The article considers a generalization of Piatetski-Shapiro sequences in the sense of Beatty sequences. The sequence is defined by $ \left(\left\lfloor\alpha n^c+\beta\right\rfloor\right)_{n = 1}^{\infty} $, where $ \alpha \geq 1 $, $ c > 1 $, and $ \beta $ are real numbers.
The focus of the study is on solving equations of the form $ \left\lfloor \alpha n^c +\beta\right\rfloor = s m^k $, where $ m $ and $ n $ are positive integers, $ 1 \leq n \leq N $, and $ s $ is an integer. Bounds for the solutions are obtained for different values of the exponent $ k $, and an average bound is derived over $ k $-free numbers $ s $ in a given interval.
Citation: Yukai Shen. $ k $th powers in a generalization of Piatetski-Shapiro sequences[J]. AIMS Mathematics, 2023, 8(9): 22411-22418. doi: 10.3934/math.20231143
The article considers a generalization of Piatetski-Shapiro sequences in the sense of Beatty sequences. The sequence is defined by $ \left(\left\lfloor\alpha n^c+\beta\right\rfloor\right)_{n = 1}^{\infty} $, where $ \alpha \geq 1 $, $ c > 1 $, and $ \beta $ are real numbers.
The focus of the study is on solving equations of the form $ \left\lfloor \alpha n^c +\beta\right\rfloor = s m^k $, where $ m $ and $ n $ are positive integers, $ 1 \leq n \leq N $, and $ s $ is an integer. Bounds for the solutions are obtained for different values of the exponent $ k $, and an average bound is derived over $ k $-free numbers $ s $ in a given interval.
[1] | J. Bourgain, Decoupling, exponential sums and the Riemann zeta function, J. Amer. Math. Soc., 30 (2017), 205–224. |
[2] | E. Fouvry, H. Iwaniec, Exponential sums with monomials, J. Number Theory, 33 (1989), 311–333. |
[3] | S. W. Graham, G. Kolesnik, Van der Corput's Method of Exponential Sums, Cambridge: Cambridge University Press, 1991. |
[4] | V. Z. Guo, J. Qi, A generalization of Piatetski-Shapiro sequences, Taiwanese J. Math., 26 (2022), 33–47. https://doi.org/10.11650/tjm/210802 doi: 10.11650/tjm/210802 |
[5] | K. Liu, I. E. Shparlinski, T. Zhang, Squares in Piatetski-Shapiro sequences, Acta Arith., 181 (2017), 239–252. |
[6] | T. Kim, D. S. Kim, Combinatorial identities involving degenerate harmonic and hyperharmonic numbers, Adv. in Appl. Math., 148 (2023), 102535. https://doi.org/10.1016/j.aam.2023.102535 doi: 10.1016/j.aam.2023.102535 |
[7] | T. Kim, D. S. Kim, Some identities involving degenerate Stirling numbers associated with several degenerate polynomials and numbers, Russ. J. Math. Phys., 30 (2023), 62–75. https://doi.org/10.1134/S1061920823010041 doi: 10.1134/S1061920823010041 |
[8] | I. I. Piatetski-Shapiro, On the distribution of prime numbers in the sequence of the form $\left\lfloor{f(n)}\right\rfloor$, Mat. Sb., 33 (1953), 559–566. |
[9] | J. Qi, V. Z. Guo, Z. Xu, $k$th powers in Piatetski-Shapiro sequences, Int. J. Number Theory, 18 (2022), 1791–1806. https://doi.org/10.1142/S1793042122500919 doi: 10.1142/S1793042122500919 |
[10] | J. Rivat, S. Sargos, Nombres premiers de la forme $\left\lfloor{n^c}\right\rfloor$, Canad. J. Math., 53 (2001), 414–433. |
[11] | J. D. Vaaler, Some extremal problems in Fourier analysis, Bull. Amer. Math. Soc., 12 (1985), 183–216. |