In this paper, we study the summability of solutions to the following semilinear elliptic equations involving mixed local and nonlocal operators
{−Δu(x)+(−Δ)su(x)=f(x),x∈Ω,u(x)≥0, x∈Ω,u(x)=0, x∈RN∖Ω,
where 0<s<1, Ω⊂RN is a smooth bounded domain, (−Δ)s is the fractional Laplace operator, f is a measurable function.
Citation: CaiDan LaMao, Shuibo Huang, Qiaoyu Tian, Canyun Huang. Regularity results of solutions to elliptic equations involving mixed local and nonlocal operators[J]. AIMS Mathematics, 2022, 7(3): 4199-4210. doi: 10.3934/math.2022233
[1] | Xiangrui Li, Shuibo Huang, Meirong Wu, Canyun Huang . Existence of solutions to elliptic equation with mixed local and nonlocal operators. AIMS Mathematics, 2022, 7(7): 13313-13324. doi: 10.3934/math.2022735 |
[2] | Xicuo Zha, Shuibo Huang, Qiaoyu Tian . Uniform boundedness results of solutions to mixed local and nonlocal elliptic operator. AIMS Mathematics, 2023, 8(9): 20665-20678. doi: 10.3934/math.20231053 |
[3] | Labudan Suonan, Yonglin Xu . Existence of solutions to mixed local and nonlocal anisotropic quasilinear singular elliptic equations. AIMS Mathematics, 2023, 8(10): 24862-24887. doi: 10.3934/math.20231268 |
[4] | Naveed Iqbal, Azmat Ullah Khan Niazi, Ikram Ullah Khan, Rasool Shah, Thongchai Botmart . Cauchy problem for non-autonomous fractional evolution equations with nonlocal conditions of order (1,2). AIMS Mathematics, 2022, 7(5): 8891-8913. doi: 10.3934/math.2022496 |
[5] | Mengyu Wang, Xinmin Qu, Huiqin Lu . Ground state sign-changing solutions for fractional Laplacian equations with critical nonlinearity. AIMS Mathematics, 2021, 6(5): 5028-5039. doi: 10.3934/math.2021297 |
[6] | Bashir Ahmad, Manal Alnahdi, Sotiris K. Ntouyas, Ahmed Alsaedi . On a mixed nonlinear boundary value problem with the right Caputo fractional derivative and multipoint closed boundary conditions. AIMS Mathematics, 2023, 8(5): 11709-11726. doi: 10.3934/math.2023593 |
[7] | Jiaqing Hu, Xian Xu, Qiangqiang Yang . Bifurcation results of positive solutions for an elliptic equation with nonlocal terms. AIMS Mathematics, 2021, 6(9): 9547-9567. doi: 10.3934/math.2021555 |
[8] | Yige Zhao, Yibing Sun, Zhi Liu, Yilin Wang . Solvability for boundary value problems of nonlinear fractional differential equations with mixed perturbations of the second type. AIMS Mathematics, 2020, 5(1): 557-567. doi: 10.3934/math.2020037 |
[9] | Fang-Fang Liao, Shapour Heidarkhani, Shahin Moradi . Multiple solutions for nonlocal elliptic problems driven by p(x)-biharmonic operator. AIMS Mathematics, 2021, 6(4): 4156-4172. doi: 10.3934/math.2021246 |
[10] | Mahmoud Soliman, Hamdy M. Ahmed, Niveen Badra, M. Elsaid Ramadan, Islam Samir, Soliman Alkhatib . Influence of the β-fractional derivative on optical soliton solutions of the pure-quartic nonlinear Schrödinger equation with weak nonlocality. AIMS Mathematics, 2025, 10(3): 7489-7508. doi: 10.3934/math.2025344 |
In this paper, we study the summability of solutions to the following semilinear elliptic equations involving mixed local and nonlocal operators
{−Δu(x)+(−Δ)su(x)=f(x),x∈Ω,u(x)≥0, x∈Ω,u(x)=0, x∈RN∖Ω,
where 0<s<1, Ω⊂RN is a smooth bounded domain, (−Δ)s is the fractional Laplace operator, f is a measurable function.
The main aim of this paper is to investigate summability of the solutions to the following semilinear elliptic equations
{−Δu(x)+(−Δ)su(x)=f(x),x∈Ω,u(x)≥0,x∈Ω,u(x)=0,x∈RN∖Ω, | (1.1) |
where Ω⊂RN is a bounded domain with a smooth boundary and N>2s,0<s<1, the data f is a nonnegative function that belongs to a suitable Lebesgue space. (−Δ)s is defined by the following formula
(−Δ)su(x)=CN,sP.V.∫RNu(x)−u(y)|x−y|N+2sdy,u∈S(RN), |
where
CN,s=(∫RN1−cosξ1|ξ|N+2sdξ)−1=22s−1π−N2Γ(N+2s2)|Γ(−s)|. |
During the last years, a lot of mathematical efforts have been devoted to the study of the fractional Laplacian, which can be used to describe many phenomena in life, such as financial mathematics, signal control processing, image processing, seismic analysis[2,9,10,13,22] and so on. Leonori et al.[21] established an Lp-theory to a family of integro-differential operators related to the fractional Laplacian
{Lu(x)=f(x),x∈Ω,u(x)≥0,x∈Ω,u(x)=0,x∈RN∖Ω, | (1.2) |
where L is integral operator with kernels functions K(x,y). It is worth pointing out that they established L∞ estimates for solutions to problem (1.2) with f∈Lm(Ω), m>N2s by Moser and Stampacchia methods respectively, see Proposition 9 of [23] also. Dipierro et al.[18] obtained an L∞ estimate for the solutions to some general kind of subcritical and critical problems in RN. Barrios et al.[3] extended the result of [21] to the following fractional p-Laplacian Dirichlet problem
{(−Δ)spu(x)=f(x),x∈Ω,u(x)≥0,x∈Ω,u(x)=0,x∈RN∖Ω. | (1.3) |
Abdellaoui et al. [1] obtained existence and summability of solutions to the following nonlocal nonlinear problem with Hardy potential
{(−Δ)su(x)−λu(x)|x|2s=f(x),x∈Ω,u(x)≥0,x∈Ω,u(x)=0,x∈RN∖Ω, | (1.4) |
Recently, an increasing attention has been focused on the study of the elliptic operators involving mixed local and nonlocal operators, which arise naturally in plasma physics[8] and population dynamics [17]. Biagi et al.[7] proved a radial symmetry result for the following elliptic equation by the moving planes method,
{−Δu(x)+(−Δ)su(x)=f(u(x)),x∈Ω,u(x)≥0,x∈Ω,u(x)=0,x∈RN∖Ω, |
where f:R→R is a locally Lipschitz continuous function, Ω⊂RN is an open and bounded set with C1 boundary, symmetric and convex with respect to the hyperplane {x1=0}. Biagi et al.[4] investigated the existence, maximum principles, interior Sobolev regularity and boundary regularity of solutions to problem (1.1). Dipierro et al.[16] discussed the spectral properties of mixed local and nonlocal equation under suitable Neumann conditions. For some other related results of mixed local and nonlocal equation, see [5,6,11,12,14,17,19,20] and the references therein.
The purpose of this paper is to study the summability of solutions to problem (1.1). The main results of this paper are the following theorems.
Theorem 1.1. Suppose that f∈Lm(Ω) with m>Ns+1. Then thereexists a constant K>0, depending on N, Ω, s, ‖u‖H10(Ω), ‖f‖Lm(Ω), such that any solutions to problem (1.1) satisfy
‖u‖L∞(Ω)≤K. | (1.5) |
Remark 1.2. According to [24], we know that solutions to the following equations belong to L∞(Ω) if f∈Lm(Ω) with m>N2,
{−Δu(x)=f(x),x∈Ω,u(x)=0,x∈∂Ω. |
While it is well known that for fractional elliptic equation [3,23],
{(−Δ)su(x)=f(x),x∈Ω,u(x)≥0,x∈Ω,u(x)=0,x∈RN∖Ω, |
u∈L∞(Ω) if f∈Lm(Ω) with m>N2s. Theorem 1.1 shows that solutions to problem (1.1) are bounded if f∈Lm(Ω) with m>Ns+1. Note that for 0<s<1,
N2<Ns+1<N2s. | (1.6) |
Furthermore, according to Proposition 4.4 of [15], we know that
lim |
Unfortunately, at least formally, (1.6) shows that the limit of \Delta +(-\Delta)^s is not the operator \Delta +I as s\to0^+ . In a forthcoming work, we consider the limiting behavior of solutions to boundary value nonlinear problem (1.1) when the parameter s tends to zero.
Theorem 1.3. Suppose that f\in L^{m}(\Omega) with
\begin{align} 1 < m < \frac{N}{s+1}. \end{align} | (1.7) |
Then, there exists a constant c = c(N, m, s) > 0 , such that any solutions to problem (1.1) satisfy
\begin{align} \|u\|_{L^{m^{**}}(\Omega)}\le c \|f \|_{L^m(\Omega)}, \end{align} | (1.8) |
where
\begin{align} m^{**} = \frac{mN(N-2s)}{(N-2)(N-2ms)}. \end{align} | (1.9) |
Remark 1.4. Obviously, m^{**} is monotone increasing in s and
\begin{align*} \lim\limits_{s\to 1^-}m^{**} = \frac{mN}{N-2m}. \end{align*} |
It is interesting to note that
\begin{align} \frac{mN}{N-2ms} < m^{**} < \frac{mN}{N-2m}, \end{align} | (1.10) |
which shows that the exponent in (1.9) better than the one coming from the fractional Laplace (-\Delta)^s only, while which worse that the one coming from the Laplace operator -\Delta only.
The surprising character of Theorem 1.3 lies mainly in the fact that, the mixed local and nonlocal operators has its own features, one can not consider the fractional Laplacian as a lower order perturbation only of the classical elliptic problem.
The paper is organized as follows. In Section 2 we present the relevant definitions and lemmas. Section 3 is devoted to the proof of Theorem 1.1 and Section 4 contains the proof of Theorem 1.3.
The definition of solution in this paper is defined as
Definition 2.1. A function u\in H_0^{1}(\mathbb{R}^{N}) is a weak solution to (1.1), if for every test function \phi\in C_0^\infty(\Omega) ,
\begin{align*} \int_{\Omega} \nabla u \cdot\nabla \phi dx+ \iint\limits_{\mathcal{D}(\Omega)}\frac{(u(x)-u(y))(\phi(x)-\phi(y))}{|x-y|^{N+2s}}dxdy = \int_{\Omega} f \phi dx, \end{align*} |
where
\begin{align*} {\mathcal{D}(\Omega)} = \mathbb{R}^{N}\times\mathbb{R}^{N}\setminus(\mathcal{C}\Omega\times\mathcal{C}\Omega). \end{align*} |
Here, we also need the Sobolev embedding theorem. Suppose that for s\in (0, 1) and N > 2s , there exists a constant \mathcal{S} = \mathcal{S}(N, s) such that, for any measurable and compactly supported function u: \mathbb{R}^{N}\to \mathbb{R} ,
\begin{align*} \left\|u\right\|^{2}_{L^{2_{s}^{*}}}\leq \mathcal{S}\iint_{\mathbb{R}^{N}\times\mathbb{R}^{N}}\frac{|u(x)-u(y)|^{2}}{|x-y|^{N+2s}}dxdy, \end{align*} |
where 2_{s}^{*} = \frac{2N}{N-2s} .
In the proof of main theorem, we need some base results of [21]. For any k\geq0 , define
\begin{align*} T_{k}(u) = \max\left\{-k, \min\left\{k, u\right\}\right\}, \; \; G_{k}(u) = u(x)-T_{k}(u). \end{align*} |
Lemma 2.2 (Lemma 4 of [21]). Let u(x) be a positive measurable function in \mathbb{R}^{N} . Then for any k\geq0 ,
\begin{align*} [T_{k}(u(x))-T_{k}(u(y))][G_{k}(u(x))-G_{k}(u(y))]\geq0 \; \; a.e\; &\mathit{\text{in}}\; {\mathcal{D}(\Omega)}. \end{align*} |
Lemma 2.3 (Proposition 3 of [21]). Let v be a function in H^{s}_{0}(\Omega) . For any k\geq0 , we have
\begin{align*} \lambda\left \|G_{k}(v)\right \|^{2}_{H^{s}_{0}(\Omega)}\leq\int_{\Omega}G_{k}(v)(-\Delta)^s v dx, \end{align*} |
and
\begin{align*} \lambda\left \|T_{k}(v)\right \|^{2}_{H^{s}_{0}(\Omega)}\leq\int_{\Omega}T_{k}(v)(-\Delta)^s v dx. \end{align*} |
Lemma 2.4 (Theorem 16 of [21]). Let f be a positive function that belong to L^{m}(\Omega) with \frac{2N}{N+2S}\leq m < \frac{N}{2s} . Then, there exists a constant c = c(N, m, s) > 0 such that the unique energy solution to (1.2) satisfies
\begin{align*} \left \|u\right\|_{L^{m^{**}_{s}}(\Omega)}\leq c \left \|f\right \|_{L^m(\Omega)}, \end{align*} |
where
\begin{align*} m^{**}_{s} = \frac{mN}{N-2ms}. \end{align*} |
The following numerical iteration result is important in proving the boundedness results.
Lemma 2.5 (Lemma 4.1 in [24]). Let f:\mathbb{R^{+}}\rightarrow \mathbb{R^{+}} be a non-increasing function such that
\begin{align*} \psi(h)\leq\frac{M\psi(k)^{\delta}}{(h-k)^{\gamma}}, \; \; \; \; \; \forall h > k > 0, \end{align*} |
where M > 0 , \delta > 1 and \gamma > 0 . Then \psi(d) = 0 , where d^{\gamma} = M\psi(0)^{\delta-1}2^{\frac{\delta\gamma}{\delta-1}} .
The main tool for the proof of Theorem 1.1 is Stampacchia method.
Proof. For any k > 0 , taking G_{k}(u) as text function in the definition of weak solution, we have
\begin{align} &\int_{\Omega}\nabla u(x)\cdot\nabla G_k u(x)dx + \iint_{\mathcal{D}(\Omega)}\frac{[u(x)-u(y)][G_{k}(u(x))-G_{k}(u(y))]}{|x-y|^{N+2s}}dxdy\\ = &\int_{\Omega} f(x) G_{k}u(x)dx, \end{align} | (3.1) |
where {\mathcal{D}(\Omega)} = \mathbb{R}^{N}\times\mathbb{R}^{N}\setminus(\mathcal{C}\Omega\times\mathcal{C}\Omega) .
Obviously, by u(x) = T_{k}(u(x))+G_{k}(u(x)) , we get
\begin{align} &\iint_{\mathcal{D}(\Omega)}\frac{[u(x)-u(y)][G_{k}(u(x))-G_{k}(u(y))]} {|x-y|^{N+2s}}dxdy\\ = &\iint_{\mathcal{D}(\Omega)}\frac{ [T_{k}(u(x))+G_{k}(u(x))-T_{k}(u(y))-G_{k}(u(y))][G_{k}(u(x)) -G_{k}(u(y))]}{|x-y|^{N+2s}}dxdy\\ = &\iint_{\mathcal{D}(\Omega)}\frac{[T_{k}(u(x))-T_{k}(u(y))][G_{k}(u(x)) -G_{k}(u(y))]}{|x-y|^{N+2s}}dxdy\\ &+\iint_{\mathcal{D}(\Omega)}\frac{|G_{k}(u(x)) -G_{k}(u(y))|^{2}}{|x-y|^{N+2s}}dxdy. \end{align} | (3.2) |
According to Lemma 2.2, we have
\begin{align} [T_{k}(u(x))-T_{k}(u(y))][G_{k}(u(x))-G_{k}(u(y))]\geq0, \text{a.e}, (x, y)\in {\mathcal{D}(\Omega)}, \end{align} | (3.3) |
which, together with (3.2), implies that
\begin{align} &\iint_{\mathcal{D}(\Omega)}\frac{|G_{k}(u(x))-G_{k}(u(y))|^{2}} {|x-y|^{N+2s}}dxdy\\ \leq &\iint_{\mathcal{D}(\Omega)}\frac{[u(x)-u(y)][G_{k}(u(x))-G_{k}(u(y))]} {|x-y|^{N+2s}}dxdy. \end{align} | (3.4) |
Note that \int_{\Omega}\nabla u(x)\cdot\nabla G_k u(x)dx\geq 0 , this fact, combine Sobolev's embedding theorem, (3.1) with (3.4), leads to
\begin{align} &\left\|G_{k}(u)\right\|^{2}_{L^{2^{*}_{s}}(\Omega)}\\ \leq& \mathcal{S} \iint_{\mathcal{D}(\Omega)}\frac{|G_{k}(u(x))-G_{k}(u(y))|^{2}} {|x-y|^{N+2s}}dxdy\\ \leq&\mathcal{S}\int_{A_k} f(x) G_{k}(u(x))dx\\ \leq&\mathcal{S}\|f\|_{L^m(A_k)}\left\|G_{k}(u) \right\|_{L^{2^{*}_{s}}(A_k)}|A_{k}|^{1-\frac{1}{m}-\frac{1}{2^{*}_{s}}}, \end{align} | (3.5) |
where A_{k} = \left\{x\in \Omega : u(x)\geq k\right\} and 2^{*}_{s} = \frac{2N}{N-2s} . Here we have used the Hölder inequality and the fact that G_{k}(u(x)) = 0 , x\in \Omega\setminus A_k . Therefore,
\begin{align} \left\|G_{k}(u)\right\|_{L^{2^{*}_{s}}(\Omega)} \leq\mathcal{S}\|f\|_{L^m(A_k)}|A_{k}|^{1-\frac{1}{m}-\frac{1}{2^{*}_{s}}}, \end{align} | (3.6) |
On the other hand, by \nabla u(x) = \nabla G_k(u(x)) for x\in A_k , we find
\begin{align} \int_{\Omega}\nabla u \cdot\nabla G_k(u) dx = \int_{A_{k}}|\nabla G_k(u)|^2 dx. \end{align} | (3.7) |
This fact, combine with the Sobolev embedding theorem, (3.1), (3.7) and Lemma 2.3, leads to
\begin{align} \left\|G_{k}(u)\right\|^{2}_{L^{2^{*}}(\Omega)}\leq&\int_{A_k}|\nabla G_{k}(u)|^{2}dx\\ \leq&\int_{A_k} f(u) G_{k}(u)dx\\ \leq&\left\|f\right\|_{L^m(A_{k})}\left\|G_{k}(u)\right\|_{L^{2^{s}_{*}}(A_{k})} |A_{k}|^{1-\frac{1}{m}-\frac{1}{2^{s}_{*}}}. \end{align} | (3.8) |
where 2^{*} = \frac{2N}{N-2} . Now combine (3.6) with (3.8), we have
\begin{align} &\|G_{k}(u)\|^{2}_{L^{2^{*}}(\Omega)}\\ \leq&\|f\|_{L^m(A_k)}\|G_{k}(u)\|_{L^{2^{s}_{*}}(A_k)} |A_{k}|^{1-\frac{1}{m}-\frac{1}{2^{s}_{*}}}\\ \leq&\|f\|^{2}_{L^m(\Omega)}|A_{k}|^{2(1-\frac{1}{m} -\frac{1}{2^{*}_{s}})} \end{align} | (3.9) |
For every h > k we know that A_{h}\subset A_{k} and |G_{k}(u(x))|\chi_{A_{h}(x)}\geq (h-k) in \Omega , we have that
\begin{align} (h-k)|A_{h}|^\frac{1}{2^{*}} \leq&\left(\int\limits_{A_{h}} |G_{k}(u)|^{2^{*}}\right)^{\frac{1}{{2^{*}}}}\\ \leq&\left\|G_{k}(u)\right\|_{L^{2^{*}}(\Omega)}\\ \leq&\|f\|_{L^m(\Omega)}|A_{k}|^{(1-\frac{1}{m}-\frac{1}{2^{*}_{s}})}. \end{align} | (3.10) |
Therefore
\begin{align} |A_{h}|\leq\frac{\left\|f\right\|^{2^{*}}_{L^m(\Omega)} |A_{k}|^{2^{*}(1-\frac{1}{m}-\frac{1}{2^{*}_{s}})}}{(h-k)^{2^{*}}}. \end{align} | (3.11) |
Note that
\begin{align} 2^{*}(1-\frac{1}{m}-\frac{1}{2^{*}_{s}}) > 1 \end{align} | (3.12) |
if m > \frac{N}{s+1} . Finally, we apply the Lemma 2.5 with the choice \psi(u) = |A_u| , hence there exists k_0 such that \psi(k)\equiv0 for any k\geq k_0 and thus ess \sup_{\Omega} u\leq k_0 .
