We provided a simple and direct proof of an improved version of the main results of the paper by Catrina and Costa (2009).
Citation: Steven Kendell, Nguyen Lam, Dylan Smith, Austin White, Parker Wiseman. A simple proof of the refined sharp weighted Caffarelli-Kohn-Nirenberg inequalities[J]. AIMS Mathematics, 2023, 8(11): 27983-27988. doi: 10.3934/math.20231431
We provided a simple and direct proof of an improved version of the main results of the paper by Catrina and Costa (2009).
[1] | L. Caffarelli, R. Kohn, L. Nirenberg, First order interpolation inequalities with weights, Compos. Math., 53 (1984), 259–275. |
[2] | L. Caffarelli, R. Kohn, L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 35 (1982), 771–831. https://doi.org/10.1002/cpa.3160350604 doi: 10.1002/cpa.3160350604 |
[3] | F. Catrina, D. Costa, Sharp weighted-norm inequalities for functions with compact support in $\mathbb{R}^{N}\setminus\{0\}$, J. Differ. Equations, 246 (2009), 164–182. https://doi.org/10.1016/j.jde.2008.04.022 doi: 10.1016/j.jde.2008.04.022 |
[4] | C. Cazacu, J. Flynn, N. Lam, Caffarelli-Kohn-Nirenberg inequalities for curl-free vector fields and second ord er derivatives, Calc. Var., 62 (2023), 118. https://doi.org/10.1007/s00526-023-02454-1 doi: 10.1007/s00526-023-02454-1 |
[5] | C. Cazacu, J. Flynn, N. Lam, Sharp second order uncertainty principles, J. Funct. Anal., 283 (2022), 109659. https://doi.org/10.1016/j.jfa.2022.109659 doi: 10.1016/j.jfa.2022.109659 |
[6] | C. Cazacu, J. Flynn, N. Lam, Short proofs of refined sharp Caffarelli-Kohn-Nirenberg inequalities, J. Differ. Equations, 302 (2021), 533–549. https://doi.org/10.1016/j.jde.2021.09.005 doi: 10.1016/j.jde.2021.09.005 |
[7] | L. Chen, G. Lu, C. Zhang, Maximizers for fractional Caffarelli-Kohn-Nirenberg and Trudinger-Moser inequalities on the fractional Sobolev spaces, J. Geom. Anal., 31 (2021), 3556–3582. https://doi.org/10.1007/s12220-020-00406-1 doi: 10.1007/s12220-020-00406-1 |
[8] | D. G. Costa, Some new and short proofs for a class of Caffarelli-Kohn-Nirenberg type inequalities, J. Math. Anal. Appl., 337 (2008), 311–317. https://doi.org/10.1016/j.jmaa.2007.03.062 doi: 10.1016/j.jmaa.2007.03.062 |
[9] | S. Dan, Q. Yang, Improved Caffarelli-Kohn-Nirenberg inequalities in unit ball and sharp constants in dimension three, Nonlinear Anal., 234 (2023), 113314. https://doi.org/10.1016/j.na.2023.113314 doi: 10.1016/j.na.2023.113314 |
[10] | A. N. Dao, N. Lam, G. Lu, Gagliardo-Nirenberg and Sobolev interpolation inequalities on Besov spaces, Proc. Amer. Math. Soc., 150 (2022), 605–616. https://doi.org/10.1090/proc/15567 doi: 10.1090/proc/15567 |
[11] | A. N. Dao, N. Lam, G. Lu, Gagliardo-Nirenberg type inequalities on Lorentz, Marcinkiewicz and weak-$L^\infty$ spaces, Proc. Amer. Math. Soc., 150 (2022), 2889–2900. https://doi.org/10.1090/proc/15691 doi: 10.1090/proc/15691 |
[12] | M. Dong, N. Lam, G. Lu, Sharp weighted Trudinger-Moser and Caffarelli-Kohn-Nirenberg inequalities and their extremal functions, Nonlinear Anal., 173 (2018), 75–98. https://doi.org/10.1016/j.na.2018.03.006 doi: 10.1016/j.na.2018.03.006 |
[13] | N. T. Duy, N. Lam, G. Lu, $p$-Bessel pairs, Hardy's identities and inequalities and Hardy-Sobolev inequalities with monomial weights, J. Geom. Anal., 32 (2022), 109. https://doi.org/10.1007/s12220-021-00847-2 doi: 10.1007/s12220-021-00847-2 |
[14] | N. T. Duy, N. Lam, N. A. Triet, Improved Hardy and Hardy-Rellich type inequalities with Bessel pairs via factorizations, J. Spectr. Theory, 10 (2020), 1277–1302. https://doi.org/10.4171/JST/327 doi: 10.4171/JST/327 |
[15] | J. Flynn, Sharp Caffarelli–Kohn–Nirenberg-type inequalities on Carnot groups, Adv. Nonlinear Stud., 20 (2020), 95–111. https://doi.org/10.1515/ans-2019-2065 doi: 10.1515/ans-2019-2065 |
[16] | J. Flynn, N. Lam, G. Lu, Sharp Hardy identities and inequalities on Carnot groups, Adv. Nonlinear Stud., 21 (2021), 281–302. https://doi.org/10.1515/ans-2021-2123 doi: 10.1515/ans-2021-2123 |
[17] | N. Lam, General sharp weighted Caffarelli-Kohn-Nirenberg inequalities, P. Roy. Soc. Edinb. A, 149 (2019), 691–718. https://doi.org/10.1017/prm.2018.45 doi: 10.1017/prm.2018.45 |
[18] | N. Lam, Sharp weighted isoperimetric and Caffarelli-Kohn-Nirenberg inequalities, Adv. Calc. Var., 14 (2021), 153–169. https://doi.org/10.1515/acv-2017-0015 doi: 10.1515/acv-2017-0015 |
[19] | N. Lam, G. Lu, L. Zhang, Geometric Hardy's inequalities with general distance functions, J. Funct. Anal., 279 (2020), 108673. https://doi.org/10.1016/j.jfa.2020.108673 doi: 10.1016/j.jfa.2020.108673 |
[20] | A. Mallick, H. M. Nguyen, Gagliardo-Nirenberg and Caffarelli-Kohn-Nirenberg interpolation inequalities associated with Coulomb-Sobolev spaces, J. Funct. Anal., 283 (2022), 109662. https://doi.org/10.1016/j.jfa.2022.109662 doi: 10.1016/j.jfa.2022.109662 |
[21] | J. Wei, Y. Wu, On the stability of the Caffarelli-Kohn-Nirenberg inequality, Math. Ann., 384 (2022), 1509–1546. https://doi.org/10.1007/s00208-021-02325-0 doi: 10.1007/s00208-021-02325-0 |