Research article Special Issues

Hermite-Hadamard type inequalities based on the Erdélyi-Kober fractional integrals

  • Received: 24 April 2021 Accepted: 27 July 2021 Published: 09 August 2021
  • MSC : 26A33, 26D07, 26D10, 26D15

  • In the paper, based on Erdélyi-Kober fractional integrals $ ^\rho \mathcal{K}^\alpha_{\chi+}f $ and $ ^\rho \mathcal{K}^\alpha_{\chi-}f $ for any $ \chi\in[a, b] $ with $ f\in\mathfrak{X}_c^p(a, b) $, authors establish some new Hermite-Hadamard type inequalities for convex function. The obtained inequalities generalize the corresponding results for Riemann-Liouville fractional integrals by taking limits when a parameter $ \rho\rightarrow1 $. As applications, the error estimations of Hermite-Hadamard type inequality are also provided.

    Citation: XuRan Hai, ShuHong Wang. Hermite-Hadamard type inequalities based on the Erdélyi-Kober fractional integrals[J]. AIMS Mathematics, 2021, 6(10): 11494-11507. doi: 10.3934/math.2021666

    Related Papers:

  • In the paper, based on Erdélyi-Kober fractional integrals $ ^\rho \mathcal{K}^\alpha_{\chi+}f $ and $ ^\rho \mathcal{K}^\alpha_{\chi-}f $ for any $ \chi\in[a, b] $ with $ f\in\mathfrak{X}_c^p(a, b) $, authors establish some new Hermite-Hadamard type inequalities for convex function. The obtained inequalities generalize the corresponding results for Riemann-Liouville fractional integrals by taking limits when a parameter $ \rho\rightarrow1 $. As applications, the error estimations of Hermite-Hadamard type inequality are also provided.



    加载中


    [1] B. Ahmad, A. Alsaedi, S. K. Ntouyas, J. Tariboon, Hadamard-type fractional differential equations, inclusions and inequalities, Switzerland: Springer International Publishing AG, 2017.
    [2] M. Alomari, M. Darus, S. S. Dragomir, New inequalities of Simpson's type for $s-$convex functions with applications, RGMIA Res. Rep. Coll., 12 (2009), 1–9.
    [3] A. Akkurt, M. Yildirim, H. Yildirim, On some integral inequalities for generalized fractional integral, Adv. Inequal. Appl., 17 (2016), 1–11.
    [4] J. Chen, X. Huang, Some new inequalities of Simpson's type for $s-$convex functions via fractional integrals, Filomat, 31 (2017), 4989–4997. doi: 10.2298/FIL1715989C
    [5] H. Chen, U. N. Katugampola, Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities for generalized fractional integrals, J. Math. Anal. Appl., 446 (2017), 1274–1291. doi: 10.1016/j.jmaa.2016.09.018
    [6] S. S. Dragomir, Hermite-Hadamard type inequalities for generalized Riemann-Liouville fractional integrals of $h-$convex functions, Math. Methods Appl. Sci., 44 (2021), 2364–2380. doi: 10.1002/mma.5893
    [7] S. S. Dragomir, R. P. Agarwal, P. Cerone, On Simpsons inequality and applications, J. Inequal. Appl., 5 (2000), 1–36.
    [8] F. Ertural, M. Z. Sarikaya, Simpson type integral inequalities for generalized fractional integral, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 113 (2019), 3115–3124. doi: 10.1007/s13398-019-00680-x
    [9] A. Guessab, G. Schmeisser, Sharp error estimates for interpolatory approximation on convex polytopes, SIAM J. Numer. Anal., 43 (2005), 909–923. doi: 10.1137/S0036142903435958
    [10] A. Guessab, G. Schmeisser, Convexity results and sharp error estimates in approximate multivariate integration, SIAM Math. Comp., 73 (2003), 1365–1384. doi: 10.1090/S0025-5718-03-01622-3
    [11] A. Guessab, G. Schmeisser, Sharp integral inequalities of the Hermite-Hadamard type, J. Approx. Theory., 115 (2002), 260–288. doi: 10.1006/jath.2001.3658
    [12] C. Hermite, Sur deux limites d'une intégrale définie, Mathesis, 3 (1983), 82.
    [13] X. R. Hai, S. H. Wang, Hermite-Hadamard type inequalities based on Katugampola fractional integrals, Mathematics in Practice and Theory, 2021. Available from: https://kns.cnki.net/kcms/detail/11.2018.O1.20210617.1103.008.html.
    [14] M. Iqbal, S. Qaisar, S. Hussain, On Simpsons type inequalities utilizing fractional integrals, J. Comput. Anal. Appl., 3 (2017), 1137–1145.
    [15] F. Jarad, E. Uǧurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Differ. Equ., 1 (2017), 247.
    [16] U. N. Katugampola, New approach to generalized fractional integral, Appl. Math. Comput., 218 (2011), 860–865.
    [17] U. N. Katugampola, New approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6 (2014), 1–15.
    [18] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, J. Van Mill, Theory and applications of fractional differential equations, Amsterdam: Elsevier Science, 2006.
    [19] D. Mitrinović, I. Lacković, Hermite and convexity, Aequationes mathematicae, 28 (1985), 229–232.
    [20] I. Podlubny, Fractional differential equations: Mathematics in science and engineering, San Diego: Academic Press, 1999.
    [21] J. Sabatier, O. P. Agrawal, J. A. Tenreiro Machado, Advances in fractional calculus: Theoretical developments and applications in physics and engineering, Biochem. J., 36 (2007), 97–103.
    [22] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Minsk Nauka I Tekhnika, 1993.
    [23] A. A. Shaikh, A. Iqbal, C. K. Mondal, Some results on $\phi$-convex functions and geodesic $\phi$-convex functions, Differ. Geo. Dyn. Syst., 20 (2018), 159–69.
    [24] S. H. Wang, F. Qi, Hermite-Hadamard type inequalities for $s-$Convex functions via Riemann-Liouville fractional integrals, J, Comput. Anal. Appl., 22 (2017), 1124–1134.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1915) PDF downloads(97) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog