Research article Special Issues

$ k $th powers in a generalization of Piatetski-Shapiro sequences

  • Received: 14 May 2023 Revised: 20 June 2023 Accepted: 02 July 2023 Published: 14 July 2023
  • MSC : 11B83, 11L05

  • The article considers a generalization of Piatetski-Shapiro sequences in the sense of Beatty sequences. The sequence is defined by $ \left(\left\lfloor\alpha n^c+\beta\right\rfloor\right)_{n = 1}^{\infty} $, where $ \alpha \geq 1 $, $ c > 1 $, and $ \beta $ are real numbers.

    The focus of the study is on solving equations of the form $ \left\lfloor \alpha n^c +\beta\right\rfloor = s m^k $, where $ m $ and $ n $ are positive integers, $ 1 \leq n \leq N $, and $ s $ is an integer. Bounds for the solutions are obtained for different values of the exponent $ k $, and an average bound is derived over $ k $-free numbers $ s $ in a given interval.

    Citation: Yukai Shen. $ k $th powers in a generalization of Piatetski-Shapiro sequences[J]. AIMS Mathematics, 2023, 8(9): 22411-22418. doi: 10.3934/math.20231143

    Related Papers:

  • The article considers a generalization of Piatetski-Shapiro sequences in the sense of Beatty sequences. The sequence is defined by $ \left(\left\lfloor\alpha n^c+\beta\right\rfloor\right)_{n = 1}^{\infty} $, where $ \alpha \geq 1 $, $ c > 1 $, and $ \beta $ are real numbers.

    The focus of the study is on solving equations of the form $ \left\lfloor \alpha n^c +\beta\right\rfloor = s m^k $, where $ m $ and $ n $ are positive integers, $ 1 \leq n \leq N $, and $ s $ is an integer. Bounds for the solutions are obtained for different values of the exponent $ k $, and an average bound is derived over $ k $-free numbers $ s $ in a given interval.



    加载中


    [1] J. Bourgain, Decoupling, exponential sums and the Riemann zeta function, J. Amer. Math. Soc., 30 (2017), 205–224.
    [2] E. Fouvry, H. Iwaniec, Exponential sums with monomials, J. Number Theory, 33 (1989), 311–333.
    [3] S. W. Graham, G. Kolesnik, Van der Corput's Method of Exponential Sums, Cambridge: Cambridge University Press, 1991.
    [4] V. Z. Guo, J. Qi, A generalization of Piatetski-Shapiro sequences, Taiwanese J. Math., 26 (2022), 33–47. https://doi.org/10.11650/tjm/210802 doi: 10.11650/tjm/210802
    [5] K. Liu, I. E. Shparlinski, T. Zhang, Squares in Piatetski-Shapiro sequences, Acta Arith., 181 (2017), 239–252.
    [6] T. Kim, D. S. Kim, Combinatorial identities involving degenerate harmonic and hyperharmonic numbers, Adv. in Appl. Math., 148 (2023), 102535. https://doi.org/10.1016/j.aam.2023.102535 doi: 10.1016/j.aam.2023.102535
    [7] T. Kim, D. S. Kim, Some identities involving degenerate Stirling numbers associated with several degenerate polynomials and numbers, Russ. J. Math. Phys., 30 (2023), 62–75. https://doi.org/10.1134/S1061920823010041 doi: 10.1134/S1061920823010041
    [8] I. I. Piatetski-Shapiro, On the distribution of prime numbers in the sequence of the form $\left\lfloor{f(n)}\right\rfloor$, Mat. Sb., 33 (1953), 559–566.
    [9] J. Qi, V. Z. Guo, Z. Xu, $k$th powers in Piatetski-Shapiro sequences, Int. J. Number Theory, 18 (2022), 1791–1806. https://doi.org/10.1142/S1793042122500919 doi: 10.1142/S1793042122500919
    [10] J. Rivat, S. Sargos, Nombres premiers de la forme $\left\lfloor{n^c}\right\rfloor$, Canad. J. Math., 53 (2001), 414–433.
    [11] J. D. Vaaler, Some extremal problems in Fourier analysis, Bull. Amer. Math. Soc., 12 (1985), 183–216.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(901) PDF downloads(68) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog