Research article Special Issues

A simple proof of the refined sharp weighted Caffarelli-Kohn-Nirenberg inequalities

  • Received: 04 July 2023 Revised: 16 August 2023 Accepted: 05 October 2023 Published: 11 October 2023
  • MSC : 26D10, 35J20

  • We provided a simple and direct proof of an improved version of the main results of the paper by Catrina and Costa (2009).

    Citation: Steven Kendell, Nguyen Lam, Dylan Smith, Austin White, Parker Wiseman. A simple proof of the refined sharp weighted Caffarelli-Kohn-Nirenberg inequalities[J]. AIMS Mathematics, 2023, 8(11): 27983-27988. doi: 10.3934/math.20231431

    Related Papers:

  • We provided a simple and direct proof of an improved version of the main results of the paper by Catrina and Costa (2009).



    加载中


    [1] L. Caffarelli, R. Kohn, L. Nirenberg, First order interpolation inequalities with weights, Compos. Math., 53 (1984), 259–275.
    [2] L. Caffarelli, R. Kohn, L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 35 (1982), 771–831. https://doi.org/10.1002/cpa.3160350604 doi: 10.1002/cpa.3160350604
    [3] F. Catrina, D. Costa, Sharp weighted-norm inequalities for functions with compact support in $\mathbb{R}^{N}\setminus\{0\}$, J. Differ. Equations, 246 (2009), 164–182. https://doi.org/10.1016/j.jde.2008.04.022 doi: 10.1016/j.jde.2008.04.022
    [4] C. Cazacu, J. Flynn, N. Lam, Caffarelli-Kohn-Nirenberg inequalities for curl-free vector fields and second ord er derivatives, Calc. Var., 62 (2023), 118. https://doi.org/10.1007/s00526-023-02454-1 doi: 10.1007/s00526-023-02454-1
    [5] C. Cazacu, J. Flynn, N. Lam, Sharp second order uncertainty principles, J. Funct. Anal., 283 (2022), 109659. https://doi.org/10.1016/j.jfa.2022.109659 doi: 10.1016/j.jfa.2022.109659
    [6] C. Cazacu, J. Flynn, N. Lam, Short proofs of refined sharp Caffarelli-Kohn-Nirenberg inequalities, J. Differ. Equations, 302 (2021), 533–549. https://doi.org/10.1016/j.jde.2021.09.005 doi: 10.1016/j.jde.2021.09.005
    [7] L. Chen, G. Lu, C. Zhang, Maximizers for fractional Caffarelli-Kohn-Nirenberg and Trudinger-Moser inequalities on the fractional Sobolev spaces, J. Geom. Anal., 31 (2021), 3556–3582. https://doi.org/10.1007/s12220-020-00406-1 doi: 10.1007/s12220-020-00406-1
    [8] D. G. Costa, Some new and short proofs for a class of Caffarelli-Kohn-Nirenberg type inequalities, J. Math. Anal. Appl., 337 (2008), 311–317. https://doi.org/10.1016/j.jmaa.2007.03.062 doi: 10.1016/j.jmaa.2007.03.062
    [9] S. Dan, Q. Yang, Improved Caffarelli-Kohn-Nirenberg inequalities in unit ball and sharp constants in dimension three, Nonlinear Anal., 234 (2023), 113314. https://doi.org/10.1016/j.na.2023.113314 doi: 10.1016/j.na.2023.113314
    [10] A. N. Dao, N. Lam, G. Lu, Gagliardo-Nirenberg and Sobolev interpolation inequalities on Besov spaces, Proc. Amer. Math. Soc., 150 (2022), 605–616. https://doi.org/10.1090/proc/15567 doi: 10.1090/proc/15567
    [11] A. N. Dao, N. Lam, G. Lu, Gagliardo-Nirenberg type inequalities on Lorentz, Marcinkiewicz and weak-$L^\infty$ spaces, Proc. Amer. Math. Soc., 150 (2022), 2889–2900. https://doi.org/10.1090/proc/15691 doi: 10.1090/proc/15691
    [12] M. Dong, N. Lam, G. Lu, Sharp weighted Trudinger-Moser and Caffarelli-Kohn-Nirenberg inequalities and their extremal functions, Nonlinear Anal., 173 (2018), 75–98. https://doi.org/10.1016/j.na.2018.03.006 doi: 10.1016/j.na.2018.03.006
    [13] N. T. Duy, N. Lam, G. Lu, $p$-Bessel pairs, Hardy's identities and inequalities and Hardy-Sobolev inequalities with monomial weights, J. Geom. Anal., 32 (2022), 109. https://doi.org/10.1007/s12220-021-00847-2 doi: 10.1007/s12220-021-00847-2
    [14] N. T. Duy, N. Lam, N. A. Triet, Improved Hardy and Hardy-Rellich type inequalities with Bessel pairs via factorizations, J. Spectr. Theory, 10 (2020), 1277–1302. https://doi.org/10.4171/JST/327 doi: 10.4171/JST/327
    [15] J. Flynn, Sharp Caffarelli–Kohn–Nirenberg-type inequalities on Carnot groups, Adv. Nonlinear Stud., 20 (2020), 95–111. https://doi.org/10.1515/ans-2019-2065 doi: 10.1515/ans-2019-2065
    [16] J. Flynn, N. Lam, G. Lu, Sharp Hardy identities and inequalities on Carnot groups, Adv. Nonlinear Stud., 21 (2021), 281–302. https://doi.org/10.1515/ans-2021-2123 doi: 10.1515/ans-2021-2123
    [17] N. Lam, General sharp weighted Caffarelli-Kohn-Nirenberg inequalities, P. Roy. Soc. Edinb. A, 149 (2019), 691–718. https://doi.org/10.1017/prm.2018.45 doi: 10.1017/prm.2018.45
    [18] N. Lam, Sharp weighted isoperimetric and Caffarelli-Kohn-Nirenberg inequalities, Adv. Calc. Var., 14 (2021), 153–169. https://doi.org/10.1515/acv-2017-0015 doi: 10.1515/acv-2017-0015
    [19] N. Lam, G. Lu, L. Zhang, Geometric Hardy's inequalities with general distance functions, J. Funct. Anal., 279 (2020), 108673. https://doi.org/10.1016/j.jfa.2020.108673 doi: 10.1016/j.jfa.2020.108673
    [20] A. Mallick, H. M. Nguyen, Gagliardo-Nirenberg and Caffarelli-Kohn-Nirenberg interpolation inequalities associated with Coulomb-Sobolev spaces, J. Funct. Anal., 283 (2022), 109662. https://doi.org/10.1016/j.jfa.2022.109662 doi: 10.1016/j.jfa.2022.109662
    [21] J. Wei, Y. Wu, On the stability of the Caffarelli-Kohn-Nirenberg inequality, Math. Ann., 384 (2022), 1509–1546. https://doi.org/10.1007/s00208-021-02325-0 doi: 10.1007/s00208-021-02325-0
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1197) PDF downloads(66) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog