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Abstract: We consider planar analytic vector fields X having a monodromic singular point with
Poincaré map Π. We use the fact that there always exists a real analytic invariant curve F = 0 of X
in a neighborhood of that singularity. We find some relations between Π and F that can be used to
determine new conditions that guarantee the analyticity of Π at the singularity. In the special case that
F becomes an inverse integrating factor of X, we rediscover formulas obtained previously by other
methods. Applications to the center-focus problem and also to vector fields with degenerate infinity
are given.
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1. Introduction and main results

We focus in this work on families of planar real analytic vector fields X = P(x, y; λ)∂x + Q(x, y; λ)∂y

defined in a neighborhood of a monodromic singularity that can be placed at the origin without loss
of generality. Here λ ∈ Rp denotes the finite number of parameters in the family. We recall that a
monodromic singular point of X is a singularity of X such that the associated flow rotates around it,
and therefore a Poincaré map Π is well defined in a sufficiently small transversal section with an end
point at the singularity. Centers and foci are examples of monodromic singularities. We will restrict
the family to the monodromic parameter space Λ ⊂ Rp defined as the parameter subset for which
the origin is a monodromic singularity of X. The common characterization of Λ is via the blow-up
procedure developed by Dumortier in [1]; see also Arnold [2]. It is worth emphasizing that Algaba
and co-authors present in [3, 4] an algorithmic procedure to determine the parameter restrictions that
defines Λ in terms of the Newton diagram N(X) of the vector field X; see also [5].

In [6], an explicit analytic first-order ordinary differential equation was obtained for the Poincaré
map Π associated with a monodromic singularity (without local zero angular speed curves) of X under
the assumption of the existence of a Laurent inverse integrating factor V of X. Later on, in [7], an
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example of focus without Puiseux (a generalization of Laurent) inverse integrating factor is presente.
This example shows that the differential equation obtained in [6] for Π is not universal.

Initially, our first main objective in this work was to find an explicit analytic ordinary differential
equation f (ρ,Π,Π′, . . . ,Πk) = 0 for the Poincaré map Π(ρ) associated to a monodromic singularity of
X where f only depends on objects that do not include the flow of X. If this objective were achieved,
an alternative proof of the fact that Π admits an asymptotic Dulac series can be constructed via Bruno’s
theory [8, 9] of asymptotic solutions of analytic differential equations at singularities. In this work we
take the former universal object to be the analytic invariant curve F(x, y) = 0 through the monodromic
singularity that there always exists, as it was proved in [10]. Using this idea, we find a first order
ordinary differential equation for Π only depending on F; see Theorem 1.1 in Section 1.1, although we
have been able to prove its analyticity only under some assumptions; see, for example, Theorem 1.6.
This equation generalizes the one obtained in [6] in the sense that both coincides in the particular case
that F becomes an inverse integrating factor of X, as we show in Section 2.

1.1. The relations between Π and F

We denote by N(X) the Newton diagram of X that is composed of edges joining both positive semi-
axis; see [11] for a detailed account of this construction and also [3]. Each edge of N(X) has endpoints
in N2 and slope −p/q with (p, q) ∈ N2 coprimes. From now on we denote by W(N(X)) ⊂ N2 the set of
all weights (p, q). We will use the weighted polar blow-up (x, y) 7→ (ρ, ϕ) given by

x = ρp cosϕ, y = ρq sinϕ, (1.1)

with Jacobian
J(ϕ, ρ) = ρp+q−1(p cos2 ϕ + q sin2 ϕ).

In these coordinates, the system associated to X is written in the form ρ̇ = R(ϕ, ρ), ϕ̇ = Θ(ϕ, ρ) with
R(ϕ, 0) = 0 and Θ(ϕ, ρ) = Gr(ϕ) + O(ρ). Therefore, the equations of the orbits of X near the origin are
governed by the equation

dρ
dϕ

= F (ϕ, ρ) :=
R(ϕ, ρ)
Θ(ϕ, ρ)

(1.2)

well defined in C\Θ−1(0) being the cylinder C =
{
(θ, ρ) ∈ S1 × R : 0 ≤ ρ � 1

}
with S1 = R/(2πZ).

the local set of zero angular speed is defined as Θ−1(0) = {(ϕ, ρ) ∈ C : Θ(ϕ, ρ) = 0, ρ ≥ 0}, and the
set of characteristic directions Ωpq = {ϕ∗ ∈ S1 : Θ(ϕ∗, 0) = Gr(ϕ∗) = 0}. Notice that the set {ρ = 0}
is invariant for the flow of (1.2), and it becomes either a periodic orbit or a polycycle according to
whether Ωpq = ∅ or Ωpq , ∅, respectively.

We also define the (p, q)-critical parameters as the elements of the subset Λpq ⊂ Λ of the
monodromic parameter space corresponding to vector fields with local curves of zero angular speed,
that is,

Λpq = {λ ∈ Λ : Θ−1(0)\{ρ = 0} , ∅}.

We emphasize that Λpq = ∅ when Ωpq = ∅ but the converse is not true.
Given (p, q) ∈ W(N(X)), we take the (p, q)-quasihomogeneous expansion

X =
∑
j≥r

X j, (1.3)
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where r ≥ 1 and X j are (p, q)-quasihomogeneous vector fields of degree j, and Xr is called the leading
vector field of X.

Let F(x, y) = 0 be a real invariant analytic curve of X with F(0, 0) = 0, and denote by K(x, y) the
cofactor of F, that is, X(F) = KF holds. We recall that F always exists, as it was proved in [10] using
the separatrix theorem of Camacho-Sad. In weighted polar coordinates this equation is transformed
into

X̂(F̂) = K̂F̂, (1.4)

where X̂ = ∂ϕ + F (ϕ, ρ)∂ρ, F̂(ϕ, ρ) = F(ρp cosϕ, ρq sinϕ) and K̂ is the cofactor of the invariant curve
F̂ = 0 of X̂ whose expression is

K̂(ϕ, ρ) =
K(ρp cosϕ, ρq sinϕ)

ρrΘ(ϕ, ρ)
. (1.5)

Let Φ(ϕ; ρ0) be the flow of X̂ with initial condition Φ(0; ρ0) = ρ0. In [10], it is proved that

Ipq(ρ0) = PV
∫ 2π

0
K̂(ϕ,Φ(ϕ; ρ0)) dϕ, (1.6)

exists for any initial condition ρ0 > 0 sufficiently small. Working in Λ\Λpq we may also define the
integral

ζpq(ρ0) =

∫ 2π

0

∂F

∂ρ
(ϕ,Φ(ϕ; ρ0)) dϕ, (1.7)

and the difference
αpq(ρ0) = ζpq(ρ0) − Ipq(ρ0).

A fundamental result in this work is the following one.

Theorem 1.1. The equation
F̂(0,Π(ρ0)) = F̂(0, ρ0) exp

(
Ipq(ρ0)

)
(1.8)

holds. Moreover, in Λ\Λpq, the relations

ζpq(ρ0) = log
(
Π′(ρ0)

)
, (1.9)

and
F̂(0,Π(ρ0)) = F̂(0, ρ0) exp(−αpq(ρ0)) Π′(ρ0) (1.10)

are satisfied.

Remark 1.2. We believe that the fundamental equation (1.10) holds in the whole monodromic space
Λ and not only in Λ\Λpq, but we have no proof.

Remark 1.3. If X has ` > 1 invariant analytic curves Fi = 0 with cofactors Ki for i = 1, . . . , `, then it
also has the `-parameter invariant analytic curve F =

∏
i Fmi

i = 0 with arbitrary multiplicities mi ∈ N

and cofactor K =
∑

i miKi. Sometimes we may find mi that simplifies the expression of K. As an
example, the case when F becomes an inverse integrating factor of X, hence K = div(X), was studied
in [6].
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Il’Yashenko in [12] proves that Π has a Dulac asymptotic expansion possessing a linear leading
term. More specifically, one has Π(ρ0) = η1ρ0 + o(ρ0). The computation of the first (generalized)
Poincaré-Lyapunov quantity η1 is quite involved and needs the use of cumbersome blow-ups
computations; see for example [13]. Some sufficient conditions that guarantee the computation of η1

are stated below. We will user the following expansions. The functions Θ and R appearing in (1.2) have
Taylor expansions at ρ = 0 given by Θ(ϕ, ρ) = Gr(ϕ) + O(ρ) and R(ϕ, ρ) = Fr(ϕ)ρ + O(ρ2). Moreover
F(x, y) = Fs(x, y) + · · · and K(x, y) = Kr̄(x, y) + · · · are the (p, q)-quasihomogeneous expansions of
the cofactor K associated to the analytic invariant curve F = 0. Here Fs and Kr̄ are the leading (p, q)-
quasihomogeneous polynomials of weighted degree s and r̄, respectively, and the dots denote higher
(p, q)-quasihomogeneous terms.

Proposition 1.4. Assume that both Ipq and ζpq can be extended with continuity to the origin. Then

log(ηs
1) = Ipq(0) = s ζpq(0),

that is,

log(ηs
1) = PV

∫ 2π

0

Kr̄(cosϕ, sinϕ)
Gr(ϕ)

dϕ = sPV
∫ 2π

0

Fr(ϕ)
Gr(ϕ)

dϕ,

provided that both principal values exist.

Remark 1.5. It is worth emphasizing that, in general, Ipq cannot be extended by continuity at ρ0 = 0.
In [10], it is shown that expression (3.4) of η1 is wrong in several examples.

Clearly, if Φ(ϕ; ρ0) is analytic at ρ0 = 0 for all ϕ ∈ S1 then Π is analytic at ρ0 = 0. A sufficient
condition for that to happen is that Ωpq = ∅. Instead, a weaker condition to ensure the analyticity of Π

is the following one.

Theorem 1.6. If Ipq is analytic at the origin, then Π is too.

1.2. Center-focus problem

The classical center-focus problem has been studied for decades. In [14, 15], some particular
degenerate systems with a monodromic singularity were studied. In [16, 17], it is proved that some
degenerate systems with a monodromic singularity are limit of differential systems with monodromic
linear part. In [18–20] some sufficient conditions to have a center at a completely degenerate critical
point are given. In [21], the relation between the reversivility and the center problem is studied. The
textbook [22] is a good summary about the relations between the the center and cyclicity problems.
In [23], a geometrical criteria to determine the existence of a center for certain differential systems
is given. In [24], the Hopf-bifurcation formulas for some differential systems are established. Final,
in [25], the authors solve the center problem for monodromic sigularities with characteristic directions
and with inverse integrating factor and [26] the linear term of all the monodromic families known is
obtained. However, no general characterization was known until the work [10], where it is proved the
following theorem.

Theorem 1.7 ( [10]). Let X be a family of analytic planar vector fields having a monodromic singular
point at the origin and K the cofactor associated to a real analytic invariant curve through the origin.
Then Ipq(ρ0) exists for any initial condition ρ0 > 0 that is sufficiently small, and the origin is a center
if and only if Ipq(ρ0) ≡ 0.
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We show other necessary center condition in Λ\Λpq.

Proposition 1.8. If the origin is a center of X and we restrict to the parameter space Λ\Λpq then
αpq(ρ0) = ζpq(ρ0) ≡ 0.

Notice that from Proposition 1.8 and relation αpq(ρ0) = ζpq(ρ0) − Ipq(ρ0), we obtain a new proof of
the necessary part in Theorem 1.7.

Example 1.9. We emphasize that there are focus with parameters in Λ\Λpq , ∅ and αpq(ρ0) . 0. As
an example, we consider the family

ẋ = λ1(x6 + 3y2)(−y + µx) + λ2(x2 + y2)(y + Ax3),
ẏ = λ1(x6 + 3y2)(x + µy) + λ2(x2 + y2)(−x5 + 3Ax2y). (1.11)

In [27], it is proved that

Λ = {(λ1, λ2, µ, A) ∈ R4 : 3λ1 − λ2 > 0, λ1 − λ2 > 0}

and the Poincaré map is the linear map Π(ρ0) = η1ρ0. Moreover, F(x, y) = (x2 + y2)(x6 + 3y2) is an
inverse integrating factor of the full family (1.11). Using the weights (p, q) = (1, 1) ∈ W(N(X)) we
have X = X2 + · · · , hence r = 2, and the forthcoming formula (2.3) yields α11(ρ0) = − log(η7

1). The
value η1 = exp(2πλ1µ+2

√
3πAλ2/3) is a consequence of the works [6,27]. Notice that in this example

0 ∈ Ω11.

1.3. Monodromic degenerate infinity vector fields

We consider analytic degenerate infinity vector fields

X = Xn + AXE (1.12)

with Xn = Pp+n(x, y)∂x + Qq+n(x, y)∂y a (p, q)-quasihomogeneous polynomial vector field of degree n,
XE = px∂x + qy∂y is the radial Euler field, and A(x, y) a real analytic function in R2 whose Taylor
expansion at the origin starts with (p, q)-quasihomogeneous terms of degree m − 1 with m > n + 1. In
the work [28] the particular homogeneous case (p, q) = (1, 1) is analyzed, and here we generalize it.

Proposition 1.10. Any degenerate infinity vector field (1.12) has the homogeneous algebraic invariant
curve

F(x, y) = p x Qq+n(x, y) − q y Pp+n(x, y) = 0

with cofactor
K(x, y) = div(Xn) + (n + p + q)A(x, y).

Moreover, it also has the inverse integrating factor V = FH
m−n−1

d provided that A is (p, q)-
quasihomogeneous of degree m − 1, where H is a (p, q)-quasihomogeneous first integral of degree
d of Xn.

Proposition 1.11. Any degenerate infinity vector field (1.12) with a monodromic singularity at the
origin becomes a focus provided that div(Xn) + (n + p + q)A(x, y) is a positive or negative defined
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function in a neighborhood of the origin. If additionally the origin is a center of Xn and A is (p, q)-
quasihomogeneous then the Poincaré map associated with the origin is analytic and has the form
Π(ρ) = ρ + ηm−nρ

m−n(1 + O(ρ)) with

ηm−n =

∫ 2π

0

(p cos2 ϕ + q sin2 ϕ)A(cosϕ, sinϕ)
F(cosϕ, sinϕ) (H(cosϕ, sinϕ))(m−n−1)/d dϕ.

In particular, the origin is a center if and only if ηm−n = 0 and the cyclicity of the origin in family (1.12)
is zero.

Remark 1.12. We note that the (p, q)-quasihomogeneous first integral H of the monodromic vector
field Xn appearing in Proposition 1.10 only exists in case the origin be a center of Xn. This statement
can be inferred from statement (ii) of Lemma 4 in [29] because the transformed first integral to (p, q)-
weighted polar coordinates becomes a Laurent first integral of Xn. In particular, Π(ρ) = ρ + o(ρ) in
agreement with Proposition 1.11.

2. The special case: F is an inverse integrating factor of X

In this section we restrict our attention to the monodromic subset Λ\Λpq so that Θ−1(0)\{ρ = 0} = ∅.
In particular Ωpq can be empty or not.

Let us assume the particular case that F(x, y) is an analytic inverse integrating factor of X; that is,
div(X/F) ≡ 0 holds. Then the function

V(ϕ, ρ) =
F̂(ϕ, ρ)

ρr J(ϕ, ρ) Θ(ϕ, ρ)
(2.1)

is an inverse integrating factor of X̂ in C\{Θ−1(0) ∪ {ρ = 0}}, that is, V satisfies the equation X̂(V) =

∂ρ(F ) V . Applying the differential operator X̂ on both sides of (2.1) and taking into account (1.4), we
obtain the relation between K̂ and ∂ρF given by

∂ρF = K̂ − X̂(log |ρr J Θ|). (2.2)

On the other hand, using (2.2) and recalling that αpq(ρ0) = ζpq(ρ0) − Ipq(ρ0), we obtain

