Let $ A $ be a finite-dimensional algebra with identity over the field $ \mathbb{F} $, $ U(A) $ be the group of units of $ A $ and $ L(A) $ be the set of left ideals of $ A $. It is well known that there is an equivalence relation $ \sim $ on $ L(A) $ by defining $ L_1\sim L_2\in L(A) $ if and only if there exists some $ u\in U(A) $ such that $ L_{1} = L_{2}u $. $ C(A) = \{[L]|L\in L(A)\} $ is the set of equivalence classes determined by the relation $ \sim $, which is a semigroup with respect to the natural operation $ [L_1][L_2] = [L_1L_2] $ for any $ L_1, L_2 \in L(A) $. The purpose of this paper is to describe the structures of semigroup of conjugacy classes of left ideals for the Sweedler's four-dimensional Hopf algebra $ H_{4} $.
Citation: Fengxia Gao, Jialei Chen. Conjugacy classes of left ideals of Sweedler's four-dimensional algebra $ H_{4} $[J]. AIMS Mathematics, 2022, 7(5): 7720-7727. doi: 10.3934/math.2022433
Let $ A $ be a finite-dimensional algebra with identity over the field $ \mathbb{F} $, $ U(A) $ be the group of units of $ A $ and $ L(A) $ be the set of left ideals of $ A $. It is well known that there is an equivalence relation $ \sim $ on $ L(A) $ by defining $ L_1\sim L_2\in L(A) $ if and only if there exists some $ u\in U(A) $ such that $ L_{1} = L_{2}u $. $ C(A) = \{[L]|L\in L(A)\} $ is the set of equivalence classes determined by the relation $ \sim $, which is a semigroup with respect to the natural operation $ [L_1][L_2] = [L_1L_2] $ for any $ L_1, L_2 \in L(A) $. The purpose of this paper is to describe the structures of semigroup of conjugacy classes of left ideals for the Sweedler's four-dimensional Hopf algebra $ H_{4} $.
[1] | J. Okni$\acute{n}$ski, L. Renner, Algebras with finitely many orbits, J. Algebra, 264 (2003), 479–495. https://doi.org/10.1016/S0021-8693(03)00129-7 doi: 10.1016/S0021-8693(03)00129-7 |
[2] | A. H. Clifford, G. B. Preston, The algebraic theory of semigroups, Vol. I, Providence, RI: American Mathematical Society, 1961. |
[3] | A. Mecel, J. Okni$\acute{n}$ski, Conjugacy classes of left ideals of $A$ of finite-dimensional algebras, Publ. Mat., 25 (2013), 477–496. https://doi.org/10.5565/PUBLMAT_57213_10 doi: 10.5565/PUBLMAT_57213_10 |
[4] | J. Okni$\acute{n}$ski, Regular J-classes of subspace semigroups, Semigroup Forum, 65 (2002), 450–459. https://doi.org/10.1007/s002330010125 doi: 10.1007/s002330010125 |
[5] | J. Okni$\acute{n}$ski, M. Putcha, Subspace semigroups, J. Algebra, 233 (2000), 87–104. https://doi.org/10.1006/jabr.2000.8417 |
[6] | M. Hryniewicka, J. Krempa, On rings with finite number of orbits, Publ. Mat., 58 (2014), 233–249. https://doi.org/10.5565/PUBLMAT_58114_12 doi: 10.5565/PUBLMAT_58114_12 |
[7] | J. Han, Conjugate action in a left artinian ring, Bull. Korean Math. Soc., 32 (1995), 35–43. |
[8] | J. Han, Group actions in a regular ring, Bull. Korean Math. Soc., 42 (2005), 807–815. https://doi.org/10.4134/BKMS.2005.42.4.807 doi: 10.4134/BKMS.2005.42.4.807 |
[9] | H. Chen, Y. Zhang, Four-dimensional Yetter-Drinfeld module algebras over $H_{4}$, J. Algebra, 296 (2006), 582–634. https://doi.org/10.1016/j.jalgebra.2005.08.011 doi: 10.1016/j.jalgebra.2005.08.011 |
[10] | A. S. Gordienko, Algebras simple with respect to a Sweedler's algebra action, J. Algebra Appl., 14 (2015), 1450077. https://doi.org/10.1142/S0219498814500777 doi: 10.1142/S0219498814500777 |
[11] | S. Montgomery, Hopf algebras and their actions on rings, Providence, RI: American Mathematical Society, 1993. https://doi.org/10.1090/cbms/082 |
[12] | L. Centrone, F. Yasumura, Actions of Taft's algebras on finite dimensional algebras, J. Algebra, 560 (2020), 725–744. http://doi.org/10.1016/j.jalgebra.2020.06.007 doi: 10.1016/j.jalgebra.2020.06.007 |
[13] | L. Centrone, C. Zargeh, Varieties of null-filiform Leibniz algebras under the action of Hopf algebras, Algebr. Represent. Theor., 2021, 1–18. https://doi.org/10.1007/s10468-021-10105-2 |
[14] | S. Montgomery, H.-J. Schneider, Skew derivations of finite-dimensional algebras and actions of the double of the Taft Hopf algebra, Tsukuba J. Math., 25 (2001), 337–358. https://doi.org/10.21099/tkbjm/1496164292 doi: 10.21099/tkbjm/1496164292 |
[15] | I. Assem, D. Simson, A. Skowronski, Elements of the representation theory of associative algebras, Cambridge: Cambridge University Press, 2006. http://dx.doi.org/10.1017/CBO9780511614309 |
[16] | Y. A. Drozd, V. V. Kirichenko, Finite dimensional algebras, Berlin: Springer, 1994. https://doi.org/10.1007/978-3-642-76244-4 |