We consider planar analytic vector fields $ \mathcal{X} $ having a monodromic singular point with Poincaré map $ \Pi $. We use the fact that there always exists a real analytic invariant curve $ F = 0 $ of $ \mathcal{X} $ in a neighborhood of that singularity. We find some relations between $ \Pi $ and $ F $ that can be used to determine new conditions that guarantee the analyticity of $ \Pi $ at the singularity. In the special case that $ F $ becomes an inverse integrating factor of $ \mathcal{X} $, we rediscover formulas obtained previously by other methods. Applications to the center-focus problem and also to vector fields with degenerate infinity are given.
Citation: Isaac A. García, Jaume Giné. Monodromic singularities without curves of zero angular speed[J]. AIMS Mathematics, 2025, 10(1): 1488-1500. doi: 10.3934/math.2025069
We consider planar analytic vector fields $ \mathcal{X} $ having a monodromic singular point with Poincaré map $ \Pi $. We use the fact that there always exists a real analytic invariant curve $ F = 0 $ of $ \mathcal{X} $ in a neighborhood of that singularity. We find some relations between $ \Pi $ and $ F $ that can be used to determine new conditions that guarantee the analyticity of $ \Pi $ at the singularity. In the special case that $ F $ becomes an inverse integrating factor of $ \mathcal{X} $, we rediscover formulas obtained previously by other methods. Applications to the center-focus problem and also to vector fields with degenerate infinity are given.
[1] |
F. Dumortier, Singularities of vector fields on the plane, J. Differ. Equations, 23 (1977), 53–106. https://doi.org/10.1016/0022-0396(77)90136-X doi: 10.1016/0022-0396(77)90136-X
![]() |
[2] | V. I. Arnold, D. Embarek, Chapitres supplémentaires de la théorie des équations différentielles ordinaires, Moscow: Mir, 1980. |
[3] |
A. Algaba, C. García, M. Reyes, Characterization of a monodromic singular point of a planar vector field, Nonlinear Anal., 74 (2011), 5402–5414. https://doi.org/10.1016/j.na.2011.05.023 doi: 10.1016/j.na.2011.05.023
![]() |
[4] |
A. Algaba, C. García, M. Reyes, A new algorithm for determining the monodromy of a planar differential system, Appl. Math. Comput., 237 (2014), 419–429. https://doi.org/10.1016/j.amc.2014.03.129 doi: 10.1016/j.amc.2014.03.129
![]() |
[5] |
I. A. García, J. Giné, M. Grau, A necessary condition in the monodromy problem for analytic differential equations on the plane, J. Symb. Comput., 41 (2006) 943–958. https://doi.org/10.1016/j.jsc.2006.04.007 doi: 10.1016/j.jsc.2006.04.007
![]() |
[6] | I. A. García, J. Giné, Principal Bautin ideal of monodromic singularities with inverse integrating factors, preprint Universitat de Lleida. https://doi.org/10.48550/arXiv.2412.09205 |
[7] | I. A. García, J. Giné, A. L. Rodero, Existence and non-existence of Puiseux inverse integrating factors in analytic monodromic singularities, preprint Universitat de Lleida. |
[8] | A. D. Bruno, Volume 57: power geometry in algebraic and differential equations, Elsevier, 2000. |
[9] |
A. D. Bruno, Asymptotic behaviour and expansions of solutions of an ordinary differential equation, Russ. Math. Surv., 59 (2004), 429. https://doi.org/10.1070/RM2004v059n03ABEH000736 doi: 10.1070/RM2004v059n03ABEH000736
![]() |
[10] | I. A. García, J. Giné, Characterization of centers by its complex separatrices, preprint Universitat de Lleida. https://doi.org/10.48550/arXiv.2412.09197 |
[11] | A. D. Bruno, Local methods in nonlinear differential equations, Part Ⅰ the local method of nonlinear analysis of differential equations Part II the sets of analyticity of a normalizing transformation, Berlin: Springer-Verlag, 1989. |
[12] |
Y. S. Il'yashenko, Finiteness theorems for limit cycles, Russ. Math. Surv., 45 (1990), 129. https://doi.org/10.1070/RM1990v045n02ABEH002335 doi: 10.1070/RM1990v045n02ABEH002335
![]() |
[13] |
N. B. Medvedeva, The principal term of the asymptotic expansion of the monodromy transformation: calculation in blowing-up geometry, Sib. Math. J., 38 (1997), 114–126. https://doi.org/10.1007/BF02674907 doi: 10.1007/BF02674907
![]() |
[14] |
A. Gasull, J. Llibre, V. Mañosa, F. Mañosas, The focus-centre problem for a type of degenerate system, Nonlinearity, 13 (2000), 699. https://doi.org/10.1088/0951-7715/13/3/311 doi: 10.1088/0951-7715/13/3/311
![]() |
[15] |
A. Gasull, V. Mañosa, F. Mañosas, Monodromy and stability of a class of degenerate planar critical points, J. Differ. Equations, 217 (2005), 363–376. https://doi.org/10.1006/jdeq.2001.4095 doi: 10.1006/jdeq.2001.4095
![]() |
[16] |
H. Giacomini, J. Giné, J. Llibre, The problem of distinguishing between a center and a focus for nilpotent and degenerate analytic systems, J. Differ. Equations, 227 (2006), 406–426. https://doi.org/10.1016/j.jde.2006.03.012 doi: 10.1016/j.jde.2006.03.012
![]() |
[17] |
H. Giacomini, J. Giné, J. Llibre, Corrigendum to: "The problem of distinguishing between a center and a focus for nilpotent and degenerate analytic systems" [J. Differential Equations 227 (2006) 406–426], J. Differ. Equations, 232 (2007), 702. https://doi.org/10.1016/j.jde.2006.10.004 doi: 10.1016/j.jde.2006.10.004
![]() |
[18] |
J. Giné, Sufficient conditions for a center at a completely degenerate critical point, Int. J. Bifurcat. Chaos, 12 (2002), 1659–1666. https://doi.org/10.1142/s0218127402005315 doi: 10.1142/s0218127402005315
![]() |
[19] |
J. Giné, On the centers of planar analytic differential systems, Int. J. Bifurcat. Chaos, 17 (2007), 3061–3070. https://doi.org/10.1142/S0218127407018865 doi: 10.1142/S0218127407018865
![]() |
[20] |
J. Giné, On the degenerate center problem, Int. J. Bifurcat. Chaos, 21 (2011), 1383–1392. https://doi.org/10.1142/S0218127411029082 doi: 10.1142/S0218127411029082
![]() |
[21] |
J. Giné, S. Maza, The reversibility and the center problem, Nonlinear Anal., 74 (2011), 695–704. https://doi.org/10.1016/j.na.2010.09.028 doi: 10.1016/j.na.2010.09.028
![]() |
[22] | D. Shafer, V. Romanovski, The center and cyclicity problems: a computational algebra approach, Birkhäuser Boston, MA, 2009. https://doi.org/10.1007/978-0-8176-4727-8 |
[23] |
A. Algaba, C. García, J. Giné, Geometric criterium in the center problem, Mediterr. J. Math., 13 (2016), 2593–2611. https://doi.org/10.1007/s00009-015-0641-0 doi: 10.1007/s00009-015-0641-0
![]() |
[24] |
W. W. Farr, C. Li, I. S. Labouriau, W. F. Langford, Degenerate Hopf-bifurcation formulas and Hilbert's 16th problem, SIAM J. Math. Anal., 20 (1989), 13–30. https://doi.org/10.1137/0520002 doi: 10.1137/0520002
![]() |
[25] |
I. A. García, J. Giné, Center problem with characteristic directions and inverse integrating factors, Commun. Nonlinear Sci. Numer. Simul., 108 (2022), 106276. https://doi.org/10.1016/j.cnsns.2022.106276 doi: 10.1016/j.cnsns.2022.106276
![]() |
[26] |
I. A. García, J. Giné, The linear term of the Poincaré map at singularities of planar vector fields, J. Differ. Equations, 396 (2024), 44–67. https://doi.org/10.1016/j.jde.2024.02.055 doi: 10.1016/j.jde.2024.02.055
![]() |
[27] |
I. A. García, J. Giné, The Poincaré map of degenerate monodromic singularities with Puiseux inverse integrating factor, Adv. Nonlinear Anal., 12 (2023), 20220314. https://doi.org/10.1515/anona-2022-0314 doi: 10.1515/anona-2022-0314
![]() |
[28] |
J. Chavarriga, I. A. García, J. Giné, On integrability of differential equations defined by the sum of homogeneous vector fields with degenerate infinity, Int. J. Bifurcat. Chaos, 11 (2001), 711–722. https://doi.org/10.1142/S0218127401002390 doi: 10.1142/S0218127401002390
![]() |
[29] |
I. A. García, J. Giné, A. L. Rodero, Existence and non-existence of Puiseux inverse integrating factors in analytic monodromic singularities, Stud. Appl. Math., 153 (2024), e12724. https://doi.org/10.1111/sapm.12724 doi: 10.1111/sapm.12724
![]() |
[30] |
I. A. García, H. Giacomini, M. Grau, The inverse integrating factor and the Poincaré map, Trans. Amer. Math. Soc., 362 (2010), 3591–3612. https://doi.org/10.1090/S0002-9947-10-05014-2 doi: 10.1090/S0002-9947-10-05014-2
![]() |
[31] |
I. A. García, S. Maza, A new approach to center conditions for simple analytic monodromic singularities, J. Differ. Equations, 248 (2010), 363–380. https://doi.org/10.1016/j.jde.2009.09.002 doi: 10.1016/j.jde.2009.09.002
![]() |
[32] | M. M. Vainberg, V. A. Trenogin, Theory of branching of solutions of nonlinear equations, Monographs and textbooks on pure and applied mathematics, Noordhoff International Publishing, 1974. |