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Abstract: Let µ be a positive Borel measure on the interval [0, 1). The Hankel matrixHµ = (µn,k)n,k≥0

with entries µn,k = µn+k, where µn =
∫

[0,1)
tndµ(t), formally induces the operator as follows:

DHµ( f )(z) =

∞∑
n=0

 ∞∑
k=0

µn,kak

 (n + 1)zn, z ∈ D,

where f (z) =
∑∞

n=0 anzn is an analytic function in D. In this article, we characterize those positive Borel
measures on [0, 1) such that DHµ is bounded (resp., compact) from Bergman spaces Ap into Hardy
spaces Hq, where 0 < p, q < ∞.
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1. Introduction

Suppose that µ is a positive Borel measure on [0,1). Hµ is defined as the Hankel matrix (µn,k)n,k≥0

with entries µn,k = µn+k, where µn =
∫

[0,1)
tndµ(t). The matrix Hµ can be seen as an operator on f (z) =∑∞

k=0 akzk ∈ H(D) by its action on the Taylor coefficients: {an}n≥0 → {
∑∞

k=0 µn,kak}n≥0. Furthermore, we
can formally define the Hankel operatorHµ as follows:

Hµ( f )(z) =

∞∑
n=0

(
∞∑

k=0

µn,kak)zn, z ∈ D,

whenever the right hand side makes sense and defines an analytic function in D. If we take the measure
to be the Lebesgue measure,Hµ is the classical Hilbert operator. This is whyHµ is called a generalized
Hilbert operator.

In recent decades, the operator Hµ has been studied extensively in [1–6]. Galanopoulos and
Peláez [5] characterized those measures µ supported on [0, 1) such that the generalized Hilbert operator
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Hµ is well defined and it is bounded on H1. Chatzifountas, et al. [1] described those measures
µ for which Hµ is a bounded operator from Hp into Hq, where 0 < p < ∞ and 0 < q < ∞.
Diamantopoulos [3] gave many results about the operator on Dirichlet space. Girela [2] introduced
the operatorsHµ acting on certain conformally invariant spaces.

Ye and Zhou [7, 8] defined the derivative-Hilbert operatorDHµ as follows:

DHµ( f )(z) =

∞∑
n=0

(
∞∑

k=0

µn,kak)(n + 1)zn, z ∈ D, (1.1)

where f (z) =
∑∞

k=0 akzk ∈ H(D). It is closed related to the generalized Hilbert operator, that is,

DHµ( f )(z) = (zHµ( f )(z))′.

Another generalized Hilbert-integral operator related toDHµ denoted by Iµα(α ∈ N
+) is defined by

Iµα( f )(z) =

∫
[0,1)

f (t)
(1 − tz)α

dµ(t). (1.2)

whenever the right hand side makes sense and defines an analytic function in D. We can easily check
that the case α = 1 is the integral representation of the generalized Hilbert operator. Ye and Zhou
characterized the measure µ for which Iµ2 and DHµ is bounded (resp., compact) on Bloch spaces [7]
and Bergman spaces [8].

In this article, we characterize the positive Borel measure µ such that DHµ is bounded (resp.
compact) from the Bergman spaceAp into the Hardy space Hq, where 0 < p < ∞, 0 < q < ∞.

2. Preliminaries and notation

Let D = {z ∈ C : |z| < 1} be the open unit disk in the complex plane C, and let H(D) denote the class
of all analytic functions in D.

For 0 < p < ∞, the Bergman spaceAp consists of those functions f ∈ H(D) for which

‖ f ‖p
Ap =

∫
D

| f (z)|pdA(z) < ∞,

where dA(z) = 1
π
dxdy denotes the normalized Lebesgue area measure on D. We refer to [4] for the

theory of Bergman spaces.
The Bloch space B consists of those functions f ∈ H(D) with

‖ f ‖B = | f (0)| + sup
z∈D

(1 − |z|2)| f ′(z)| < ∞.

We mention [9, 10] as general references for Bloch spaces.
For 0 < p < ∞ and f ∈ H(D), set

Mp(r, f ) =

(
1

2π

∫ 2π

0

∣∣∣ f (reiθ)
∣∣∣p dθ

) 1
p

,

M∞(r, f ) = sup
|z|=r
| f (z)| , 0 < r < 1.

AIMS Mathematics Volume 8, Issue 4, 9290–9302.



9292

The Hardy space Hp consists of those functions f ∈ H(D) with

‖ f ‖Hp = sup
0<r<1

Mp(r, f ) < ∞, 0 < p < ∞.

We refer to [11] for the the theory of Hardy spaces. In particular, if 0 < q < 1, let Bq [12] denote the
space consisting of those functions f ∈ H(D) with

‖ f ‖Bq =

∫ 1

0
(1 − r)

1
q−2M1(r, f )dr < ∞.

We refer to [12] as general references for the Bq spaces. The Banach space Bq is the “containing Banach
space” of Hq, that is, Hq is a dense subspace of Bq, and the two spaces have the same continuous linear
functionals.

Let ϕa(z) = a−z
1−az be a Möbius transformations. If f ∈ H(D), then f ∈ BMOA if and only if

‖ f ‖BMOA = | f (0)| + ‖ f ‖? < ∞,

where
‖ f ‖? = sup

a∈D
‖ f ◦ ϕa − f (a)‖H2 .

It is clear that the seminorm ‖ · ‖? is conformally invariant. If those functions f ∈ H(D) for which

lim
|a|→1
‖ f ◦ ϕa − f (a)‖H2 = 0,

then we call that f ∈ V MOA. We refer to [13] for the the theory of BMOA spaces.
The relation between these spaces we introduced above is well known, that is,

H∞ ( BMOA (
⋂

0<p<∞

Hp and BMOA ( B.

Let us recall the knowledge of Carleson measure, which is a very useful tool in the study of Banach
spaces of analytic functions. For 0 < s < ∞, a positive Borel measure µ on D will be called a
s-Carleson measure, if there exists a positive constant C such that

sup
I

µ(S (I))
|I|s

≤ C. (2.1)

The Carleson square S (I) is defined as follows:

S (I) =

{
z = reiθ : eiθ ∈ I; 1 −

|I|
2π
≤ r ≤ 1

}
,

where I is an interval of ∂D, |I| denotes the length of I. If µ satisfies µ(S (I)) = o(|I|s), as |I| → 0, we
say that µ is a vanishing s-Carleson measure [14, 15].

A positive Borel measure on [0, 1) also can be seen as a Borel measure on D by identifying it with
the measure µ defined by

µ̃(E) = µ(E
⋂

[0, 1)).
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for any Borel subset E of D. In this way, we say that a positive Borel measure µ on [0, 1) can be seen
as a s-Carleson measure on D if and only if there exists a positive constant C such that

µ([t, 1)) ≤ C(1 − t)s, t ∈ [0, 1).

Also, µ is a vanishing s-Carleson measure if µ satisfies

lim
t→1−

µ([t, 1))
(1 − t)s = 0.

Other Carleson type measures on [0, 1) have the similar definitions.
Throughout this work, C denotes a positive constant that only depends on the displayed parameters

but not necessarily the same from one occurrence to the next. For any given p > 1, p′ will denote the
conjugate index of p, that is, 1

p + 1
p′ = 1.

3. Bounededness ofDHµ fromAp into Hq

In this section, we characterize those measure µ such thatDHµ is a bounded operator fromAp

into Hq by applying the equivalence relation between DHµ( f ) and Iµ2( f ), where 0 < p < ∞, 0 < q <
∞.

Lemma 3.1. [11] If f ∈ Hp(0 < p < ∞),

|g(z)| ≤ C
‖g‖Hp

(1 − |z|)
1
p

, (3.1)

and
|g′(z)| ≤ C

‖g‖Hp

(1 − |z|)
1
p +1

, z ∈ D. (3.2)

Lemma 3.2. [8] Suppose 0 < p < ∞, and let µ be a positive Borel measure on [0, 1). Then the power
series in (1.1) defines a well defined analytic function in D for every f ∈ Ap in any of the following
cases:

(i) µ is a 2
p -Carleson measure, if 0 < p ≤ 1.

(ii) µ is a 2−(p−1)2

p -Carleson measure, if 1 ≤ p ≤ 2.
(iii) µ is a 1

p -Carleson measure, if 2 ≤ p < ∞.

Furthermore, in such cases we obtain that

DHµ( f )(z) =

∫
[0,1)

f (t)
(1 − tz)2 dµ(t) = Iµ2( f )(z), z ∈ D. (3.3)

Theorem 3.1. Suppose 0 < p ≤ 1, and let µ be a positive Borel measure on [0, 1), which satisfies the
conditions in Lemma 3.2.

(i) If q ≥ p and q > 1,DHµ is a bounded operator fromAp into Hq if and only if µ is a ( 2
p + 1

q′ + 1)-
Carleson measure.
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(ii) If q ≥ p and q = 1, DHµ is a bounded operator from Ap into Hq if and only if µ is a ( 2
p + 1)-

Carleson measure.
(iii) If q ≥ p and 0 < q < 1, DHµ is a bounded operator from Ap into Bq if and only if µ is a

( 2
p + 1)-Carleson measure.

Proof. We recall that the well known result of Hastings [16]: For 0 < p ≤ q < ∞, µ is a 2q
p -Carleson

measure if and only if there exists a positive constant C such that{∫
D

| f (z)|qdµ(z)
} 1

q

≤ C‖ f ‖Ap , for all f ∈ Ap. (3.4)

Suppose 0 < p < ∞. Since µ satisfies the conditions in Lemma 3.2, as in the proof of Lemma 3.2,
we obtain that ∫

[0,1)
| f (t)|dµ(t) < ∞, for any f ∈ Ap.

Hence, it implies that ∫ 2π

0

∫
[0,1)

∣∣∣∣∣∣ f (t)g(reiθ)
(1 − treiθ)2

∣∣∣∣∣∣ dµ(t)dθ

≤
1

(1 − r)2

∫
[0,1)
| f (t)| dµ(t)

∫ 2π

0
|g(reiθ)|dθ

≤
C

(1 − r)2 ‖g‖H1 , 0 ≤ r < 1, f ∈ Ap, g ∈ H1.

(3.5)

Using (3.5), Fubini’s theorem and Cauchy’s integral representation of H1 [11], for any f ∈ Ap and
g ∈ H1, we obtain that

1
2π

∫ 2π

0
DHµ( f )(reiθ)g(reiθ)dθ =

1
2π

∫ 2π

0

∫
[0,1)

f (t)
(1 − tre−iθ)2 dµ(t)g(reiθ)dθ

=
1

2π

∫
[0,1)

f (t)
∫
|eiθ |=1

g(reiθ)eiθ

(eiθ − tr)2 d(eiθ)dµ(t)

=

∫
[0,1)

f (t) (tg(rt))′ dµ(t)

=

∫
[0,1)

f (t)
(
g(rt) + tg′(rt)

)
dµ(t), 0 ≤ r < 1.

(3.6)

(i) Consider the case q > 1. Using (3.6) and the duality theorem in [11], that is, (Hq)∗ � Hq′ and
(Hq′)∗ � Hq, where q > 1, under the pairing

〈 f , g〉 =
1

2π

∫ 2π

0
f (eiθ)g(eiθ)dθ, f ∈ Hq, g ∈ Hq′ , (3.7)

it implies thatDHµ is a bounded operator fromAp into Hq if and only if∣∣∣∣∣∣
∫

[0,1)
f (t)

(
g(rt) + tg′(rt)

)
dµ(t)

∣∣∣∣∣∣ ≤ C‖ f ‖Ap‖g‖Hq′ , f ∈ Ap, g ∈ Hq′ .
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Suppose thatDHµ is a bounded operator fromAp into Hq. For 0 < a < 1, take test functions

fa(z) =

(
1 − a2

(1 − az)2

) 2
p

, ga(z) =

(
1 − a2

(1 − az)2

) 1
q′

, z ∈ D.

A simply calculation shows that fa(z) ∈ Ap, ga(z) ∈ Hq′ , and sup0<a<1 ‖ fa‖Ap < ∞, sup0<a<1 ‖ga‖Hq′ <

∞. Hence, it follows that

∞ > C sup
0<a<1

‖ fa‖Ap sup
0<a<1

‖ga‖Hq′

≥ C

∣∣∣∣∣∣
∫

[0,1)
fa(t)

(
ga(rt) + tg′a(rt)

)
dµ(t)

∣∣∣∣∣∣
≥ C

∫
[a,1)

(
1 − a2

(1 − at)2

) 2
p
( 1 − a2

(1 − art)2

) 1
q′

+
2at
q′

(
(1 − a2)

(1 − art)q′+2

) 1
q′
 dµ(t)

≥ C
µ([a, 1))

(1 − a2)
2
p + 1

q′ +1
.

This is equivalent to saying that µ is a ( 2
p + 1

q′ + 1)-Carleson measure.
On the contrary, suppose that µ is a ( 2

p + 1
q′ + 1)-Carleson measure, and let dν(t) = 1

(1−t)
1
q′ +1

dµ(t).

By [17, Theorem 3.2], we obtain that ν is a 2
p -Carleson measure. Using (3.4), (3.6) and Lemma 3.1, it

follows that∣∣∣∣∣∣
∫

[0,1)
f (t)

(
g(rt) + tg′(rt)

)
dµ(t)

∣∣∣∣∣∣ ≤ C‖g‖Hq′

∫
[0,1)

 1

(1 − t)
1
q′

+
t

(1 − t)
1
q′ +1

 | f (t)| dµ(t)

≤ C‖g‖Hq′

∫
[0,1)
| f (t)| dν(t)

≤ C‖ f ‖Ap‖g‖Hq′ , f ∈ Ap, g ∈ Hq′ .

This is equivalent to saying thatDHµ is a bounded operator fromAp into Hq.
(ii) Consider the case q = 1. Using (3.6) and Fefferman’s duality theorem, which says that (H1)∗ �

BMOA and (V MOA)∗ � H1, under the Cauchy pairing

〈 f , g〉 = lim
r→1−

1
2π

∫ 2π

0
f (reiθ)g(reiθ)dθ, f ∈ H1, g ∈ BMOA (resp.,V MOA), (3.8)

it implies thatDHµ is a bounded operator fromAp into H1 if and only if∣∣∣∣∣∣
∫

[0,1)
f (t)

(
g(rt) + tg′(rt)

)
dµ(t)

∣∣∣∣∣∣ ≤ C‖ f ‖Ap‖g‖BMOA, f ∈ Ap, g ∈ V MOA, 0 ≤ r < 1.

Suppose thatDHµ is a bounded operator fromAp into H1. For 0 < a < 1, take test functions

fa(z) =

(
1 − a2

(1 − az)2

) 2
p

,

ga(z) = log
e

1 − az
, z ∈ D.
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A simply calculation shows that sup0<a<1 ‖ fa‖Ap < ∞ and sup0<a<1 ‖ga‖BMOA < ∞. Hence, it follows
that

∞ > C sup
0<a<1

‖ fa‖Ap sup
0<a<1

‖ga‖BMOA

≥ C

∣∣∣∣∣∣
∫

[0,1)
fa(t)

(
ga(rt) + tg′a(rt)

)
dµ(t)

∣∣∣∣∣∣
≥ C

∫
[a,1)

(
1 − a2

(1 − at)2

) 2
p (

log
e

1 − art
+

art
1 − art

)
dµ(t)

≥ C
µ([a, 1))

(1 − a2)
2
p +1

.