The main tools for the proof of Theorem 1.3 are Calderón-Zygmund theory and Sobolev embedding theorem. The proof is divided into two parts.
Proof. Define
\begin{align} \Phi(\sigma) = \left \{ \begin{array}{rl} \sigma^{\beta}, \; \; \; \; \; \; \; \; \; \; \; \; \; &0\leq \sigma\leq T, \\ \beta T^{\beta-1}(\sigma-T)+T^{\beta}, \; &\sigma > T, \\ \end{array} \right. \end{align} | (4.1) |
where \beta = \frac{N(m-1)}{N-2ms} > 1 . Taking \Phi(u) as text function in the definition of weak solution to (1.1), we have
\begin{align} &\int_{\Omega}\nabla u\cdot\nabla \Phi(u)dx + \iint_{ \mathbb{R}^{2N}}\frac{[u(x)-u(y)][\Phi(u(x))-\Phi(u(y))]}{|x-y|^{N+2s}}dxdy\\ = &\int_{\Omega} f\Phi(u)dx. \end{align} | (4.2) |
Firstly, we consider \int_{\Omega}\nabla u\cdot\nabla \Phi(u)dx . It is esaily to see that
\begin{align} \int_{\Omega}\nabla u\cdot\nabla \Phi(u)dx = &\int_{\Omega\cup \{u > T\}}\nabla u\cdot\nabla \Phi(u)dx+\int_{\Omega\cup \{0\leq u\leq T\}}\nabla u\cdot\nabla \Phi(u)dx\\ = &\beta T^{\beta-1}\int_{\Omega\cup \{u > T\}}|\nabla u|^{2}dx+\int_{\Omega\cup \{0\leq u\leq T\}}\nabla u\cdot\nabla u^{\beta}dx\\ \geq&0. \end{align} | (4.3) |
Using (4.2) and (4.3), we get
\begin{align} \iint_{\mathbb{R}^{2N}}\frac{[u(x)-u(y)][\Phi(u(x))-\Phi(u(y))]}{|x-y|^{N+2s}}dxdy \leq\int_{\Omega} f\Phi(u)dx. \end{align} | (4.4) |
Similar to the proof of Lemma 2.4, we know that
\begin{align} \|u\|_{L^{m^{**}_{s}}(\Omega)}\leq c \left \|f\right \|_{L^m(\Omega)}, \end{align} | (4.5) |
where c depends, on \lambda , S , s , N , m and \Omega , m^{**}_{s} = \frac{mN}{N-2ms} .
Secondly, we show that
\begin{align} \iint_{ \mathbb{R}^{2N}}\frac{[u(x)-u(y)][\Phi(u(x))-\Phi(u(y))]}{|x-y|^{N+2s}}dxdy\geq 0. \end{align} | (4.6) |
In fact, decompose \mathbb{R}^{N} as
\begin{align*} \mathbb{R}^{N} = \{x\in \mathbb{R}^{N}: u(x) > T\}\cup \{x\in \mathbb{R}^{N}: 0\leq u(x)\leq T\}. \end{align*} |
Denote
\begin{align*} &\Omega_1 = \{(x, y)\in \mathbb{R}^{N}\times \mathbb{R}^{N}: u(x) > T, u(y) > T \}, \nonumber\\ &\Omega_2 = \{(x, y)\in \mathbb{R}^{N}\times \mathbb{R}^{N}: u(x) > T, 0\leq u(y)\leq T\}, \nonumber\\ &\Omega_3 = \{(x, y)\in \mathbb{R}^{N}\times \mathbb{R}^{N}: 0\leq u(x)\leq T, u(y) > T \}, \nonumber\\ &\Omega_4 = \{(x, y)\in \mathbb{R}^{N}\times \mathbb{R}^{N}: 0\leq u(x)\leq T, 0\leq u(x)\leq T \}. \end{align*} |
Therefore
\begin{align} &\iint_{ \mathbb{R}^{2N}}\frac{[u(x)-u(y)][\Phi(u(x))-\Phi(u(y))]}{|x-y|^{N+2s}}dxdy\\ = &\left(\iint_{\Omega_1}+\iint_{\Omega_2}+\iint_{\Omega_3}+\iint_{\Omega_4}\right)\frac{[u(x)-u(y)] [\Phi(u(x))-\Phi(u(y))]}{|x-y|^{N+2s}}dxdy\\ : = &I_1+I_2+I_3+I_4. \end{align} | (4.7) |
Firstly, we consider I_1 . By the definition of \Phi , which given by (4.1), we find, for (x, y)\in\Omega_1 ,
\begin{align*} \Phi(u(x)) = \beta T^{\beta-1}(u(x)-T)+T^{\beta}, \; \; \Phi(u(y)) = \beta T^{\beta-1}(u(y)-T)+T^{\beta}, \end{align*} |
which implies that \Phi(u(x))-\Phi(u(y)) = \beta T^{\beta-1}[u(x)-u(y)] . Therefore
\begin{align} I_1 = &\iint_{\Omega_1}\frac{[u(x)-u(y)] [\Phi(u(x))-\Phi(u(y))]}{|x-y|^{N+2s}}dxdy\\ = &\beta T^{\beta-1}\iint_{\Omega_1}\frac{[u(x)-u(y)]^{2}}{|x-y|^{N+2s}}dxdy\\ \geq&0. \end{align} | (4.8) |
For I_2 , it is obvious that, for (x, y)\in\Omega_2 ,
\begin{align*} \Phi(u(x)) = \beta T^{\beta-1}(u(x)-T)+T^{\beta}, \; \; \Phi(u(y)) = u(y)^{\beta}\leq T^{\beta}. \end{align*} |
Thus, for (x, y)\in\Omega_2 , u(x)\geq u(y) and
\begin{align*} \Phi(u(x))-\Phi(u(y)) = \beta T^{\beta-1}(u(x)-T)+(T ^{\beta}-u^{\beta}(y))\geq0. \end{align*} |
This fact gives that
\begin{align} I_2 = &\iint_{\Omega_2}\frac{[u(x)-u(y)] [\Phi(u(x))-\Phi(u(y))]}{|x-y|^{N+2s}}dxdy\\ = &\iint_{\Omega_2}\frac{[u(x)-u(y)][\beta T^{\beta-1}(u(x)-T)+(T ^{\beta}-u^{\beta}(y))]}{|x-y|^{N+2s}}dxdy\\ \geq&0. \end{align} | (4.9) |
For I_3 , it is easy to check that, for (x, y)\in\Omega_3 ,
\begin{align*} \Phi(u(x)) = u(x)^{\beta}, \; \; \Phi(u(y)) = \beta T^{\beta-1}(u(y)-T)+T^{\beta}, \end{align*} |
and
\begin{align*} \Phi(u(x))-\Phi(u(y)) = u(x)^{\beta}-T^{\beta}-\beta T^{\beta-1}(u(y)-T)\leq 0. \end{align*} |
Consequently
\begin{align} I_3 = &\iint_{\Omega_3}\frac{[u(x)-u(y)] [\Phi(u(x))-\Phi(u(y))]}{|x-y|^{N+2s}}dxdy\\ = &\iint_{\Omega_3}\frac{[u(x)-u(y)][(u^{\beta}(x)-T^{\beta})-(\beta T^{\beta-1}(u(x)-T))]}{|x-y|^{N+2s}}dxdy\\ \geq&0, \end{align} | (4.10) |
here we use that fact that u(x)-u(y)\leq0 for (x, y)\in\Omega_3 .
For I_4 , obviously, for (x, y)\in\Omega_4 ,
\begin{align*} \Phi(u(x))-\Phi(u(y)) = u(x)^{\beta}-u(y)^{\beta}. \end{align*} |
This fact, together with the monotonicity of t^\beta , leads to
\begin{align} I_4 = &\iint_{\Omega_4}\frac{[u(x)-u(y)] [\Phi(u(x))-\Phi(u(y))]}{|x-y|^{N+2s}}dxdy\\ = &\iint_{\Omega_4}\frac{[u(x)-u(y)][u^{\beta}(x)-u^{\beta}(y)]}{|x-y|^{N+2s}}dxdy\\ \geq&0. \end{align} | (4.11) |
Using (4.8)–(4.11), we derive that (4.6) holds.
According to (4.2) and (4.6), we have
\begin{align} \int_{\Omega}\nabla u\cdot \nabla \Phi(u) dx\le&\int_{\Omega}f\Phi(u)dx. \end{align} | (4.12) |
For large T > 0 , by (4.1) we know that \Phi(u) = u^{\beta} if 0\leq u(x) \leq T . Thus (4.12), together with the Hölder inequalities, yields
\begin{align*} \frac{4}{(\beta +1)^2}\int_{\Omega} | \nabla u^{\frac{\beta +1}{2}}|^{2}dx &\le \int_{\Omega}fu^{\beta}dx\le \|f\|_{L^m(\Omega)} \|u\|^{{\beta}}_{L^{m^{**}_{s}} (\Omega)}, \end{align*} |
where
\begin{align*} \frac{1}{m}+\frac{\beta}{m^{**}_{s}} = 1, \; \; \; \frac{2^*}{2}(\beta+1) > 1, \; \; \; m^{**}_{s} = \frac{mN}{N-2ms}. \end{align*} |
Therefore, using (4.5), we get
\begin{align*} \|u^{\frac{\beta +1}{2}} \|^2_{L^{2^*}(\Omega)}&\le c \|f\|_{L^m(\Omega)} \|u\|^{{\beta}}_{L^{m^{**}_{s}} (\Omega)}\le c \|f\|^{\beta+1}_{L^m(\Omega)}. \end{align*} |
This fact implies that
\begin{align} \|u \|_{L^{m^{**}}(\Omega)}&\le c \|f\|_{L^m(\Omega)}, \end{align} | (4.13) |
where
\begin{align*} m^{**} = \frac{Nm(N-2s)}{(N-2)(N-2ms)}. \end{align*} |
This works was partially supported by Program for Yong Talent of State Ethnic Affairs Commission of China (No. XBMU-2019-AB-34), Innovation Team Project of Northwest Minzu University (No.1110130131) and First-Rate Discipline of Northwest Minzu University.
