρg − n2
1

1.492 P
1
3

Qi+1
r |Q

i+1
r |

(Ai+1
r )

7
3


 .

□

Here, the terms Ai+1 and Qi+1 are ”predicted” values of A and Q, respectively, at the time level i+ 1.
Assuming that the superscript i + 1 is a time-level, it is easy to see that the proposed MacCormack
algorithm is a three-level method, so the initial conditions A0 and Q0 are needed to begin the algorithm.
However, appropriate initial and boundary conditions must be specified. Further, the presence a cross-
section in the denominator of several terms disallows zero cross sections. Therefore, a minimum cross
section should be assigned to each node that is ponded. It is primarily the term A10/3 in the denominator
of the friction slope term given by relation (2.11) that limits the magnitude of the minimum cross
section and discharge. When the cross sections are very small, the friction slope is very large compared
with the other terms in the second equation of system (1.1). As cross sections increase rapidly during
the early stages of flow development, the friction slope term magnitude changes much faster than the
other terms. This phenomenon renders the second equation in system (1.1) stiff and severely limits the
maximum admissible time step for stability. Indeed, this phenomenon likely forced many researchers
to consider the smallest time-steps relative to their mesh size (courant number ≪ 1) and keep lateral
inflows and initial cross sections large [25].

3. Stability analysis of the proposed numerical scheme

This section deals with a linear stability analysis of a three-level MacCormack procedure in a
numerical solution of the system of nonlinear PDEs (1.1). In the literature, a wide set of multi-level
schemes for solving shallow water equations and unsteady transport problems have been used to
advance the solution in time. The most popular of these techniques is the original explicit
MacCormack approach, which was widely applied to obtain a time-accurate solution for fluid flow
and aeroacoustic problems. Compared to a broad range of explicit methods such as, Lax-Wendroff
formulation, the natural MacCormack scheme is computationally efficient, easy to implement and it
provides less computing time. In fact, this algorithm lies in a class of higher order finite difference
methods for solving unsteady flow specifically in the presence of discontinuity, inherent dissipative,
dispersion and stability [10], whereas the Lax-Wendroff method indicates some difficulties to preserve
the stability and the temporal second-order accuracy at the same time [23]. However, for linear
problems both numerical schemes have provided almost the same amplification factor and stability
restriction (for instance, see [24], P: 227–228). To analyze the stability of the proposed approach, we
apply the Fourier stability method to the difference Eqs (2.3)–(2.6), by computing the amplification
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factor to obtain an algebraic criterion. Following the Von Neumann stability analysis for necessary
condition of stability, we assume that the approximate solution W i

r = (Ai
r,Q

i
r) can be expressed in the

form of Fourier series as
Ai

r = eati êirϕ and Qi
r = ebti êirϕ, (3.1)

where b = b1 + îb2, a = a1 + îa2, with a j, b j ∈ R, 1 ≤ j ≤ 2, ϕ = k∆x is the phase angle, k denotes
the wave number, ∆x represents the mesh grid and î indicates the imaginary unit. For the sake of
readability, we assume in the following that a2 = b2 and the ratios |v||A|−1 and |v||Q|−1 are very small.

The analysis of the stability of the proposed method requires the following remark.

Remark 3.1. Since the considered problem is nonlinear, the solution may contain discontinuity even
if the initial conditions are smooth enough. To overcome this numerical challenge, we should assume
that the phase angle ϕ = k∆x satisfies |ϕ| << π. In fact, the method could be generally stabilized by
adding additional dissipation to the scheme without affecting the order of accuracy.

The following Lemma gives the “temporary” linear stability constraint of the two-step predictor-
corrector algorithm described in section 2.

Lemma 3.1. A necessary condition of stability for the numerical scheme (2.5) is given by

∆t3

∆x2

(
1 +

2∆t
3
Γ0µÂ−

4
3

)
Γ0µ

3Â−
4
3 |ϕ|2 ≤

3
2

(1 − ϵ2), (3.2)

where 0 ≤ ϵ < 1, µ = max
0≤i≤K1

µi, with µi =
|Qi |

|Ai |
, Â = min

0≤i≤K1
|Ai| = min

0≤i≤K1
|ea1ti | , 0 (according to

relation (3.1)), for any a1 ∈ R, Γ0 =
gn2

1
1.492 P

4
3 and ϕ = k∆x, where k , 0 is the wave number.

Proof. Firstly, we should provide a simple expression of Ai+1. Combining relations (2.3) and (2.4),
simple computations give

Qi+1
r − Qi+1

r−1 = Qi
r − Qi

r−1 −
∆t
∆x

{
g

2T

[
(Ai

r+1)2 − 2(Ai
r)

2 + (Ai
r−1)2

]
+

(Qi
r+1)2

Ai
r+1

− 2
(Qi

r)
2

Ai
r
+

(Qi
r−1)2

Ai
r−1

}

−∆t
gn2

1

1.492 P
4
3

Qi
r|Q

i
r|

(Ai
r)

7
3

−
Qi

r−1|Q
i
r−1|

(Ai
r−1)

7
3

 , (3.3)

and

Ai
r + Ai+1

r = 2Ai
r −
∆t
∆x

(
Qi

r+1 − Qi
r

)
+ ∆tvi

r. (3.4)

Substituting Eqs (3.3) and (3.4) into (2.5), this results in

Ai+1
r = Ai

r −
∆t

2∆x

(
Qi

r+1 − Qi
r−1

)
+

1
2

(
∆t
∆x

)2 {
g

2T

[
(Ai

r+1)2 − 2(Ai
r)

2 + (Ai
r−1)2

]
+

(Qi
r+1)2

Ai
r+1

−2
(Qi

r)
2

Ai
r
+

(Qi
r−1)2

Ai
r−1

}
+
∆t2

2∆x
gn2

1

1.492 P
4
3

Qi
r|Q

i
r|

(Ai
r)

7
3

−
Qi

r−1|Q
i
r−1|

(Ai
r−1)

7
3

 + 1
2
∆t

(
vi

r + vi+1
r

)
. (3.5)
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Neglecting the last term in (3.5), we obtain

Ai+1
r = Ai

r −
∆t

2∆x

(
Qi

r+1 − Qi
r−1

)
+

1
2

(
∆t
∆x

)2 {
g

2T

[
(Ai

r+1)2 − 2(Ai
r)

2 + (Ai
r−1)2

]
+

(Qi
r+1)2

Ai
r+1

−2
(Qi

r)
2

Ai
r
+

(Qi
r−1)2

Ai
r−1

}
+
∆t2

2∆x
Γ0

Qi
r|Q

i
r|

(Ai
r)

7
3

−
Qi

r−1|Q
i
r−1|

(Ai
r−1)

7
3

 , (3.6)

where

Γ0 =
gn2

1

1.492 P
4
3 . (3.7)

Indeed, since the terms |v(x, t)||A(x, t)|−1 and |v(x, t)||Q(x, t)|−1, ∀ (x, t) ∈ [0, L] × [0,T1], are too small,
the tracking of the last term in (3.5) does not compromise the result.

Substituting Eq (3.1) into relation (3.6) to get

ea(ti+∆t)êikxr = eati êikxr −
∆t

2∆x

(
ebti êik(xr+∆x) − ebti êik(xr−∆x)

)
+

1
2

(
∆t
∆x

)2 { g
2T

[
e2atie2̂ik(xr+∆x) − 2e2atie2̂ikxr + e2atie2̂ik(xr−∆x)

]
+ e2(b−a)ti − 2e2(b−a)ti + e2(b−a)ti

}
+
∆t2

2∆x
Γ0

ebti êikxr |ebti |

e
7
3 atie

7
3̂ ikxr

−
ebti êik(xr−∆x)|ebti |

e
7
3 atie

7
3̂ ik(xr−∆x)

 . (3.8)

Multiplying both sides of relation (3.8) by e−atie−̂ikxr to obtain

ea∆t = 1 −
∆t

2∆x

(
êiϕ − e−̂iϕ

)
e(b−a)ti +

1
2

(
∆t
∆x

)2 g
2T

[
eati êikxr e2̂iϕ − 2eati êikxr + eati êikxr e−2̂iϕ

]
+
∆t2

2∆x
Γ0|ebti |e(b− 10

3 a)tie−
7
3̂ ikxr (1 − e

4
3̂ iϕ). (3.9)

Using the identities: êiϕ−e−̂iϕ = 2̂i sin(ϕ), e2̂iϕ−2+e−2̂iϕ = −4 sin2(ϕ) and 1−e
4
3̂ iϕ = 2 sin2(2

3ϕ)+̂i sin( 4
3ϕ),

Eq (3.9) becomes

ea∆t = 1 − î
∆t
∆x

sin(ϕ)e(b1−a1)ti −

(
∆t
∆x

)2 g
T

sin2(ϕ)ea1ti[cos(a2ti + kxr) + î sin(a2ti + kxr)]

− î
∆t2

∆x
Γ0 sin(

2
3
ϕ) cos(

2
3
ϕ)e(2b1−

10
3 a1)ti

(
cos

(
7
3

[a2ti + kxr]
)
− î sin

(
7
3

[a2ti + kxr]
))

− 2
(
∆t
∆x

)2

sin2(
1
2
ϕ)e2(b1−a1)ti

= 1 − î
∆t
∆x
µi sin(ϕ) −

(
∆t
∆x

)2 g
T

sin2(ϕ)ea1ti[cos(a2ti + kxr) + î sin(a2ti + kxr)]

− î
∆t2

∆x
Γ0 sin(

2
3
ϕ) cos(

2
3
ϕ)e(2b1−

10
3 a1)ti

(
cos

(
7
3

[a2ti + kxr]
)
− î sin

(
7
3

[a2ti + kxr]
))
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− 2
(
∆t
∆x

)2

(µi)2 sin2(
1
2
ϕ), (3.10)

where

µi =
|Qi|

|Ai|
=

eb1ti

ea1ti
= e(b1−a1)ti . (3.11)

Setting

α2 =
7
3

(a2ti + kxr); γ2 = Γ0(µi)2e−
4
3 a1tie−̂iα2; α3 = a2ti + kxr γ1 = µ

i; γ4 = γ
2
1; γ3 =

g
T

ea1ti êiα3 .

(3.12)
A combination of Eqs (3.12) and (3.10) yields

ea∆t = 1 − î
∆t
∆x
γ1 sin(ϕ) −

(
∆t
∆x

)2

γ3 sin2(ϕ) − î
∆t2

∆x
γ2 sin(

2
3
ϕ) cos(

2
3
ϕ) − 2

(
∆t
∆x

)2

γ4 sin2(
1
2
ϕ)

= 1 −
∆t2

∆x
|γ2| sinα2 sin(

2
3
ϕ) cos(

2
3
ϕ) −

(
∆t
∆x

)2 [
|γ3| cosα3 sin2(ϕ) + 2|γ4| sin2(

1
2
ϕ)

]
−̂i

 ∆t
∆x
|γ1| sin(ϕ) +

∆t2

∆x
|γ2| cosα2 sin(

2
3
ϕ) cos(

2
3
ϕ) +

(
∆t
∆x

)2

|γ3| sinα3 sin2(ϕ)

 . (3.13)

Of course the aim of this report is to give a general picture of the necessary condition of stability.
Since the formulae can become quite heavy, for the convenient of writing, the proof of our results will
consider Remark 3.1. However, this leads to a linear stability condition which can be observed as a
necessary condition of stability.

We start the analysis with some extreme cases: |ϕ| = π and ϕ = 0.
• Case 1. For |ϕ| = π, it comes from Eq (3.13) that the amplification factor becomes

ea∆t = 1 +

√
3∆t2

4∆x
|γ2| sinα2 − 2

(
∆t
∆x

)2

|γ4| − î

√
3∆t2

4∆x
|γ2| cosα2.

The squared modulus of the amplification factor gives

|ea∆t|2 = 1 +
3∆t4

16∆x2 |γ2|
2 + 4

(
∆t
∆x

)4

|γ4|
2 + 2

 √3(∆t)2

4∆x
|γ2|(1 + ∆t2|γ4|) sinα2 − 2

(
∆t
∆x

)2

|γ4|

 .
But there exist values of α2 for which sinα2 = 1. So |ea∆t|2 > 1. Thus, the scheme is unconditionally
unstable.
• Case ϕ = 0. In that case, the amplification factor given by Eq (3.13) provides ea∆t = 1 which

implies |ea∆t| = 1. Thus, the numerical scheme is stable. This suggests that the proposed technique is
not dissipative in the sense of Kreiss [44] and when applied to the system of nonlinear Eq (1.1). That
is, the computations should become unstable in certain circumstances. This instability is entirely due
to the non-linearity of the equations, since the same scheme applied to linear shallow water equations
without source terms does not diverge, although strong oscillations are generated (for example,
see [10, 17, 45]).
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• Case where 0 < |ϕ| << π. Using the Taylor expansion around ϕ = 0, and neglecting high-order
terms, the squared modulus of the amplification factor given by (3.13) is approximated as

|ea∆t|2 =

(
1 −

2∆t2

3∆x
|γ2|ϕ sinα2

)2

+

(
∆t
∆x
|γ1| +

2∆t2

3∆x
|γ2| cosα2

)2

ϕ2. (3.14)

For |ea∆t|2 to be less than one, the quantity
(
1 − 2∆t2

3∆x |γ2|ϕ sinα2

)2
+

(
∆t
∆x |γ1| +

2∆t2
3∆x |γ2| cosα2

)2
ϕ2 must be

less than one. This implies∣∣∣∣∣∣1 − 2∆t2

3∆x
|γ2|ϕ sinα2

∣∣∣∣∣∣ ≤ ϵ and
∆t
∆x
|γ1|

∣∣∣∣∣1 + 2∆t
3

∣∣∣∣∣γ2

γ1

∣∣∣∣∣ cosα2

∣∣∣∣∣ |ϕ| ≤ 1 − ϵ, (3.15)

for any value of α2, where 0 ≤ ϵ < 1. Using simple calculations, it is not hard to see that estimates
given by (3.15) are equivalent to

3
2

(1−ϵ) ≤
∆t2

∆x
|γ2|ϕ sinα2 ≤

3
2

(1+ϵ) and
3
2

(ϵ−1) ≤
∆t
∆x

(
3
2
|γ1| + ∆t|γ2| cosα2

)
|ϕ| ≤

3
2

(1−ϵ), (3.16)

for every α2 ∈ R. But, the second inequality in (3.16) implies 3
2 (ϵ−1) ≤ ∆t

∆x

(
3
2 |γ1| + ∆t|γ2|

)
|ϕ| ≤ 3

2 (1−ϵ).

Since ∆t2
∆x |γ2|ϕ sinα2 ≤

∆t2
∆x |γ2||ϕ|, these facts combined with the first estimate in (3.16) show that the

numerical scheme (2.5) is stable if

3
2

(1 − ϵ) ≤
∆t2

∆x
|γ2||ϕ| ≤

3
2

(1 + ϵ) and 0 ≤
∆t
∆x

(
3
2
|γ1| + ∆t|γ2|

)
|ϕ| ≤

3
2

(1 − ϵ).

Multiplying these inequalities side by side and rearranging terms to get(
2
3
|γ1| +

4∆t
9
|γ2|

)
|γ2||ϕ|

2 ∆t3

∆x2 ≤ 1 − ϵ2. (3.17)

Since |µi| =

∣∣∣∣∣Qi
j

Ai
j

∣∣∣∣∣ = e(b1−a1)ti , it comes from relation (3.12) that

|γ2| = Γ0(µi)2e−
4
3 a1ti and |γ1| = µ

i. (3.18)

But max
0≤i≤K1

|Ai|−1 =

[
min

0≤i≤K1
|Ai|

]−1
, taking the maximum in both sides of estimates (3.17), for i = 0, 1, ...,K1,

the proof of Lemma 3.1 is completed thank to relations (3.18) and equality |Ai| = ea1ti . □

Lemma 3.2. The numerical scheme (2.6) is linearly stable if the following estimate holds:

∆t
(
3W1(∆t,∆x) +

1
∆x

W2(∆t,∆x)
)
≤ 1 +

√
1 − β∗, (3.19)

for i = 0, 1, ...,K1, where β∗ ∈ (0, 1) and

W1(∆t,∆x) = max
0≤i≤K1

3
2

Pi + 4
∆t + ∆t2 +

∆t
∆x
+
∆t2

∆x
+
∆t2

∆x
+

(
∆t
∆x

)2 P2
i

 , (3.20)
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W2(∆t,∆x) = max
0≤i≤K1

|ϕ|(Pi +
1
2

Ri) +
3
2

1 + 2
∆t + ∆t2 +

∆t
∆x
+
∆t2

∆x
+
∆t3

∆x
+

(
∆t
∆x

)2 µiPi

 , (3.21)

with

µi =
|Qi

r|

|Ai
r|
= e(b1−a1)ti; Ri =

g
T
|Ai

r||µ
i|−1 + µi; Pi =

Pτ
ρ
|Qi

r|
−1 + Γ0µ

i|Ai
r|
− 4

3 . (3.22)

Estimate (3.19) represents a necessary condition of stability for the numerical scheme (2.6).

Proof. Using the Taylor series expansion, the terms: 1
2

(
Qi

r + Qi+1
r

)
, g

4T

[
(Ai+1

r )2 − (Ai+1
r−1)2

]
,

(
Qi+1

r

)2

Ai+1
r
−

(
Qi+1

r−1

)2

Ai+1
r−1

and Qi+1
r |Q

i+1
r |(

Ai+1
r

) 7
3

can be approximated as:

1
2

(
Qi

j + Qi+1
r

)
= Qi

r

{
1 +

∆t
2∆x

C11ϕ +
1
2
∆tC12 + î

(
∆t

2∆x
C11ϕ +

1
2
∆tC12

)}
+ O(ϕ2), (3.23)

and g
4T

[
(Ai+1

r )2 − (Ai+1
r−1)2

]
= Qi

r(C21 + îC21)ϕ + O(ϕ2), (3.24)

where

C11 =
g
T
|Ai||µi|−1 sinα3; C11 = −

g
T
|Ai||µi|−1 cosα3 − µ

i; C12 =
Pτ
ρ
|Qi|−1 cosα3 − Γ0µ

i|Ai|−
4
3 cosα2;

C12 =
Pτ
ρ
|Qi|−1 sinα3 − Γ0µ

i|Ai|−
4
3 sinα2; C21 = −

g
2T
|Qi||µi|−1 sinα3; C21 =

g
2T
|Qi||µi|−1 cosα3;

(3.25)
where

α3 = a2ti + kxr, and α2 =
7
3
α3. (3.26)

(Qi+1
r )2

Ai+1
r

−
(Qi+1

r−1)2

Ai+1
r−1

= Qi
rµ

i

{
H1 − K2

1 + K2
2 + 2K1K2(1 −

∆t
∆x
µi)ϕ + î (H2 − 2K1K2+

(K2
2 − K2

1)(1 −
∆t
∆x
µi)ϕ

)}
+ O(ϕ2), (3.27)

where the functions H1, H2, K2
1 , K2

2 and K1K2 are given by

H1 = 1 + 2∆tC12 + ∆t2(C2
12 −C

2
12) + 2

∆t2

∆x

[
C11C12 −C11C12 − µ

i(C12 + ∆tC12C12)
]
ϕ, (3.28)

H2 = ∆tC12 +∆t2C12C12 +
∆t
∆x

[
C11 + µ

i + ∆t(C11C12 +C11C12 + µ
i(2C12 + ∆t(C2

12 −C
2
12)))

]
ϕ, (3.29)

K2
1 = 1 +

(
∆t

2∆x

)2 [
C

2
21 + 4C21C21ϕ

]
+ ∆t2

[
C

2
12 − 2C12C22ϕ

]
−
∆t
∆x

(C21 + 2C21ϕ)+

∆t(C12 − 2C22ϕ) −
∆t2

∆x

[
C12C21 − (C21C22 − 2C12C21)ϕ

]
, (3.30)
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K2
2 =

(
∆t

2∆x

)2

(µi)2
[
C2

11 + 2C11(1 −C11 − µ
i)ϕ

]
+ ∆t2

[
C2

12 − 2C12C22ϕ
]
+
∆t
∆x
µiC11ϕ+

2∆tC12ϕ +
∆t2

∆x
µi

[
C11C12 −C11C22ϕ +C12(1 −C11 − µ

i)ϕ
]
, (3.31)

and

K1K2 = −

ϕ −
(
∆t

2∆x

)2

µi
[
C11C21 + [C21(1 −C11 − µ

i) + 2C11C21]ϕ
]
+ ∆t

[
C12 − (C12C22 −C12)ϕ

]

+
∆tµi

2∆x

[
C11 + (1 −C11 − µ

i −C21(µi)−1)ϕ
]
+
∆t2µi

2∆x

[
C11C12 −C12C21(µi)−1 + [C12(1 −C11 − µ

i)

−C11C22 +C21C22(µi)−1 − 2C21C12(µi)−1]ϕ
]
+ ∆t2[C12C12 − (C12C22 +C12C22)ϕ]

}
, (3.32)

Cls, Cls, l, s = 1, 2, are given by (3.25) and α2 and α3 follow from relation (3.26). Furthermore

C22 =
4
3
Γ0µ

i|Ai
r|
− 4

3 sinα2 and C22 =
4
3
Γ0µ

i|Ai
r|
− 4

3 cosα2. (3.33)

Qi+1
r |Q

i+1
r |

(Ai+1
r )

7
3

= Qi|Qi|−
4
3 (µi)

7
3

1 +
(
∆t
∆x

)2

(µi)2ϕ2


− 7

3

(
1 +
∆t
∆x

C11ϕ + 2∆tC12

)2

+

(
∆t
∆x

C11ϕ + 2∆tC12

)2


1
2 {

1 +
∆t
∆x

C11ϕ + 2∆tC12 + î
(
∆t
∆x

C11ϕ + 2∆tC12

)}
{

C31 +
∆t
∆x

C32ϕ + î
[
−C31 +

∆t
∆x

C32ϕ

]} 7
3

+ O(ϕ2). (3.34)

Where the functions C1l and Ĉ1l, l = 1, 2, are defined by relations (3.25) and (3.26),C3l and C3l, l = 1, 2,
are given by

C31 = cosα2; C31 = − sinα2; C32 = µ
i cosα2; C32 = µ

i sinα2. (3.35)

Combining Eqs (3.23), (3.24), (3.27) and (3.34), the amplification factor of the numerical scheme (2.6)
is approximated as

eb∆t = 1 + ∆t

1
2

C12 +C33 − Γ0|Qi
r|
− 4

3 (µi)
7
3

1 + (
∆t
∆x

)2

(µi)2ϕ2

− 7
3 (1 + 2∆tC12 +

∆t
∆x

C11ϕ

)2

+

(
2∆tC12 +

∆t
∆x

C11ϕ

)2 (C31 +
∆t
∆x

C32ϕ

)2

+

(
C31 −

∆t
∆x

C32ϕ

)2 7
6

cos
(
θ1 +

7
3
θ2

)
−
∆t
∆x

{
(C21 −

1
2

C11)ϕ +
1
2
µi

[
H1 − K2

1 + K2
2 + 2K1K2

(
1 −
∆t
∆x
µn

)
ϕ

]}
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+î

∆t

1
2

C12 −C33 − Γ0|Qi
r|
− 4

3 (µi)
7
3

1 + (
∆t
∆x

)2

(µi)2ϕ2

− 7
3 (1 + 2∆tC12 +

∆t
∆x

C11ϕ

)2

+

(
2∆tC12 +

∆t
∆x

C11ϕ

)2 (C31 +
∆t
∆x

C32ϕ

)2

+

(
C31 −

∆t
∆x

C32ϕ

)2 7
6

sin
(
θ1 +

7
3
θ2

)
−
∆t
∆x

{
(C21 −

1
2

C11)ϕ +
1
2
µi

[
H2 − 2K1K2 + (K2

2 − K2
1)

(
1 −
∆t
∆x
µi

)
ϕ

]}}
+ O(ϕ2). (3.36)

Where î is the unit complex number,

C33 =
Pτ
ρ
|Qi

r|
−1 cosα3, C33 =

Pτ
ρ
|Qi

r|
−1 sinα3, (3.37)

H1, H2, K2
1 , K2

2 and K1K2 are given by Eqs (3.28)–(3.32), respectively; Cls, Cls, s, l = 1, 2; come
from (3.25); α2 and α3 follow from Eq (3.26) and C3l, C3l, l = 1, 2, are defined by relation (3.35). The
functions θ1 and θ2 are given implicitly by relations

êiθ1 =
1 + 2∆tC12 +

∆t
∆xC11ϕ + î

(
2∆tC12 +

∆t
∆xC11ϕ

)
√(

1 + 2∆tC12 +
∆t
∆xC11ϕ

)2
+

(
2∆tC12 +

∆t
∆xC11ϕ

)2

and

êiθ2 =
C31 +

∆t
∆xC32ϕ + î

(
−C31 +

∆t
∆xC32ϕ

)
√(

C31 +
∆t
∆xC32ϕ

)2
+

(
C31 −

∆t
∆xC32ϕ

)2
.

Taking the squared modulus on both sides of approximation (3.36) and performing straightforward
computations to get estimates (3.19)–(3.22) given in Lemma 3.2. □

Using the above results (namely, Lemmas 3.1 and 3.2) we are ready to give a necessary stability
restriction of the two-step predictor-corrector method (2.3)–(2.6) and to compare it with what is
available in the literature (for example, Courant-Friedrich-Lewy condition for linear hyperbolic
PDEs).

Theorem 3.1. The two-step predictor-corrector scheme (2.3)–(2.6) applied to nonlinear shallow water
equations with source terms (1.4) is linearly stable if

∆t4

∆x2

(
W1(∆t,∆x) +

1
3∆x

W2(∆t,∆x)
) (

1 +
2∆t
3
Γ0µÂ−

4
3

)
Γ0µ

3Â−
4
3 |ϕ|2 ≤

1
2

(1 − ϵ2)(1 +
√

1 − β∗), (3.38)

where |ϕ| = |k∆x| << π, µ = max
0≤i≤K1

µi, with µi =
|Qi |

|Ai |
, Â = min

0≤i≤K1
|Ai| = min

0≤i≤K1
|ea1ti | , 0, for any a1 ∈ R,

Γ0 =
gn2

1
1.492 P

4
3 , 0 < ϵ, β∗ < 1, W1(∆t,∆x) and W2(∆t,∆x) are given by relations (3.20) and (3.21),

respectively.

Proof. The proof of Theorem 3.1 is obvious according to Lemma 3.1 and 3.2. □

AIMS Mathematics Volume 8, Issue 4, 9265–9289.



9279

The Von Neumann stability approach, based on a Fourier analysis in the space domain has been
developed for nonlinear one-dimensional shallow water equations with source terms. Although the
stability condition has not to be derived analytically, we have analyzed the properties of the
amplification factor numerically (by use of Taylor series expansion), which contain information on
the dispersion and diffusion errors of the considered numerical scheme. It is worth noticing that we
used a local, linearized stability analysis to obtain an estimate (3.38), which must be considered as a
necessary condition of stability for the numerical scheme (2.3)–(2.6).

Some important remarks on stability analysis

This section considers some useful remarks based on the stability restrictions and compares them
with what is known in the literature: CFL condition.

(i1) The linear stability condition (3.38) suggests that a small space step ∆x cannot force the time
step ∆t to be more potentially small (indeed: |ϕ|2 = k2∆x2). This improves the convergence
speed of the proposed numerical scheme. Moreover, because consistency requires that ∆ti

∆x (i ≥ 1)
approaches zero as ∆t and ∆x tend zero, an acceptable time step (not too small) should be applied
to guarantee the stability condition (3.38). For this reason, the developed three-level MacCormack
method is suitable for the calculation of steady solutions (where time accuracy is unimportant)
and the unsteady ones.

(i2) The developed approach (2.3)–(2.6) for one-dimensional surface water equations has a linear
stability limitation (3.38) that limits the maximum time step. This stability requirement does not
coincide with the CFL condition obtained for linear hyperbolic PDEs (for example: linear
advection equation, wave equation, linearized burgers equations, etc...) because the considered
algorithm is applied to complex time-dependent PDEs. As a discussion on the stability
restrictions one can refer to the stability analysis of the two-step Lax-Wendroff method and the
MacCormack scheme applied to complete burgers equations (for example, see [24], P. 245–247).
The linear stability condition (3.38) is highly unusual. Since we normally find this condition
from a Fourier stability analysis, it follows from inequality (3.38) that instability occurs when
|∆t| is greater than |∆t|max = (∆t)CFL. However, it comes from the linear stability restriction (3.38)
that the empirical formula

∆t4
(
1 +

2∆t
3
Γ0µÂ−

4
3

)
gT−1Γ0(µ)2Â−

1
3 k3 ≤ 3(1 − ϵ2)(1 +

√
1 − β∗),

can be used with an appropriate safety factor. It should be remembered that the ”heuristic”
stability analysis, i.e., estimates (3.38) can only provide a necessary condition for stability. Thus,
for some finite difference algorithms, only partial information about the complete stability bound
is obtained and for others (such as algorithms for the heat equation, wave equation and linearized
Burgers equations) a more complete theory must be employed.

4. Numerical experiments and Convergence rate

This section simulates the two-step explicit predictor-corrector scheme (2.3)–(2.6) for solving the
one-dimensional shallow water Eq (1.4). We consider two examples described in [46] to demonstrate
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the efficiency and robustness of the proposed technique. A practical application of a shallow water
flow deals with the Benoué river. The river is located in Cameroon with a 7000m long reach of the
upstream part (altitude=174.22 m). Furthermore, the characteristics of the flow consider a rather steep
part in the first kilometers together with strong irregularities in the cross section and a low base
discharge (708m3/s), altogether, produce a high velocity basic flow, transcritical in some parts.
Specifically, the floods problem observed in this river in 2012 is discussed since it is a classical
example of unsteady nonlinear flow with shocks to expect floods and to test conservation in numerical
schemes. In addition, the considered problem is assumed to be generated by a one-dimensional
shallow water equation for the ideal case of a flat and frictionless channel with a prismatic
cross-section wetted perimeter (P = 366, 4 m) and top width (T = 348 m). The initial data are
provided by Eq (4.1).

Let w ∈ L2(0,T1; L2(0, L)), k = ∆t and τ = ∆x, we introduce the following discrete norm

∥|w|∥L2(0,T1;L2) =

kτ K1∑
i=0

M1∑
r=0

|w(ti, xr)|2
1/2

.

Denote W i
r = (Ai

r,Q
i
r), be the computed solution provided by the two-step approach (2.3)–(2.6) and

w(ti, xr) =
(
A(ti, xr),Q(ti, xr)

)
, be the exact one at the discrete point (ti, xr), the error at time ti and

position xr is given by e(ti, xr) = w(ti, xr) −W i
r =

(
A(ti, xr) − Ai

r,Q(ti, xr) − Qi
r

)
. Thus,

∥|eA|∥L2(0,T1;L2) =

kτ K1∑
i=0

M1∑
r=0

|A(ti, xr) − Ai
r|

2

1/2

, ∥|eQ|∥L2(0,T1;L2) =

kτ K1∑
i=0

M1∑
r=0

|Q(ti, xr) − Qi
r|

2

1/2

.

• Problem 1 (Dam break on a dry domain with friction). The analytical solution is computed by
Dressler’s dam break with friction [46]. In the literature different approaches are deeply analyzed.
Dressler’s analyzed Chézy friction law using a perturbation method in the Ritter’s scheme, i.e., both
velocity: u(m/s) and height: h(m), of the water are expanded as power series in the friction coefficient
C f = 1/C2. The initial conditions are defined as

h(0, x) = h0(x) =


hl > 0, for 0 ≤ x ≤ x0;

0, for x0 < x ≤ L,
u(0, x) = u0(x) =


10−1, for 0 ≤ x ≤ x0;

0, for x0 < x ≤ L.
(4.1)

We assume that C = 40m1/2/s (Chézy coefficient), hl = 5 × 10−3m, x0 = L/2, T1 = 1s, and L = 1m.
Dressler’s first order developments for the flow resistance give the following corrected height and
velocity 

hc(t, x) = 1
g

(
2
3

√
ghl −

x−x0
3t +

g2

C2α1t
)2
,

uc(t, x) = 2
3

√
ghl +

2(x−x0)
3t +

g2

C2α2t,

(4.2)

where

α1 =
6

5
(
2 − x−x0

t
√

ghl

) − 2
3
+

4
√

3
135

2 − x − x0

t
√

ghl

3/2

, (4.3)
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and

α2 =
12

2 − x−x0

t
√

ghl

−
8
3
+

8
√

3
189

2 − x − x0

t
√

ghl

3/2

−
108

7
(
2 − x−x0

t
√

ghl

)2 . (4.4)

Following Dressler’s technique, four regions are considered: from upstream to downstream (a steady
state region (hl, 10−1) for x ≤ x1(t)); a corrected region ((hc, uc) for x1(t) ≤ x ≤ x2(t)); the tip region
(for x2(t) ≤ x ≤ x3(t)) and the dry region ((0, 0) for x3(t) ≤ x ≤ L). In the tip region, the friction term
is preponderant thus (4.2) is no more valid. The velocity increases in the corrected region with x, thus
Dressler assumes that the velocity reaches the maximum of uc at x2(t) and it is constant in space in the
tip region.

utip(t) = max
x∈[x2(t),x3(t)]

uc(t, x). (4.5)

Armed with these assumptions together with Eqs (4.2)–(4.5), the exact solution of the considered
shallow water problem is defined as

h(t, x) =



hl, for 0 ≤ x ≤ x1(t) and t ∈ (0,T1],

1
g

(
2
3

√
ghl −

x−x0
3t +

g2

C2α1t
)2
, for x1(t) ≤ x ≤ x3(t) and t ∈ (0,T1],

0, for x3(t) ≤ x ≤ L and t ∈ (0,T1],

(4.6)

and

u(t, x) =



0, for 0 ≤ x ≤ x1(t) and t ∈ (0,T1],

2
3

√
ghl +

2(x−x0)
3t +

g2

C2α2t, for x1(t) ≤ x ≤ x2(t) and t ∈ (0,T1],

max
x∈[x2(t),x3(t)]

uc(t, x), for x2(t) ≤ x ≤ x3(t) and t ∈ (0,T1],

0, for x3(t) ≤ x ≤ L and t ∈ (0,T1],

(4.7)

where α1 and α2 are given by Eqs (4.3) and (4.4), respectively, x1(t) = x0 − t
√

ghl, x3(t) = x0 + 2t
√

ghl

and x2(t) ∈ [x1(t), x3(t)] is the point where the velocity uc(t, x) attains its maximum.
• Problem 2 (Dam break on a dry domain without friction). We consider the exact solution introduced
by Dressler’s dam break with friction [46]. We also consider Ritter’s solution corresponding to an
ideal dam break (case of a reservoir with a constant height hl) on a dry region. Similar to the Stoker’s
solution, the dam break is instantaneous, the bottom is flat and there is no friction. Using this fact,
the initial condition (Riemann problem) is given by equation (4.1). In addition, we assume that C =
40m1/2/s (Chézy coefficient), hl = 5 × 10−3m, x0 = L/2, T1 = 4s, and L = 8m. At time t > 0, the
free surface is the constant water height (hl) at rest connected to a dry zone (hr) by a parabola. This
parabola is limited upstream (resp. downstream) by the abscissa xA(t) (resp. xB(t)). The analytical
solution is defined as
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h(t, x) =



hl, for 0 ≤ x ≤ xA(t) and t ∈ (0,T1],

4
9g

( √
9ghl −

x−x0
2t

)2
, if x1(t) ≤ x ≤ xB(t) and t ∈ (0,T1],

0, when xB(t) ≤ x ≤ L and t ∈ (0,T1],

(4.8)

and

u(t, x) =



0, if 0 ≤ x ≤ xA(t) and t ∈ (0,T1],

2
3

(
x−x0

t +
√

ghl

)
, for xA(t) ≤ x ≤ xB(t) and t ∈ (0,T1],

0, when xB(t) ≤ x ≤ L and t ∈ (0,T1],

(4.9)

where xA(t) = x0 − t
√

ghl and xB(t) = x0 + 2t
√

ghl.
The analysis considers the case where the channel is prismatic with a constant top width (T ) and

average velocity (u) defined as: u(t, x) = Q(t, x)/A(t, x). Thus, the following formulas are satisfied

A(t, x) = Th(t, x) and Q(t, x) = Th(t, x)u(t, x). (4.10)

Since the water height is constant in the tip region, it follows from (4.10) that the cross section (A) and
discharge (Q) are not modified in that region. A combination of Eqs (4.6)–(4.10) results in
• Problem 1 (Dam break on a dry domain with friction).

A(t, x) = Th(t, x) =



Thl, for 0 ≤ x ≤ x1(t) and t ∈ (0,T1],

T
g

(
2
3

√
ghl −

x−x0
3t +

g2

C2α1t
)2
, when x1(t) ≤ x ≤ x3(t) and t ∈ (0,T1],

0, if x3(t) ≤ x ≤ L and t ∈ (0,T1],

Q(t, x) = Th(t, x)u(t, x) =



0, for 0 ≤ x ≤ x1(t) and t ∈ (0,T1],

Thc(t, x)uc(t, x), when x1(t) ≤ x ≤ x2(t) and t ∈ (0,T1],

Thc(t, x)utip(t, x), for x2(t) ≤ x ≤ x3(t) and t ∈ (0,T1],

0, if x3(t) ≤ x ≤ L and t ∈ (0,T1].

The table suggests that the proposed approach is second-order accurate in time and fourth-order
convergent in space.
• Problem 2 (Dam break on a dry domain without friction).

A(t, x) = Th(t, x) =



Thl, for 0 ≤ x ≤ xA(t) and t ∈ (0,T1],

4T
9g

( √
9ghl −

x−x0
2t

)2
, if x1(t) ≤ x ≤ xB(t) and t ∈ (0,T1],

0, when xB(t) ≤ x ≤ L and t ∈ (0,T1],
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and

Q(t, x) = Th(t, x)u(t, x) =



0, if 0 ≤ x ≤ xA(t) and t ∈ (0,T1],

8T
27g

(
x−x0

t +
√

ghl

) ( √
9ghl −

x−x0
2t

)2
, for xA(t) ≤ x ≤ xB(t) and t ∈ (0,T1],

0, when xB(t) ≤ x ≤ L and t ∈ (0,T1].

The following values are used in the simulations: shear stress τ = 1.329N/m2; Top width T = 348m,
wetter perimeter P = 366, 4m; wavelength Kλ = 2π ≃ 6.28m,manning’s number n1 = 0.025s/m1/3, the
acceleration of gravity g = 10m/s2, the rainfall intensity is described as

I(t, x) =
{

1.18 × 10−5m/s, if (t, x) ∈ [0,T1] × [0, L],
0, otherwise.

(4.11)

We observe from this table that the proposed method is temporal second-order convergent and
spatial fourth-order accurate.

The mathematical model for this ideal overland flow is the following: we consider a uniform plane
catchment whose overall length in the direction of flow is L(m) ∈ {1, 8}. The surface roughness and
shear stress are assumed invariant in space and time. It comes from Eq (4.11) that the constant rainfall
excess is defined as

v(t, x) =
{

I(t, x), for (t, x) ∈ [t0,T1] × [0, L];
0, otherwise.

(4.12)

The space step ∆x ∈ {2−l, l = 2, · · · , 7}, while the time step ∆t varies in the range: 2−l, l = 5, · · · , 12. I
is the rainfall intensity defined by relation (4.11), t0 = 0s and T1(s) ∈ {1, 4}, are initial and final times,
respectively, and L is the rod interval length. The numerical solutions given by Eqs (2.3) and (2.6) are
displayed in Figures 1 and 2. Before 3 iterations are encountered, the discharge wave propagates with
almost a perfectly constant value at different positions (Figures 1 and 2). Furthermore, after these
iterations, the discharge wave approaches zero at different times (Figures 1 and 2). So, the graphs
suggest that the computed solution cannot grow with time and should satisfy the necessary
condition (3.38). Similar remarks are observed for the cross section. In addition, setting k = τ2 := h2

1,
Tables 1 and 2 indicate that the developed numerical technique is second-order accurate in time and
spatial fourth-order. Furthermore, the graphs show that the numerical solutions start to destroy after a
fixed time. Thus, physical insight must be used when the stability restriction (3.38) of the constructed
two-step predictor-corrector method (2.3)–(2.6) is investigated. Finally, both Tables 1 and 2 and
Figures 1 and 2 indicate that the approximate solutions do not increase with time and converge to the
analytical one. Specifically, they show that stability for the proposed numerical scheme is subtle. It is
not unconditionally unstable, but stability depends on the parameters ∆x and ∆t.
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Figure 1. Graphs of cross section and discharge corresponding to Problem 1. Stability and
convergence rate of MacCormack for shallow water flow: k = ∆t, h = ∆x.
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Figure 2. Graphs of cross section and discharge related to Problem 2. Stability and
convergence rate of MacCormack for shallow water flow: k = ∆t, h = ∆x.

Table 1 . Analyzing of convergence rate O(τθ1 + kθ2) for the proposed two-step predictor-corrector
approach by log2(rm

ϕ ), with varying spacing τ = ∆x and time step k = ∆t, where k = τ2.

k ∥|A − A1|∥L2 ∥|Q − Q1|∥L2 r(A) r(Q)

2−6 4.5762 × 10−1 7.4876 × 10−5 — —
2−8 1.1196 × 10−1 2.0111 × 10−5 1.9356 1.8965
2−10 2.8694 × 10−2 5.6473 × 10−6 2.0645 1.9867
2−12 6.7835 × 10−3 1.3628 × 10−6 2.1028 2.0684
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Table 2 . Convergence rate O(τθ1 + kθ2) for a two-step explicit MacCormack formulation with
log2(rm

ϕ ), varying spacing τ = ∆x and time step k = ∆t. In this test we take k ≈ τ2.

τ ∥|A − A1|∥L2 ∥|Q − Q1|∥L2 r(A) r(Q)

2−3 2.3578 × 10−2 1.8869 × 10−6 — —
2−4 1.5372 × 10−3 1.4237 × 10−7 4.0000 4.1028
2−5 1.8358 × 10−4 8.0649 × 10−9 3.9873 4.1573
2−6 1.0623 × 10−5 4.3871 × 10−10 4.1187 4.2016

5. General conclusions and future works

In this paper, we have developed a two-step explicit predictor-corrector approach (2.3)–(2.6) for
solving the evolutionary nonlinear problem (1.4). A necessary condition of stability of the proposed
numerical scheme has been deeply analyzed using the Von Neumann stability approach whereas the
convergence rate of the algorithm is numerically computed using the L2-norm. The graphs (Figures 1
and 2) show that the considered method is both stable and convergent while Tables 1 and 2 suggest
that the algorithm is temporal second-order convergent and fourth-order accurate in space. After a
few number of iterations, the figures indicate that the numerical solutions strongly converge with the
analytical ones. One should observe from Figures 1 and 2 that the only case where the exact solutions
do not tend to zero corresponds to the initial condition. This follows from assumptions made by
Dressler when constructing the analytical solutions. Our future investigations will develop a two-step
explicit predictor-corrector scheme for the two-dimensional shallow water model.
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