This is equivalent to saying that µ is a ( 2
p + 1)-Carleson measure.

On the contrary, suppose that µ is a ( 2
p + 1)-Carleson measure, and let dν(t) = 1

1−t dµ(t). By [17,
Theorem 3.2], we obtain that ν is a 2

p -Carleson measure. For any function g ∈ B, it is well known that

|g(z)| ≤ C log
e

1 − |z|
‖g‖B, |g′(z)| ≤

C‖g‖B
1 − |z|

, z ∈ D. (3.9)

Using this, (3.4), (3.6) and BMOA ⊂ B, we obtain that∣∣∣∣∣∣
∫

[0,1)
f (t)

(
g(rt) + tg′(rt)

)
dµ(t)

∣∣∣∣∣∣ ≤ C‖g‖B

∫
[0,1)

(
log

1
1 − t

+
t

1 − t

)
| f (t)| dµ(t)

≤ C‖g‖BMOA

∫
[0,1)
| f (t)| dν(t)

≤ C‖g‖BMOA‖ f ‖Ap , f ∈ Ap, g ∈ BMOA.

This is equivalent to saying thatDHµ is a bounded operator fromAp into H1.
(iii) Consider the case 0 < q < 1. We recall that Bq can be identified with the dual of a certain

subspace X of H∞ under the pairing

〈 f , g〉 = lim
r→1−

1
2π

∫ 2π

0
f (reiθ)g(eiθ)dθ, f ∈ Bq, g ∈ X. (3.10)

Using this and (3.6), it implies thatDHµ is a bounded operator fromAp into Bq if and only if∣∣∣∣∣∣
∫

[0,1)
f (t)

(
g(t) + tg′(t)

)
dµ(t)

∣∣∣∣∣∣ ≤ C‖ f ‖Ap‖g‖X, f ∈ Ap, g ∈ X, 0 ≤ r < 1.

Suppose thatDHµ is a bounded operator fromAp into Bq. For 0 < a < 1, take test functions

fa(z) =

(
1 − a2

(1 − az)2

) 2
p

,

ga(z) =
1 − a2

1 − az
, z ∈ D.
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A simply calculation shows that sup0<a<1 ‖ fa‖Ap < ∞ and sup0<a<1 ‖ga‖X < ∞. Hence, it follows that

∞ > C sup
0<a<1

‖ fa‖Ap sup
0<a<1

‖ga‖X

≥ C

∣∣∣∣∣∣
∫

[0,1)
fa(t)

(
ga(t) + tg′a(t)

)
dµ(t)

∣∣∣∣∣∣
≥ C

∫
[a,1)

(
1 − a2

(1 − az)2

) 2
p
(
1 − a2

1 − at
+

a(1 − a2)
(1 − at)2

)
dµ(t)

≥ C
µ([a, 1))

(1 − a2)
2
p +1

.

This is equivalent to saying that µ is a ( 2
p + 1)-Carleson measure.

On the contrary, suppose that µ is a ( 2
p + 1)-Carleson measure, and let dν(t) = 1

1−t dµ(t). By [17,
Theorem 3.2], we obtain that ν is a 2

p -Carleson measure. Hence, it follows that

∣∣∣∣∣∣
∫

[0,1)
f (t)

(
g(t) + tg′(t)

)
dµ(t)

∣∣∣∣∣∣ ≤ C‖g‖X

∫
[0,1)

(
1 +

t
1 − t

)
| f (t)| dµ(t)

≤ C‖g‖X

∫
[0,1)
| f (t)| dν(t)

≤ C‖g‖X‖ f ‖Ap , f ∈ Ap, g ∈ X.

This is equivalent to saying thatDHµ is a bounded operator fromAp into Bq. �

Theorem 3.2. Suppose 1 < p ≤ q < ∞, and let µ be a positive Borel measure on [0, 1), which satisfies
the conditions in Lemma 3.2.