The authors declare that there is no conflict of interests regarding the publication of this article.
[1] |
B. Abdellaoui, M. Medina, I. Peral, A. Primo, The effect of the Hardy potential in some Calderón-Zygmund properties for the fractional Laplacian, J. Differ. Equations, 260 (2016), 8160–8206. http://dx.doi.org/10.1016/j.jde.2016.02.016 doi: 10.1016/j.jde.2016.02.016
![]() |
[2] | D. Applebaum, Lévy processes and stochastic calculus, Cambridge: Cambridge University Press, 2009. |
[3] |
B. Barrios, I. Peral, S. Vita, Some remarks about the summability of nonlocal nonlinear problems, Adv. Nonlinear Anal., 4 (2015), 91–107. http://dx.doi.org/10.1515/anona-2015-0012 doi: 10.1515/anona-2015-0012
![]() |
[4] | S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, Mixed local and nonlocal elliptic operators: regularity and maximum principles, Commun. Part. Diff. Eq., (2021), in press. http://dx.doi.org/10.1080/03605302.2021.1998908 |
[5] | S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, A Faber-Krahn inequality for mixed local and nonlocal operators, arXiv: 2104.00830. |
[6] | S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, A Hong-Krahn-Szegö inequality for mixed local and nonlocal operators, arXiv: 2110.07129. |
[7] |
S. Biagi, E. Vecchi, S. Dipierro, E. Valdinoci, Semilinear elliptic equations involving mixed local and nonlocal operators, P. Roy. Soc. Edinb. A., 151 (2021), 1611–1641. http://dx.doi.org/10.1017/prm.2020.75 doi: 10.1017/prm.2020.75
![]() |
[8] |
D. Blazevski, D. del-Castillo-Negrete, Local and nonlocal anisotropic transport in reversed shear magnetic fields shearless Cantori and nondiffusive transport, Phys. Rev. E, 87 (2013), 063106. http://dx.doi.org/10.1103/PhysRevE.87.063106 doi: 10.1103/PhysRevE.87.063106
![]() |
[9] |
K. Bogdan, P. Sztonyk, Harnack's inequality for stable Lévy processes, Potential Anal., 22 (2005), 133–150. http://dx.doi.org/10.1007/s11118-004-0590-x doi: 10.1007/s11118-004-0590-x
![]() |
[10] |
L. Caffarelli, A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math., 171 (2010), 1903–1930. http://dx.doi.org/10.4007/annals.2010.171.1903 doi: 10.4007/annals.2010.171.1903
![]() |
[11] |
Z. Chen, P. Kim, R. Song, Z. Vondraček, Sharp Green function estimates for \Delta +\Delta^{\alpha/2} in C^{1, 1} open sets and their applications, Illinois J. Math., 54 (2010), 981–1024. http://dx.doi.org/10.1215/ijm/1336049983 doi: 10.1215/ijm/1336049983
![]() |
[12] |
Z. Chen, P. Kim, R. Song, Z. Vondraček, Boundary Harnack principle for \Delta +\Delta^{\alpha/2}, Trans. Amer. Math. Soc., 364 (2012), 4169–4205. http://dx.doi.org/10.1090/S0002-9947-2012-05542-5 doi: 10.1090/S0002-9947-2012-05542-5
![]() |
[13] | R. Cont, P. Tankov, Financial modelling with jump processes, London: Chapman & Hall/CRC, 2004. |
[14] |
L. Del Pezzo, R. Ferreira, J. Rossi, Eigenvalues for a combination between local and nonlocal p-Laplacians, Fract. Calc. Appl. Anal., 22 (2019), 1414–1436. http://dx.doi.org/10.1515/fca-2019-0074 doi: 10.1515/fca-2019-0074
![]() |
[15] |
E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. http://dx.doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004
![]() |
[16] | S. Dipierro, E. Proietti-Lippi, E. Valdinoci, Linear theory for a mixed operator with Neumann conditions, Asymptot. Anal., (2021), in press. http://dx.doi.org/10.3233/ASY-211718 |
[17] | S. Dipierro, E. Lippi, E. Valdinoci, (Non)local logistic equations with Neumann conditions, arXiv: 2101.02315. |
[18] |
S. Dipierro, M. Medina, I. Peral, E. Valdinoci, Bifurcation results for a fractional elliptic equation with critical exponent in \mathbb{R}^{N}, Manuscripta Math., 153 (2017), 183–230. http://dx.doi.org/10.1007/s00229-016-0878-3 doi: 10.1007/s00229-016-0878-3
![]() |
[19] |
B. Hu, Y. Yang, A note on the combination between local and nonlocal p-Laplacian operators, Complex Var. Elliptic Equ., 65 (2020), 1763–1776. http://dx.doi.org/10.1080/17476933.2019.1701450 doi: 10.1080/17476933.2019.1701450
![]() |
[20] | P. Garain, A. Ukhlov, Mixed local and nonlocal Sobolev inequalities with extremal and associated quasilinear singular elliptic problems, arXiv: 2106.04458. |
[21] |
T. Leonori, I. Peral, A. Primo, F. Soria, Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations, Discrete Contin. Dyn. Syst., 35 (2015), 6031–6068. http://dx.doi.org/10.3934/dcds.2015.35.6031 doi: 10.3934/dcds.2015.35.6031
![]() |
[22] |
A. Majda, E. Tabak, A two-dimensional model for quasigeostrophic flow: comparison with the two-dimensional Euler flow, Phys. D, 98 (1996), 515–522. http://dx.doi.org/10.1016/0167-2789(96)00114-5 doi: 10.1016/0167-2789(96)00114-5
![]() |
[23] |
R. Servadei, E. Valdinoci, Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat., 58 (2014), 133–154. http://dx.doi.org/10.5565/PUBLMAT-58114-06 doi: 10.5565/PUBLMAT-58114-06
![]() |
[24] |
G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier, 15 (1965), 189–257. http://dx.doi.org/10.5802/aif.204 doi: 10.5802/aif.204
![]() |
1. | Xiangrui Li, Shuibo Huang, Meirong Wu, Canyun Huang, Existence of solutions to elliptic equation with mixed local and nonlocal operators, 2022, 7, 2473-6988, 13313, 10.3934/math.2022735 | |
2. | Kheireddine Biroud, Mixed local and nonlocal equation with singular nonlinearity having variable exponent, 2023, 14, 1662-9981, 10.1007/s11868-023-00509-7 | |
3. | Dimitri Mugnai, Edoardo Proietti Lippi, On mixed local-nonlocal operators with (\alpha , \beta )-Neumann conditions, 2022, 71, 0009-725X, 1035, 10.1007/s12215-022-00755-6 | |
4. | Yanhui Li, Hongwu Zhang, Landweber iterative regularization method for an inverse initial value problem of diffusion equation with local and nonlocal operators, 2023, 31, 2769-0911, 10.1080/27690911.2023.2194644 | |
5. | Jiaxiang Zhang, Shenzhou Zheng, The solvability and regularity results for elliptic equations involving mixed local and nonlocal p-Laplacian, 2024, 10, 2296-9020, 1097, 10.1007/s41808-024-00291-7 | |
6. | Kheireddine Biroud, A nonlocal type problem involving a mixed local and nonlocal operator, 2024, 13, 2193-5343, 63, 10.1007/s40065-023-00444-x | |
7. | Yiru Wang, Shuibo Huang, Hong-Rui Sun, Kirchhoff type mixed local and nonlocal elliptic problems with concave–convex and Choquard nonlinearities, 2024, 15, 1662-9981, 10.1007/s11868-024-00593-3 | |
8. | Lovelesh Sharma, Tuhina Mukherjee, On critical Ambrosetti–Prodi type problems involving mixed operator, 2024, 10, 2296-9020, 1187, 10.1007/s41808-024-00298-0 | |
9. | Xicuo Zha, Shuibo Huang, Qiaoyu Tian, Uniform boundedness results of solutions to mixed local and nonlocal elliptic operator, 2023, 8, 2473-6988, 20665, 10.3934/math.20231053 | |
10. | Labudan Suonan, Yonglin Xu, Existence of solutions to mixed local and nonlocal anisotropic quasilinear singular elliptic equations, 2023, 8, 2473-6988, 24862, 10.3934/math.20231268 | |
11. | Shuibo Huang, Hichem Hajaiej, Lazer-mckenna type problem involving mixed local and nonlocal elliptic operators, 2025, 32, 1021-9722, 10.1007/s00030-024-01007-5 | |
12. | Lovelesh Sharma, Brezis Nirenberg type results for local non-local problems under mixed boundary conditions, 2024, 16, 2836-3310, 872, 10.3934/cam.2024038 | |
13. | Yongzhi Daiji, Shuibo Huang, Qiaoyu Tian, Symmetry and Monotonicity of Solutions to Mixed Local and Nonlocal Weighted Elliptic Equations, 2025, 14, 2075-1680, 139, 10.3390/axioms14020139 | |
14. | Hongwu Zhang, Yanhui Li, Modified Landweber iterative method for a backward problem in time of the diffusion equation with local and nonlocal operators, 2025, 45, 0252-9602, 1205, 10.1007/s10473-025-0324-2 | |
15. | Tuhina Mukherjee, Lovelesh Sharma, On singular problems associated with mixed operators under mixed boundary conditions, 2025, 27, 1661-7738, 10.1007/s11784-025-01183-6 |