αpq(ρ0) = −

∫ 2π

0
X̂(log |ρr J Θ|) ◦ (ϕ,Φ(ϕ; ρ0)) dϕ

= −

∫ 2π

0

d
dϕ

(
log |ρr J Θ| ◦ (ϕ,Φ(ϕ; ρ0))

)
dϕ,

= − log
∣∣∣∣∣Πr(ρ0) J(0,Π(ρ0)) Θ(0,Π(ρ0))

ρr J(0, ρ0) Θ(0, ρ0)

∣∣∣∣∣ , (2.3)

where we have used the 2π-periodicity of J and Θ in the variable ϕ. Using this expression of αpq

and taking into account (2.1), Eq (1.10) in Λ\Λpq is written in the simpler form V(0,Π(ρ0)) =

V(0, ρ0) Π′(ρ0). In this way we rediscover the formula obtained in [6] by other methods. This
formula for the special case of degenerate differential systems without characteristic directions was
given in [30]; see also [31].
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3. Proofs of the results

3.1. Proof of Theorem 1.1

Proof. To prove the first statement, we evaluate (1.4) along the flow Φ(ϕ; ρ0), and we obtain

d
dϕ

F̂(ϕ,Φ(ϕ; ρ0)) = K̂(ϕ,Φ(ϕ; ρ0)) F̂(ϕ,Φ(ϕ; ρ0)),

hence

PV
∫ 2π

0

d
dϕ F̂(ϕ,Φ(ϕ; ρ0))

F̂(ϕ,Φ(ϕ; ρ0))
dϕ = PV

∫ 2π

0
K̂(ϕ,Φ(ϕ; ρ0)) dϕ, (3.1)

where the last principal value exist for any initial condition ρ0 > 0 sufficiently small as it was proved
in [10]. Therefore, (3.1) takes the form

F̂(2π,Φ(2π; ρ0)) = F̂(0, ρ0) exp
(
Ipq(ρ0)

)
.

Using the 2π-periodicity of F̂ in the variable ϕ and the definition of Π, the former equation
becomes (1.8).

To prove the second part, we use the definition of Φ(ϕ; ρ0), that is,

∂Φ

∂ϕ
(ϕ; ρ0) = F (ϕ,Φ(ϕ; ρ0)), Φ(0; ρ0) = ρ0 > 0. (3.2)

Working in Λ\Λpq we know that F is analytic in C\{ρ = 0}; hence, Φ is also analytic there, and
differentiating both expressions in (3.2) with respect to ρ0 yields

∂

∂ϕ

(
∂Φ

∂ρ0
(ϕ; ρ0)

)
=
∂F

∂ρ
(ϕ,Φ(ϕ; ρ0))

∂Φ

∂ρ0
(ϕ; ρ0),

∂Φ

∂ρ0
(0; ρ0) = 1. (3.3)

Clearly (ϕ,Φ(ϕ; ρ0)) ∈ C\{ρ = 0} for all ϕ ∈ [0, 2π], and therefore the function ∂ρF (ϕ,Φ(ϕ; ρ0)) is
continuous in S1 × {0 < ρ0 � 1}. Thus, we may integrate the first equality in (3.3), yielding

∫ 2π

0

∂F

∂ρ
(ϕ,Φ(ϕ; ρ0)) dϕ =

∫ 2π

0

∂
∂ϕ

(
∂Φ
∂ρ0

(ϕ; ρ0)
)

∂Φ
∂ρ0

(ϕ; ρ0)
dϕ.

So we obtain ∫ 2π

0

∂F

∂ρ
(ϕ,Φ(ϕ; ρ0)) dϕ =

[
log

(
∂Φ

∂ρ0
(ϕ; ρ0)

)]ϕ=2π

ϕ=0
= log

(
∂Φ

∂ρ0
(2π; ρ0)

)
that can be written as Eq (1.9). Finally, Eq (1.8) is rewritten as the fundamental ordinary differential
equation (1.10). �
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3.2. Proof of Proposition 1.4

Proof. Using the definition (1.5) of K̂ together with the (p, q)-quasihomogeneous expansion K(x, y) =

Kr̄(x, y) + · · · and the Taylor expansion Θ(ϕ, ρ) = Gr(ϕ) + O(ρ) with r̄ ≥ r we obtain

K̂(ϕ, ρ) = ρr̄−r Kr̄(cosϕ, sinϕ)
Gr(ϕ)

+ O(ρr̄−r+1).

From [10], we know that it is proved that the principal value Ipq(ρ0) defined in (1.6) exists for any
ρ0 > 0 and small. If Ipq can be extended with continuity to the origin, then, using that Φ(ϕ; 0) = 0, we
would have

Ipq(0) =


0 if r̄ > r,

PV
∫ 2π

0

Kr̄(cosϕ, sinϕ)
Gr(ϕ)

dϕ if r̄ = r,

in case that this principal value exists. Moreover, from the (p, q)-quasihomogeneous expansion
F(x, y) = Fs(x, y) + · · · , we could use Eq (1.8) to express

Ipq(ρ0) = log

∣∣∣∣∣∣ F̂(0,Π(ρ0))
F̂(0, ρ0)

∣∣∣∣∣∣ = log

∣∣∣∣∣∣Πs(ρ0)Fs(cosϕ, sinϕ) + O(Πs+1(ρ0))
ρs

0(Fs(cosϕ, sinϕ) + O(ρ0))

∣∣∣∣∣∣
whose extension to ρ0 = 0 gives Ipq(0) = log(ηs

1), taking into account that Π(ρ0) = η1ρ0 + o(ρ0).
Comparing both expressions of Ipq(0), we have that if r̄ > r, then η1 = 1, whereas

log
(
ηs

1
)

= PV
∫ 2π

0

Kr̄(cosϕ, sinϕ)
Gr(ϕ)

dϕ, (3.4)

when r̄ = r under the restriction that the former principal value exists.
On the other hand, if ζpq can be extended with continuity to the origin, then, by (1.9),

log(η1) = ζpq(0) = PV
∫ 2π

0

Fr(ϕ)
Gr(ϕ)

dϕ,

assuming this last principal value exists. Then the proposition follows. �

3.3. Proof of Theorem 1.6

Proof. We define
f (ρ0,Π) = F̂(0,Π) − F̂(0, ρ0) exp

(
Ipq(ρ0)

)
.

The analyticity of Ipq at the origin implies that (1.8) can be written as f (ρ0,Π) = 0, where f is an
analytic function in a neighborhood of (ρ0,Π) = (0, 0). Therefore, the Poincaré map Π(ρ0) = η1ρ0 +

o(ρ0) must be a branch of f at the origin and, consequently, admits the convergent Puiseux expansion

Π(ρ0) =
∑
i≥0

ηi+1 ρ
1+ i

n
0 (3.5)

with some index n ∈ N∗. Now we are going to compute n.
By Proposition 1.4 we know that Ipq(0) = log(ηs

1). Then exp(Ipq(ρ0)) = ηs
1 + O(ρ0) with η1 > 0.

Using that F̂(0, ρ0) = ρs
0(Fs(1, 0) + O(ρ0)), we obtain that f (ρ0,Π) = Fs(1, 0)(Πs − ηs

1ρ
s
0) + · · · from
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where we deduce that the Newton diagram of f only contains the edge L joining the endpoints (s, 0)
and (0, s) provided that Fs(1, 0) , 0. We can take Fs(1, 0) , 0 because, without loss of generality,
we take 0 < Ωpq after a rotation (if necessary), and moreover we claim that the eventual real roots of
Fs(cosϕ, sinϕ) must belong to Ωpq. To prove the claim, we observe that

F̂(ϕ, ρ) = F(ρp cosϕ, ρq sinϕ) = ρs [Fs(cosϕ, sinϕ) + o(ρ)],

hence F̂(ϕ, ρ)/ρs = 0 is an invariant curve of the differential equation (1.2). Clearly that invariant curve
can only intersect the monodromic polycycle ρ = 0 at its singularities (ϕ, ρ) = (ϕ∗, 0) with ϕ∗ ∈ Ωpq.

Once we know that Fs(1, 0) , 0 so that the edge L has slope −1, then we compute

f (ρ0, ρ0µ) = ρs
0((µs − ηs

1)Fs(1, 0) + O(ρ0)).

From this expression we deduce that the determining polynomial P(µ) associated to L is P(µ) =

Fs(1, 0)(µs − ηs
1). Therefore µ = η1 is a simple root of P, and it follows that n = 1 in the Puiseux

expansion (3.5); this is a classical result that is proved, for instance, in [32]. Therefore, Π admits a
convergent power series expansion at the origin finishing the proof. �

3.4. Proof of Proposition 1.8

Proof. Let the origin be a center. Then Eq (1.10) must have the solution Π(ρ0) = ρ0 and therefore
F̂(0, ρ0) = F̂(0, ρ0) exp(−αpq(ρ0)) holds. We claim that F̂(0, ρ0) . 0 so it must occur αpq(ρ0) ≡ 0
proving the proposition.

To prove the claim, we use the (p, q)-quasihomogeneous expansion F(x, y) = Fs(x, y) + · · ·

with Fs(x, y) . 0 a (p, q)-quasihomogeneous polynomial of degree s and the dots are (p, q)-
quasihomogeneous terms of higher degree. Notice that s ≥ 1 because (x, y) = (0, 0) is an isolated
real zero of F. Now we consider the expression

F̂(ϕ, ρ) = F(ρp cosϕ, ρq sinϕ) = ρs [Fs(cosϕ, sinϕ) + O(ρ)], (3.6)

and we observe that Ĝ(ϕ, ρ) = F̂(ϕ, ρ)/ρs = 0 is an invariant curve X̂. Thus either

Ĝ−1(0) ∩ {ρ = 0} = ∅

or
Ĝ−1(0) ∩ {ρ = 0} ⊂ {(ϕ, ρ) = (ϕ∗, 0) : ϕ∗ ∈ Ωpq}

by uniqueness of solutions of X̂. But Ĝ−1(0)\{ρ = 0} = ∅ by the monodromy of the polycycle {ρ = 0}.
Therefore F̂(ϕ, ρ) has an isolated zero at ρ = 0 for any ϕ ∈ S1, and, in particular, the claim follows.

The second part, that ζpq(ρ0) ≡ 0, is a trivial consequence of the relation (1.9). �

3.5. Proof of Proposition 1.10

Proof. The first part is straightforward since X(F) = KF holds because Xn is a (p, q)-
quasihomogeneous polynomial vector field of degree n; hence its components Pp+n and Qq+n satisfy
Euler relations

XE(Pp+n) = (p + n)Pn+p, XE(Qq+n) = (q + n)Qq+n. (3.7)

The second part is also straightforward since X(V) = div(X)V holds, taking into account Euler
relations (3.7) and XE(A) = (m − 1)A, together with the fact that system Xn(H) = 0 and XE(H) = dH
can be solved as ∂xH = dQq+nH/F and ∂yH = −dPp+nH/F. �
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3.6. Proof of Proposition 1.11

Proof. In (p, q)-weighted polar coordinates, the angular speed of vector field (1.12) is ϕ̇ = Gr(ϕ) =

F(cosϕ, sinϕ)/(p cos2 ϕ + q sin2 ϕ). Therefore, a monodromic necessary condition for the origin of X
is that F has no real factors in R[x, y] so that Gr , 0 in S1. In particular, F has an isolated singularity
at the origin, X ∈ Mo(p,q) so Π is analytic at the origin, Λpq = ∅ and the origin is the unique real finite
singularity of X. We observe that Xn has a monodromic singular point at the origin when X has it
because both vector fields share the same angular speed ϕ̇. Indeed, the origin is a center of Xn under
our hypothesis that implies the existence of the first integral H of Proposition 1.10, see Remark 1.12.

The monodromy of the origin implies that N(X) = N(Xn) has only one edge and that when we only
vary the parameters ofX in the monodromic space Λ, then the Newton diagram N(X|Λ) of the restricted
vector field X|Λ is fixed. The inverse integrating factor

V(ϕ, ρ) = ρm−n (H(cosϕ, sinϕ))(m−n−1)/d .

The explicit Taylor expansion of Π at the origin is just a consequence of statement (ii) of Theorem 4
in [6]. Finally, we can use Theorem 7 in [6] to conclude that

ηm−n =

∫ 2π

0

F (ϕ, r)
V(ϕ, r)

dϕ = I1 + rn−m+1 I2,

where Ii are integrals independents of r and

I1 =

∫ 2π

0

(p cos2 ϕ + q sin2 ϕ)A(cosϕ, sinϕ)
F(cosϕ, sinϕ) (H(cosϕ, sinϕ))(m−n−1)/d dϕ.

Since the expression of ηm−n must be independent of r > 0 and sufficiently small, by Theorem 7 in [6],
we deduce that I2 = 0, and the proposition follows. �

4. Conclusions

In this paper we have considered planar analytic vector fieldsX having a monodromic singular point
with Poincaré map Π. Using the fact that always exists a real analytic invariant curve F = 0 of X in a
neighborhood of that singularity in the paper are given the relations between Π and F that can be used
to determine new conditions in order to guarantee the analyticity of Π at the singularity.

The special case when F is inverse integrating factor of X we rediscover the formula obtained
previously in [25] by an other method. Finally some applications to the center-focus problem and also
to vector fields with degenerate infinity are given.

Author contributions

All authors carried out the main results of this article, drafted the manuscript, and read and approved
the final manuscript. All authors have read and approved the final version of the manuscript for
publication.

Use of Generative-AI tools declaration

The authors declare they have used Artificial Intelligence (AI) tools in the creation of this article.

AIMS Mathematics Volume 10, Issue 1, 1488–1500.



1498

Acknowledgments

The authors are partially supported by the Agencia Estatal de Investigación grant PID2020-
113758GB-I00 and an AGAUR (Generalitat de Catalunya) grant number 2021SGR 01618.

The author is partially supported by a MICIN grant number PID2020-113758GB-I00 and an
AGAUR grant number 2017SGR-1276.

Conflict of interest
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7. I. A. Garcı́a, J. Giné, A. L. Rodero, Existence and non-existence of Puiseux inverse integrating
factors in analytic monodromic singularities, preprint Universitat de Lleida.

8. A. D. Bruno, Volume 57: power geometry in algebraic and differential equations, Elsevier, 2000.

9. A. D. Bruno, Asymptotic behaviour and expansions of solutions of
an ordinary differential equation, Russ. Math. Surv., 59 (2004), 429.
https://doi.org/10.1070/RM2004v059n03ABEH000736
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Amer. Math. Soc., 362 (2010), 3591–3612. https://doi.org/10.1090/S0002-9947-10-05014-2

31. I. A. Garcı́a, S. Maza, A new approach to center conditions for simple analytic monodromic
singularities, J. Differ. Equations, 248 (2010), 363–380. https://doi.org/10.1016/j.jde.2009.09.002

32. M. M. Vainberg, V. A. Trenogin, Theory of branching of solutions of nonlinear equations,
Monographs and textbooks on pure and applied mathematics, Noordhoff International Publishing,
1974.

© 2025 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 10, Issue 1, 1488–1500.

https://dx.doi.org/https://doi.org/10.1111/sapm.12724
https://dx.doi.org/https://doi.org/10.1090/S0002-9947-10-05014-2
https://dx.doi.org/https://doi.org/10.1016/j.jde.2009.09.002
https://creativecommons.org/licenses/by/4.0

	Introduction and main results
	The relations between  and F
	Center-focus problem
	Monodromic degenerate infinity vector fields

	The special case: F is an inverse integrating factor of X
	Proofs of the results
	Proof of Theorem 1.1
	Proof of Proposition 1.4
	Proof of Theorem 1.6
	Proof of Proposition 1.8
	Proof of Proposition 1.10
	Proof of Proposition 1.11

	Conclusions

