Research article

Bifurcation results of positive solutions for an elliptic equation with nonlocal terms

  • Received: 10 April 2021 Accepted: 17 June 2021 Published: 24 June 2021
  • MSC : 35J25, 35J61, 35B32, 35B45

  • In this paper, we investigate the local and global nature for the connected components of positive solutions set of an elliptic equation with nonlocal terms. The local bifurcation results of positive solutions are obtained by using the local bifurcation theory, Lyapunov-Schmidt reduction technique, etc. Under suitable conditions, we show two proofs of priori estimates by using blow-up technique, upper and lower solution method, etc. Finally, the global bifurcation results of positive solutions are obtained by using priori bounds, global bifurcation theory.

    Citation: Jiaqing Hu, Xian Xu, Qiangqiang Yang. Bifurcation results of positive solutions for an elliptic equation with nonlocal terms[J]. AIMS Mathematics, 2021, 6(9): 9547-9567. doi: 10.3934/math.2021555

    Related Papers:

  • In this paper, we investigate the local and global nature for the connected components of positive solutions set of an elliptic equation with nonlocal terms. The local bifurcation results of positive solutions are obtained by using the local bifurcation theory, Lyapunov-Schmidt reduction technique, etc. Under suitable conditions, we show two proofs of priori estimates by using blow-up technique, upper and lower solution method, etc. Finally, the global bifurcation results of positive solutions are obtained by using priori bounds, global bifurcation theory.



    加载中


    [1] F. Corr$\hat{\text{e}}$a, A. Su$\acute{\text{a}}$rez, Combining local and nonlocal terms in a nonlinear elliptic problem, Math. Method. Appl. Sci., 35 (2012), 547–563. doi: 10.1002/mma.1592
    [2] M. Wang, Y. Wang, Properties of positive solutions for non-local reaction-diffusion problems, Math. Method. Appl. Sci., 19 (1996), 1141–1156. doi: 10.1002/(SICI)1099-1476(19960925)19:14<1141::AID-MMA811>3.0.CO;2-9
    [3] P. Quittner, P. Souplet, Superlinear parabolic problems, Blow-up, Global Existence and Steady States, Basel: Birkhäuser Verlag, 2007.
    [4] K. J. Brown, Local and global bifurcation results for a semilinear boundary value problem, J. Differ. Equations, 239 (2007), 296–310. doi: 10.1016/j.jde.2007.05.013
    [5] K. J. Brown, S. S. Lin, On the existence of positive eigenfunctions for an eigenvalue problem with indefinite weight function, J. Math. Anal. Appl., 75 (1980), 112–120. doi: 10.1016/0022-247X(80)90309-1
    [6] M. Wang, Nonlinear elliptic equations (in Chinaese), Beijing: Science Press, 2010.
    [7] B. Gidas, J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Commun. Part. Diff. Eq., 6 (1981), 883–901. doi: 10.1080/03605308108820196
    [8] G. T. Whyburn, Topological analysis, B. Am. Math. Soc., 62 (1956), 119–121.
    [9] K. Umezu, Bifurcation approach to a logistic elliptic equation with a homogeneous incoming flux boundary condition, J. Differ. Equations, 252 (2012), 1146–1168. doi: 10.1016/j.jde.2011.08.043
    [10] K. Umezu, Global structure of supercritical bifurcation with turning points for the logistic elliptic equation with nonlinear boundary conditions, Nonlinear Anal-Theor, 89 (2013), 250–266. doi: 10.1016/j.na.2013.05.011
    [11] J. Bebernes, A. Bressan, Thermal behavior for a confined reactive gas, J. Differ. Equations, 44 (1982), 118–133. doi: 10.1016/0022-0396(82)90028-6
    [12] H. Bei, H. M. Yin, Semilinear parabolic equations with prescribed energy, Rendiconti Del Circolo Matematico Di Palermo, 44 (1995), 479–505. doi: 10.1007/BF02844682
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2191) PDF downloads(115) Cited by(0)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog