Synchronization is a key topic of research in neuroscience, medicine, and artificial neural networks; however, understanding its principle is difficult, both scientifically and mathematically. Specifically, the synchronization of the FitzHugh-Nagumo network with a hierarchical architecture has previously been studied; however, a mathematical analysis has not been conducted, owing to the network complexity. Therefore, in this paper, we saught to understand synchronization through mathematical analyses. In particular, we consider the most common types of hierarchical architecture and present a condition of the hierarchical architecture to induce synchronization. First, we provide mathematical analyses of a Lyapunov function for each layer, from which we obtain sufficient conditions guaranteeing synchronization and show that the Lyapunov function decreases exponentially. Moreover, we show that the internal connectivity critically affects synchronization in the first layer; however, in the second and subsequent layers, the internal connectivity is not important for synchronization, and the connectivity up to the first layer critically affects synchronization. We expect that the results and mathematical methodology can be applied to study other similar neural models with hierarchical architectures.
Citation: Soo-Oh Yang, Jea-Hyun Park. Analysis for the hierarchical architecture of the heterogeneous FitzHugh-Nagumo network inducing synchronization[J]. AIMS Mathematics, 2023, 8(9): 22385-22410. doi: 10.3934/math.20231142
Synchronization is a key topic of research in neuroscience, medicine, and artificial neural networks; however, understanding its principle is difficult, both scientifically and mathematically. Specifically, the synchronization of the FitzHugh-Nagumo network with a hierarchical architecture has previously been studied; however, a mathematical analysis has not been conducted, owing to the network complexity. Therefore, in this paper, we saught to understand synchronization through mathematical analyses. In particular, we consider the most common types of hierarchical architecture and present a condition of the hierarchical architecture to induce synchronization. First, we provide mathematical analyses of a Lyapunov function for each layer, from which we obtain sufficient conditions guaranteeing synchronization and show that the Lyapunov function decreases exponentially. Moreover, we show that the internal connectivity critically affects synchronization in the first layer; however, in the second and subsequent layers, the internal connectivity is not important for synchronization, and the connectivity up to the first layer critically affects synchronization. We expect that the results and mathematical methodology can be applied to study other similar neural models with hierarchical architectures.
[1] | M. Aldana, C. Huepe, Phase transitions in self-driven many-particle systems and related non-equilibrium models: A network approach, J. Stat. Phys., 112 (2003), 135–153. http://dx.doi.org/10.1023/A:1023675519930 doi: 10.1023/A:1023675519930 |
[2] | M. S. Ali, M. Hymavathi, B. Priya, S. A. Kauser, G. K. Thakur, Stability analysis of stochastic fractional-order competitive neural networks with leakage delay, AIMS Math., 6 (2021), 3205–3241. http://dx.doi.org/10.3934/math.2021193 doi: 10.3934/math.2021193 |
[3] | B. Ambrosio, M. Aziz-Alaoui, Synchronization and control of a network of coupled reaction-diffusion systems of generalized FitzHugh-Nagumo type, ESAIM: Proc., 39 (2013), 15–24. http://dx.doi.org/10.1051/proc/201339003 doi: 10.1051/proc/201339003 |
[4] | J. Baladron, D. Fasoli, O. Faugeras, J. Touboul, Mean-field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons, J. Math. Neurosc., 2 (2013), 1–50. http://dx.doi.org/10.1186/2190-8567-2-10 doi: 10.1186/2190-8567-2-10 |
[5] | A. Blaustein, F. Filbet, Concentration Phenomena in Fitzhugh–Nagumo Equations: A Mesoscopic Approach, SIAM J. Math. Anal., 55 (2023), 367–404. http://dx.doi.org/10.1137/22m1469961 doi: 10.1137/22m1469961 |
[6] | I. I. Blekhman, Gradient estimates for solutions of nonlinear elliptic and parabolic equations, New York: ASME, 1988. |
[7] | M. Bossy, J. Fontbona, H. Olivero, Synchronization of stochastic mean field networks of Hodgkin–Huxley neurons with noisy channels, J. Math. Biol., 78 (2019), 1771–1820. http://dx.doi.org/10.1007/s00285-019-01326-7 doi: 10.1007/s00285-019-01326-7 |
[8] | Q. Cao, X. Long, New convergence on inertial neural networks with time-varying delays and continuously distributed delays, AIMS Math., 5 (2020), 5955–5968. http://dx.doi.org/10.3934/math.2020381 doi: 10.3934/math.2020381 |
[9] | T. Carletti, H. Nakao, Turing patterns in a network-reduced FitzHugh-Nagumo model, Phys. Rev. E., 101 (2020), 022203. http://dx.doi.org/10.1103/physreve.101.022203 doi: 10.1103/physreve.101.022203 |
[10] | D. Centola, M. Macy, Complex contagions and the weakness of long ties, Am. J. Sociol., 113 (2007), 702–734. http://dx.doi.org/10.1086/521848 doi: 10.1086/521848 |
[11] | F. Cheng, J. Li, Q. Yu, The existence of solitary wave solutions for the neuron model with conductance-resistance symmetry, AIMS Math., 8 (2023), 3322–3337. http://dx.doi.org/10.3934/math.2023171 doi: 10.3934/math.2023171 |
[12] | F. R. Chung, F. C. Graham, Spectral graph theory, In: American Mathematical Soc., 1997. http://dx.doi.org/10.1201/b16113-54 |
[13] | P. Degond, S. Motsch, Large scale dynamics of the persistent turning walker model of fish behavior, J. Statist. Phys., 131 (2008), 989–1021. http://dx.doi.org/10.1007/s10955-008-9529-8 doi: 10.1007/s10955-008-9529-8 |
[14] | J. Fell, N. Axmacher, The role of phase synchronization in memory processes, Nat. Rev. Neurosci., 12 (2011), 105–118. http://dx.doi.org/10.1038/nrn2979 doi: 10.1038/nrn2979 |
[15] | R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1 (1961), 445–466. http://dx.doi.org/10.1016/s0006-3495(61)86902-6 doi: 10.1016/s0006-3495(61)86902-6 |
[16] | P. Fries, A mechanism for cognitive dynamics: neuronal communication through neuronal coherence, Trends Cogn. Sci., 9 (2005), 474–480. http://dx.doi.org/10.1016/j.tics.2005.08.011 doi: 10.1016/j.tics.2005.08.011 |
[17] | M. Gerster, R. Berner, J. Sawicki, A. Zakharova, A. Škoch, J. Hlinka, et al., FitzHugh–Nagumo oscillators on complex networks mimic epileptic-seizure-related synchronization phenomena, Chaos, 30 (2020), 123130. http://dx.doi.org/10.1063/5.0021420 doi: 10.1063/5.0021420 |
[18] | M. M. Ibrahim, S. Iram, M. A. Kamran, M. M. Naeem Mannan, M. U. Ali, I. H. Jung, et al., Synchronization Analysis of Multiple FitzHugh-Nagumo Noisy and Nonnoisy Neurobiological Networks, Math. Probl. Eng., 2022 (2022), 9302758. http://dx.doi.org/10.1155/2022/9302758 doi: 10.1155/2022/9302758 |
[19] | M. M. Ibrahim, I. H. Jung, Complex synchronization of a ring-structured network of Fitzhugh-Nagumo neurons with single-and dual-state gap junctions under ionic gates and external electrical disturbance, IEEE Access, 7 (2019), 57894–57906. http://dx.doi.org/10.1109/access.2019.2913872 doi: 10.1109/access.2019.2913872 |
[20] | N. Iqbal, R. Wu, Y. Karaca, R. Shah, W. Weera, Pattern dynamics and Turing instability induced by self-super-cross-diffusive predator-prey model via amplitude equations, AIMS Math., 8 (2023), 2940–2960. http://dx.doi.org/10.3934/math.2023153 doi: 10.3934/math.2023153 |
[21] | A. Jadbabaie, J. Lin, A. S. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE Trans. Automat. Contr., 48 (2003), 988–1001. http://dx.doi.org/10.1109/tac.2003.812781 doi: 10.1109/tac.2003.812781 |
[22] | Y. Jiang, J. Wu, H. Yang, F. Xu, M. Wang, S. Huang, et al., Chimera States mediated by nonlocally attractive-repulsive coupling in FitzHugh–Nagumo neural networks, Chin. J. Phys., 66 (2020), 172–179. http://dx.doi.org/10.1016/j.cjph.2020.03.019 doi: 10.1016/j.cjph.2020.03.019 |
[23] | A. Kazemy, J. Lam, X. M. Zhang, Event-triggered output feedback synchronization of master–slave neural networks under deception attacks, IEEE T. Neur. Net. Lear., 33 (2020), 952–961. http://dx.doi.org/10.1109/tnnls.2020.3030638 doi: 10.1109/tnnls.2020.3030638 |
[24] | Y. Kuramoto, Chemical oscillations, waves, and turbulence, Courier Corporation, 2003. http://dx.doi.org/10.1007/978-3-642-69689-3 |
[25] | J. Liu, H. Wu, J. Cao, Event-triggered synchronization in fixed time for semi-Markov switching dynamical complex networks with multiple weights and discontinuous nonlinearity, Commun. Nonlinear Sci. Numer. Simul., 90 (2020), 105400. http://dx.doi.org/ |
[26] | F. Min, A. C. J. Luo, Complex Dynamics of Projective Synchronization of Chua Circuits with Different Scrolls, Int. J. Bifurcation Chaos, 25 (2015), 1530016. http://dx.doi.org/10.1142/S0218127415300165 doi: 10.1142/S0218127415300165 |
[27] | J. Nagumo, S. Arimoto, S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proc. IRE, 50 (1962), 2061–2070. http://dx.doi.org/10.1109/jrproc.1962.288235 doi: 10.1109/jrproc.1962.288235 |
[28] | Z. T. Njitacke, J. Ramadoss, C. N. Takembo, K. Rajagopal, J. Awrejcewicz, An enhanced FitzHugh–Nagumo neuron circuit, microcontroller-based hardware implementation: Light illumination and magnetic field effects on information patterns, Chaos, Soliton. Fract., 167 (2023), 113014. http://dx.doi.org/10.1016/j.chaos.2022.113014 doi: 10.1016/j.chaos.2022.113014 |
[29] | Z. T. Njitacke, C. N. Takembo, J. Awrejcewicz, H. P. E. Fouda, J. Kengne, Hamilton energy, complex dynamical analysis and information patterns of a new memristive FitzHugh-Nagumo neural network, Chaos, Soliton. Fract., 160 (2022), 112211. http://dx.doi.org/10.1016/j.chaos.2022.112211 doi: 10.1016/j.chaos.2022.112211 |
[30] | S. Plotnikov, J. Lehnert, A. Fradkov, E. Schöll, Synchronization in heterogeneous FitzHugh-Nagumo networks with hierarchical architecture, Phys. Rev. E, 94 (2016), 012203. http://dx.doi.org/10.1103/physreve.94.012203 doi: 10.1103/physreve.94.012203 |
[31] | S. A. Plotnikov, A. L. Fradkov, On synchronization in heterogeneous FitzHugh–Nagumo networks, Chaos, Soliton. Fract., 121 (2019), 85–91. http://dx.doi.org/10.1016/j.chaos.2019.02.006 doi: 10.1016/j.chaos.2019.02.006 |
[32] | C. Quininao, J. D. Touboul, Clamping and Synchronization in the Strongly Coupled FitzHugh–Nagumo Model, SIAM J. Appl. Dyn. Syst., 19 (2020), 788–827. http://dx.doi.org/10.1137/19m1283884 doi: 10.1137/19m1283884 |
[33] | K. Rajgopal, A. Karthikeyan, V. R. Varun Raj, Dynamical behavior of pancreatic $\beta$ cells with memductance flux coupling: Considering nodal properties and wave propagation in the excitable media, Chaos, Soliton. Fract., 165 (2022), 112857. http://dx.doi.org/10.1016/j.chaos.2022.112857 doi: 10.1016/j.chaos.2022.112857 |
[34] | Y. Shen, X. Liu, Event-based master–slave synchronization of complex-valued neural networks via pinning impulsive control, Neural Networks, 145 (2022), 374–385. http://dx.doi.org/10.1016/j.neunet.2021.10.025 doi: 10.1016/j.neunet.2021.10.025 |
[35] | L. Skrzypek, Y. You, Dynamics and synchronization of boundary coupled FitzHugh-Nagumo neural networks, Appl. Math. Comput., 388 (2021), 125545. http://dx.doi.org/10.1016/j.amc.2020.125545 doi: 10.1016/j.amc.2020.125545 |
[36] | D. Somers, N. Kopell, Rapid synchronization through fast threshold modulation, Biol. Cybern., 68 (1993), 393–407. http://dx.doi.org/10.1007/bf00198772 doi: 10.1007/bf00198772 |
[37] | P. Wang, Q. Zhang, H. Su, Aperiodically intermittent control for synchronization of discrete-time delayed neural networks, J. Franklin Inst., 359 (2022), 4915–4937. http://dx.doi.org/10.1016/j.jfranklin.2022.04.033 doi: 10.1016/j.jfranklin.2022.04.033 |
[38] | D. Wei, X. Luo, Y. Zou, Firing activity of complex space-clamped FitzHugh-Nagumo neural networks, Eur. Phys. J. B, 63 (2008), 279–282. http://dx.doi.org/10.1140/epjb/e2008-00227-5 doi: 10.1140/epjb/e2008-00227-5 |
[39] | Y. Xu, Y. Li, W. Li, Adaptive finite-time synchronization control for fractional-order complex-valued dynamical networks with multiple weights, Commun. Nonlinear Sci. Numer. Simul., 85 (2020), 105239. http://dx.doi.org/10.1016/j.cnsns.2020.105239 doi: 10.1016/j.cnsns.2020.105239 |
[40] | Z. Yong, Z. Su-Hua, Z. Tong-Jun, A. Hai-Long, Z. Zhen-Dong, H. Ying-Rong, et al., The synchronization of FitzHugh–Nagumo neuron network coupled by gap junction, Chin. Phys. B, 17 (2008), 2297–2303. http://dx.doi.org/10.1088/1674-1056/17/6/061 doi: 10.1088/1674-1056/17/6/061 |
[41] | X. Zhang, F. Min, Y. Dou, Y. Xu, Bifurcation analysis of a modified FitzHugh-Nagumo neuron with electric field, Chaos, Soliton. Fract., 170 (2023), 113415. http://dx.doi.org/10.1016/j.chaos.2023.113415 doi: 10.1016/j.chaos.2023.113415 |
[42] | X. Zhang, W. Zhou, H. R. Karimi, Y. Sun, Finite- and fixed-time cluster synchronization of nonlinearly coupled delayed neural networks via pinning control, IEEE T. Neur. Net. Lear., 32 (2020), 5222–5231. http://dx.doi.org/10.1109/tnnls.2020.3027312 doi: 10.1109/tnnls.2020.3027312 |
[43] | B. Zhen, Z. Song, The Study for Synchronization between Two Coupled FitzHugh-Nagumo Neurons Based on the Laplace Transform and the Adomian Decomposition Method, Neural Plast., 2021 (2021), 6657835. http://dx.doi.org/10.1155/2021/6657835 doi: 10.1155/2021/6657835 |
[44] | S. Zhu, H. Bao, J. Cao, Bipartite synchronization of coupled delayed neural networks with cooperative-competitive interaction via event-triggered control, Phys. A, 600 (2022), 127586. http://dx.doi.org/10.1016/j.physa.2022.127586 doi: 10.1016/j.physa.2022.127586 |