The Piatetski-Shapiro sequences are sequences of the form $ (\left\lfloor {{n^c}} \right\rfloor)_{n = 1}^\infty $ for $ c > 1 $ and $ c \not\in \mathbb{N} $. It is conjectured that there are infinitely many primes in Piatetski-Shapiro sequences for $ c \in (1, 2) $. For every $ R \ge 1 $, we say that a natural number is an $ R $-almost prime if it has at most $ R $ prime factors, counted with multiplicity. In this paper, we prove that there are infinitely many $ R $-almost primes in Piatetski-Shapiro sequences if $ c \in (1, c_R) $ and $ c_R $ is an explicit constant depending on $ R $.
Citation: Victor Zhenyu Guo. Almost primes in Piatetski-Shapiro sequences[J]. AIMS Mathematics, 2021, 6(9): 9536-9546. doi: 10.3934/math.2021554
The Piatetski-Shapiro sequences are sequences of the form $ (\left\lfloor {{n^c}} \right\rfloor)_{n = 1}^\infty $ for $ c > 1 $ and $ c \not\in \mathbb{N} $. It is conjectured that there are infinitely many primes in Piatetski-Shapiro sequences for $ c \in (1, 2) $. For every $ R \ge 1 $, we say that a natural number is an $ R $-almost prime if it has at most $ R $ prime factors, counted with multiplicity. In this paper, we prove that there are infinitely many $ R $-almost primes in Piatetski-Shapiro sequences if $ c \in (1, c_R) $ and $ c_R $ is an explicit constant depending on $ R $.
[1] | R. C. Baker, G. Harman, J. Rivat, Primes of the form $\left\lfloor {{n^c}} \right\rfloor$, J. Number Theory, 50 (1995), 261–277. doi: 10.1006/jnth.1995.1020 |
[2] | S. W. Graham, G. Kolesnik, Van der Corput's method of exponential sums, London Mathematical Society Lecture Note Series, 126. Cambridge University Press, Cambridge, 1991. |
[3] | G. Greaves, Sieves in Number Theory, Results in Mathematics and Related Areas, Vol. 43, Springer-Verlag, Berlin, 2001. |
[4] | D. R. Heath-Brown, The Pjateckiǐ-Šapiro prime number theorem, J. Number Theory, 16 (1983), 242–266. doi: 10.1016/0022-314X(83)90044-6 |
[5] | C. H. Jia, On Pjateckiǐ-Šapiro prime number theorem II, Sci. China Ser. A, 36 (1993), 913–926. |
[6] | C. H. Jia, On Pjateckiǐ-Šapiro prime number theorem, Chin. Ann. Math. Ser. B, 15 (1994), 9–22. |
[7] | G. A. Kolesnik, The distribution of primes in sequences of the form $\left\lfloor {{n^c}} \right\rfloor$, Mat. Zametki, 2 (1967), 117–128. |
[8] | G. A. Kolesnik, Primes of the form $\left\lfloor {{n^c}} \right\rfloor$, Pacific J. Math., 118 (1985), 437–447. doi: 10.2140/pjm.1985.118.437 |
[9] | A. Kumchev, On the distribution of prime numbers of the form $\left\lfloor {{nc}} \right\rfloor$, Glasg. Math. J., 41 (1999), 85–102. doi: 10.1017/S0017089599970477 |
[10] | D. Leitmann, Abschätzung trigonometrischer Summen (German), J. Reine Angew. Math., 317 (1980), 209–219. |
[11] | D. Leitmann, D. Wolke, Primzahlen der Gestalt $[f(n)]$ (German), Math. Z., 145 (1975), 81–92. doi: 10.1007/BF01214500 |
[12] | H. Q. Liu, J. Rivat, On the Pjateckiǐ-Šapiro prime number theorem, Bull. Lond. Math. Soc., 24 (1992), 143–147. doi: 10.1112/blms/24.2.143 |
[13] | I. I. Piatetski-Shapiro, On the distribution of prime numbers in the sequence of the form $\left\lfloor {{f(n)}} \right\rfloor$, Mat. Sb., 33 (1953), 559–566. |
[14] | J. Rivat, Autour d'un theorem de Piatetski-Shapiro, Thesis, Université de Paris Sud, 1992. |
[15] | J. Rivat, S. Sargos, Nombres premiers de la forme $\left\lfloor {{n^c}} \right\rfloor$, Canad. J. Math., 53 (2001), 414–433. doi: 10.4153/CJM-2001-017-0 |
[16] | J. Rivat, J. Wu, Prime numbers of the form $\left\lfloor {{n^c}} \right\rfloor$, Glasg. Math. J., 43 (2001), 237–254. |
[17] | O. Robert, P. Sargos, A third derivative test for mean values of exponential sums with application to lattice point problems, Acta Arith., 106 (2003), 27–39. doi: 10.4064/aa106-1-2 |
[18] | J. D. Vaaler, Some extremal problems in Fourier analysis, Bull. Amer. Math. Soc., 12 (1985), 183–216. doi: 10.1090/S0273-0979-1985-15349-2 |