(i) IfDHµ is a bounded operator fromAp into Hq, then µ is a ( 2
p + 1

q′ + 1)-Carleson measure.
(ii) If µ is a ( 2

p + 1
q′ + 1 + ε)-Carleson measure for any ε > 0, thenDHµ is a bounded operator from

Ap into Hq.

Proof. (i) The proof is the same as that of Theorem 3.1(i) and we omit the details here.
(ii) Suppose that µ is a ( 2

p + 1
q′ + 1 + ε)-Carleson measure and let dν(t) = 1

1−t dµ(t), then we obtain

that ν is a ( 2
p + 1

q′ + ε)-Carleson measure. Take s = 1 +
p

2q′ , then s′ = 1 +
2q′

p and 2s
p = s′

q′ = 2
p + 1

q′ .
By (3.4), we obtain that

(∫
[0,1)
| f (t)|sdν(t)

) 1
s

≤ C‖ f ‖Ap , for any f ∈ Ap.

and ∫
[0,1)

 1

(1 − t)
1
q′

s′

dν(t) < ∞.
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Using Hölder’s inequality, it follows that∣∣∣∣∣∣
∫

[0,1)
f (t)

(
g(rt) + tg′(rt)

)
dµ(t)

∣∣∣∣∣∣ .‖g‖Hq′

∫
[0,1)
| f (t)|

 1

(1 − t)
1
q′ +1

 dµ(t)

=‖g‖Hq′

∫
[0,1)
| f (t)|

 1

(1 − t)
1
q′

 dν(t)

≤C‖g‖Hq′

(∫
[0,1)
| f (t)|s dν(t)

) 1
s
∫

[0,1)

1

(1 − t)
s′
q′

dν(t)


1
s′

≤C‖ f ‖Ap‖g‖Hq′ .

This is equivalent to saying thatDHµ is a bounded operator fromAp into Hq. �

4. Compactness ofDHµ fromAp into Hq

In this section, we characterize those measure µ such thatDHµ is a compact operator fromAp

into Hq, where 0 < p < ∞, 0 < q < ∞.

Lemma 4.1. Let 0 < p < ∞, 0 < q < ∞ and DHµ be a bounded operator from Ap into Hq. Then
DHµ is a compact operator if and only if DHµ( fn) → 0 in Hq, for any bounded sequence { fn} in Ap,
which converges to 0 uniformly on every compact subset of D.

Proof. The proof is similar to that of in [18, Proposition 3.11], and we omit the details. �

Theorem 4.1. Suppose 0 < p ≤ 1, and let µ be a positive Borel measure on [0, 1), which satisfies the
conditions in Lemma 3.2.

(i) If q ≥ p and q > 1, DHµ is a compact operator from Ap into Hq if and only if µ is a vanishing
( 2

p + 1
q′ + 1)-Carleson measure.

(ii) If q ≥ p and q = 1, DHµ is a compact operator from Ap into Hq if and only if µ is a vanishing
( 2

p + 1)-Carleson measure.
(iii) If q ≥ p and 0 < q < 1,DHµ is a compact operator fromAp into Bq if and only if µ is a vanishing

( 2
p + 1)-Carleson measure.

Before giving the proof of Theorem 4.1, we recall some facts about Carleson measures. If µ is a
s-Carleson measure, then we define N1(µr) = supI⊂∂D

µ(S (I))
|I|s to be the Carleson norm of µ and N2(µr)

denote the norm of identity mapping i from Hq into Lq(D, µ). It is well known that the norms N1(µr)
and N2(µr) are equivalent. For r ∈ (0, 1), set dµr(z) = χr<|z|<1(t)dµ(t). Then dµ(t) is a vanishing
s-Carleson measure if and only if

N1(µr)→ 0 (equivalently, N2(µr)→ 0), as r → 1−.

Proof. (i) Consider the case q > 1. Assume that DHµ is a compact operator from Ap into Hq. Let
{an} ⊂ (0, 1) be any sequence with an → 1. Set

fan(z) =

(
1 − a2

n

(1 − anz)2

) 2
p

, z ∈ D.
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We obtain that fan(z) ∈ Ap and supn≥1 ‖ fan‖Ap < ∞, so { fan} is a bounded sequence on Ap, which
converges to 0 on any compact subset of D. Then we obtain that DHµ( fan) → 0 in Hq by applying
Theorem 4.1. This and (3.6) imply that

lim
n→∞

∣∣∣∣∣∣
∫

[0,1)
fan(t)

(
g(rt) + tg′(rt)

)
dµ(t)

∣∣∣∣∣∣
= lim

n→∞

∣∣∣∣∣∣
∫ 2π

0
DHµ( fan)(reiθ)g(reiθ)dθ

∣∣∣∣∣∣ = 0, g ∈ Hq′ .

(4.1)

Next, take the function

gan(z) =

(
1 − a2

n

(1 − anz)2

) 1
q′

, z ∈ D.

It is easy to check that gan(z) ∈ Hq′ and supn≥1 ‖gan‖Hq′ < ∞. Then it follows that∫
[0,1)

fan(t)
(
gan(rt) + tg′an

(rt)
)

dµ(t)

≥C
∫ 1

an

(
1 − a2

n

(1 − ant)2

) 2
p
( 1 − a2

n

(1 − ant)2

) 1
q′

+
2ant
q′

(
(1 − a2

n)
(1 − ant)q′+2

) 1
q′
 dµ(t)

≥C
µ([an, 1))

(1 − a2
n)

2
p + 1

q′ +1
.

Hence, we obtain that

lim
an→1−

µ([an, 1))

(1 − a2
n)

2
p + 1

q′ +1
= 0.

This is equivalent to saying that µ is a vanishing ( 2
p + 1

q′ + 1)-Carleson measure.
Suppose that µ is a vanishing ( 2

p + 1
q′ + 1)-Carleson measure, and let dν(t) = 1

(1−t)
1
q′ +1

dµ(t). By

applying [17, Lemma 3.2], we obtain that ν is a vanishing 2
q -Carleson measure. For r ∈ (0, 1), let

dνr(z) = χr<|z|<1(t)dν(t) and N be the norm of identity mapping i, then N(νr) → 0(r → 1−). Take a
bounded sequence { fn}

∞
n=1 in Ap, and { fn}

∞
n=1 uniformly converges to 0 on each compact subset of D.

For 0 < r < 1 and g ∈ Hq′ , it follows that∫
[0,1)
| fn(t)|

∣∣∣(g(rt) + tg′(rt)
)∣∣∣ dµ(t)

≤

∫
[0,r)
| fn(t)|

∣∣∣(g(rt) + tg′(rt)
)∣∣∣ dµ(t) + C‖g‖Hq′

∫
[r,1)
| fn(t)|

 1

(1 − t)
1
q′

+
t

(1 − t)
1
q′ +1

 dµ(t)

≤

∫
[0,r)
| fn(t)|

∣∣∣(g(rt) + tg′(rt)
)∣∣∣ dµ(t) + C‖g‖Hq′

∫
[0,1)
| fn(t)| dνr(t)

≤

∫
[0,r)
| fn(t)|

∣∣∣(g(rt) + tg′(rt)
)∣∣∣ dµ(t) + C‖g‖Hq′ ‖g‖ApN(νr).

Then N(νr) → 0(r → 1−) and the condition { fn} → 0 uniformly on each compact subset of D imply
that

lim
n→∞

∫
[0,1)
| fn(t)|

∣∣∣(g(rt) + tg′(rt)
)∣∣∣ dµ(t) = 0.
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combining this, (3.6) and (4.1), we obtain that

lim
n→∞

∣∣∣∣∣∣
∫ 2π

0
DHµ( fan)(reiθ)g(reiθ)dθ

∣∣∣∣∣∣ = 0.

Hence, DHµ( fn) → 0 in Hq. This is equivalent to saying that DHµ is a compact operator from Ap

into Hq.
(ii) Consider the case q = 1. Suppose that µ is a vanishing ( 2

p + 1)-Carleson measure and let
dν(t) = 1

1−t dµ(t). By applying [17, Lemma 3.2], we obtain that ν is a vanishing 2
q -Carleson measure.

For r ∈ (0, 1), let dνr(z) = χr<|z|<1(t)dν(t) andN be the norm of identity mapping i, thenN(νr)→ 0(r →
1−). Take a bounded sequence { fn}

∞
n=1 in Ap, and { fn}

∞
n=1 uniformly converges to 0 on each compact

subset of D. For 0 < r < 1 and g ∈ V MOA, arguing as in the proof of Theorem 3.1(ii), it follows that∫
[0,1)
| fn(t)|

∣∣∣(g(rt) + tg′(rt)
)∣∣∣ dµ(t)

≤

∫
[0,r)
| fn(t)|

∣∣∣(g(rt) + tg′(rt)
)∣∣∣ dµ(t) + C‖g‖BMOA

∫
[0,1)
| fn(t)| dνr(t)

≤

∫
[0,r)
| fn(t)|

∣∣∣(g(rt) + tg′(rt)
)∣∣∣ dµ(t) + C‖g‖BMOA‖ f ‖ApN(νr).

Then N(νr) → 0(r → 1−) and the condition { fn} → 0 uniformly on each compact subset of D impliy
that

lim
n→∞

∣∣∣∣∣∣
∫ 2π

0
DHµ( fan)(reiθ)g(reiθ)dθ

∣∣∣∣∣∣
= lim

n→∞

∫
[0,1)
| fn(t)|

∣∣∣(g(rt) + tg′(rt)
)∣∣∣ dµ(t) = 0.

Hence, DHµ( fn) → 0 in H1. This is equivalent to saying that DHµ is a compact operator from Ap

into H1.
Suppose that DHµ is a compact operator from Ap into H1. Let {an} ⊂ (0, 1) be any sequence with

an → 1 and fan as defined in (i), then we obtain thatDHµ( fan)→ 0 in H1. Next, set

gan(z) = log
e

1 − anz
.

It is easy to check that gan(z) ∈ V MOA. Then it implies that∫
[0,1)

fan(t)
(
gan(rt) + tg′an

(rt)
)

dµ(t)

≥C
∫ 1

an

(
1 − a2

n

(1 − ant)2

) 2
p
(
log

e
1 − anrt

+
anrt

1 − anrt

)
dµ(t)

≥C
µ([an, 1))

(1 − a2
n)

2
p +1

.

Hence, we obtain that

lim
an→1−

µ([an, 1))

(1 − a2
n)

2
p +1

= 0.

AIMS Mathematics Volume 8, Issue 4, 9290–9302.
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This is equivalent to saying that µ is a vanishing ( 2
p + 1)-Carleson measure.

(iii) From now on, it is similar to the proof of (ii), we omit the details. �

Theorem 4.2. Suppose 1 < p ≤ q < ∞, and let µ be a positive Borel measure on [0, 1), which satisfies
the conditions in Lemma 3.2.

(i) If DHµ is a compact operator from Ap into Hq, then µ is a vanishing ( 2
p + 1

q′ + 1)-Carleson
measure.

(ii) If µ is a vanishing ( 2
p + 1

q′ + 1 + ε)-Carleson measure for any ε > 0, then DHµ is a compact
operator fromAp into Hq.

Proof. The proof is similar to that of Theorem 3.2 and Theorem 4.1(i), we omit the details here. �

5. Conclusions

In this article, we characterize the positive Borel measure µ such that DHµ is bounded (resp.
compact) from the Bergman spaceAp into the Hardy space Hq, where 0 < p < ∞, 0 < q < ∞.
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