
Graph invariants provide an amazing tool to analyze the abstract structures of graphs. Metric dimension and edge metric dimension as graph invariants have numerous applications, among them are robot navigation, pharmaceutical chemistry, etc. In this article, we compute the metric and edge metric dimension of two classes of windmill graphs such as French windmill graph and Dutch windmill graph, and also certain generalizations of these graphs.
Citation: Pradeep Singh, Sahil Sharma, Sunny Kumar Sharma, Vijay Kumar Bhat. Metric dimension and edge metric dimension of windmill graphs[J]. AIMS Mathematics, 2021, 6(9): 9138-9153. doi: 10.3934/math.2021531
[1] | Hüseyin Budak, Abd-Allah Hyder . Enhanced bounds for Riemann-Liouville fractional integrals: Novel variations of Milne inequalities. AIMS Mathematics, 2023, 8(12): 30760-30776. doi: 10.3934/math.20231572 |
[2] | Areej A Almoneef, Abd-Allah Hyder, Hüseyin Budak . Weighted Milne-type inequalities through Riemann-Liouville fractional integrals and diverse function classes. AIMS Mathematics, 2024, 9(7): 18417-18439. doi: 10.3934/math.2024898 |
[3] | Muhammad Umar, Saad Ihsan Butt, Youngsoo Seol . Milne and Hermite-Hadamard's type inequalities for strongly multiplicative convex function via multiplicative calculus. AIMS Mathematics, 2024, 9(12): 34090-34108. doi: 10.3934/math.20241625 |
[4] | Areej A. Almoneef, Abd-Allah Hyder, Hüseyin Budak, Mohamed A. Barakat . Fractional Milne-type inequalities for twice differentiable functions. AIMS Mathematics, 2024, 9(7): 19771-19785. doi: 10.3934/math.2024965 |
[5] | Maryam Saddiqa, Ghulam Farid, Saleem Ullah, Chahn Yong Jung, Soo Hak Shim . On Bounds of fractional integral operators containing Mittag-Leffler functions for generalized exponentially convex functions. AIMS Mathematics, 2021, 6(6): 6454-6468. doi: 10.3934/math.2021379 |
[6] | Tariq A. Aljaaidi, Deepak B. Pachpatte . Some Grüss-type inequalities using generalized Katugampola fractional integral. AIMS Mathematics, 2020, 5(2): 1011-1024. doi: 10.3934/math.2020070 |
[7] | Ghulam Farid, Saira Bano Akbar, Shafiq Ur Rehman, Josip Pečarić . Boundedness of fractional integral operators containing Mittag-Leffler functions via (s,m)-convexity. AIMS Mathematics, 2020, 5(2): 966-978. doi: 10.3934/math.2020067 |
[8] | Hari M. Srivastava, Artion Kashuri, Pshtiwan Othman Mohammed, Abdullah M. Alsharif, Juan L. G. Guirao . New Chebyshev type inequalities via a general family of fractional integral operators with a modified Mittag-Leffler kernel. AIMS Mathematics, 2021, 6(10): 11167-11186. doi: 10.3934/math.2021648 |
[9] | Maryam Saddiqa, Saleem Ullah, Ferdous M. O. Tawfiq, Jong-Suk Ro, Ghulam Farid, Saira Zainab . k-Fractional inequalities associated with a generalized convexity. AIMS Mathematics, 2023, 8(12): 28540-28557. doi: 10.3934/math.20231460 |
[10] | Ghulam Farid, Hafsa Yasmeen, Hijaz Ahmad, Chahn Yong Jung . Riemann-Liouville Fractional integral operators with respect to increasing functions and strongly (α,m)-convex functions. AIMS Mathematics, 2021, 6(10): 11403-11424. doi: 10.3934/math.2021661 |
Graph invariants provide an amazing tool to analyze the abstract structures of graphs. Metric dimension and edge metric dimension as graph invariants have numerous applications, among them are robot navigation, pharmaceutical chemistry, etc. In this article, we compute the metric and edge metric dimension of two classes of windmill graphs such as French windmill graph and Dutch windmill graph, and also certain generalizations of these graphs.
Fractional calculus has attracted significant attention from scholars because of its extensive applications in both theoretical and applied mathematics, as highlighted in various sources [1,2]. The fractional integral and derivative have no one representation, like the conventional integral and derivative; rather, representations change throughout time and across writers. It is well known that one of the most important research tools in mathematics is the inequality. Fractional inequalities, particularly those associated with Jensen, Hermite-Hadamard, and Simpson, constitute a significant and multifaceted field in mathematical analysis [3,4,5,6]. Each of these inequalities provides valuable insights into the relationships governed by fractional calculus, contributing to a nuanced comprehension of functions and their integral properties.
Jensen's fractional inequality, which is an extension of the classical Jensen's inequality, investigates the convexity aspects of fractional integrals. It provides bounds on the fractional integral of a convex function, with applications spanning the probability theory, statistics, and diverse mathematical branches. Jensen's fractional inequality enhances our understanding of integral behavior for convex functions; see [7,8].
The Hermite-Hadamard fractional inequality, pioneered by Hermite and later expanded by Hadamard, serves as a fundamental tool for exploring the convexity of functions and its extensions. This inequality establishes bounds on the integral mean of a function, offering connections between convexity and fractional calculus; see [9,10,11].
Simpson's fractional inequality, a derivative of the classical Simpson's inequality, extends the exploration of inequalities into fractional calculus. It facilitates the estimation of the integral mean of a function based on its values at multiple points. Simpson's fractional inequality proves to be a valuable analytical tool, akin to its classical counterpart, shedding light on the behavior of functions and their fractional integrals; see [12,13,14,15,16,17,18,19].
Fractional analysis is an ever-evolving field striving for continual innovation to provide solutions to the evolving challenges of the world [20]. Numerous fractional derivative and integral operators have been introduced since the inception of fractional analysis. Several of these operators hold significant importance in problem-solving within applied mathematics and analysis. Notable examples include Riemann-Liouville, expanded fractional integral operators, Caputo, Hadamard, Erdelyi-Kober, Marchaud, and Riesz, among others. Within fractional calculus, fractional derivatives are formulated through fractional integrals [21,22,23,24]. One particularly important and practical fractional integral operator is known as Riemann-Liouville fractional integrals, which can be defined as follows.
Definition 1.1. Let Z∈L1[λ1,λ2]. The Riemann-Liouville fractional integrals Iσ1λ1+Z and Iσ1λ2−Z of order σ1>0 are defined by
Aσ1λ1+Z(p)=1Γ(σ1)∫pλ1(p−q)σ1−1Z(q)dq, p>λ1 | (1.1) |
and
Aσ1λ2−Z(p)=1Γ(σ1)∫λ2p(q−p)σ1−1Z(q)dq, p<λ2, | (1.2) |
respectively. Here, Γ(σ1)=∫∞0qσ1−1e−qdq is the Gamma function and I0λ1+Z(p)=I0λ2−Z(p)=Z(p).
For more information about Riemann-Liouville fractional integrals, please refer to [22,25,26].
We recall Beta function (see, e.g., [27, Section 1.1])
B(σ1,σ2)={∫10qσ1−1(1−q)σ2−1dq(ℜ(σ1)>0;ℜ(σ2)>0)Γ(σ1)Γ(σ2)Γ(σ1+σ2)(σ1,σ2∈C∖Z−0), | (1.3) |
and the incomplete gamma function, defined for real numbers a>0 and x≥0 by
Γ(a,x)=∫∞xe−qqa−1dq. |
Jarad et. al. [21] introduced a novel fractional integral operator, which called generalized fractional integral operators. Also, they gave some properties and relations between some other fractional integral operators, such as the Riemann-Liouville fractional integral and Hadamard fractional integrals.
Let σ2∈C,Re(σ2)>0, then the left and right-sided fractional generalized integral operators are defined, respectively, as follows:
σ2Aσ1λ1+Z(x)=1Γ(σ2)∫xλ1((x−λ1)σ1−(q−λ1)σ1σ1)σ2−1Z(q)(q−λ1)1−σ1dq | (1.4) |
σ2Aσ1λ2−Z(x)=1Γ(σ2)∫λ2x((λ2−x)σ1−(λ2−q)σ1σ1)σ2−1Z(q)(λ2−q)1−σ1dq. | (1.5) |
A formal definition for convex function may be stated as follows:
Definition 1.2. [28] Let I be a convex set on R. The function Z:I→R is called convex on I if it satisfies the following inequality:
Z(qp+(1−q) γ)≤qF(p)+(1−q)Z(γ) | (1.6) |
for all (p,γ)∈I and q∈[0,1]. The mapping Z is a concave on I if the inequality (1.6) holds in reversed direction for all q∈[0,1] and p,γ∈I.
The primary objective of this research is to derive some Milne-type inequalities applicable with specific function classes through the utilization of expanded fractional integral operators (1.4) and (1.5). This study focuses on establishing a fundamental equality associated with the fractional expanded integral operators, thereby presenting various Milne-type inequalities applicable to functions with convex derivatives (FCD). Additionally, we give an illustrative example to elucidate the acquired outcomes. By employing the fractional expanded integrals, we explore some Milne-type inequalities for bounded and Lipschitzian functions. Moreover, this study deals with Milne-type inequalities, including functions of bounded variation.
This paper is divided to six sections, starting with an introduction. In Section 2, we establish a crucial equality using fractional expanded integral operators. This equality forms the basis for proving Milne-type inequalities for FCD, backed by illustrative examples. Sections 3 and 4 explore Milne-type inequalities for bounded and Lipschitzian functions, respectively. Section 5 focuses on Milne-type inequalities for functions of bounded variation. Lastly, Section 6 encapsulates the research conclusions.
Here, we showcase several Milne-type inequalities pertaining to FCD.
Lemma 2.1. Let Z:[λ1,λ2]→R be a differentiable mapping (λ1,λ2) such that Z′∈L1([λ1,λ2]). The subsequent equation is true:
13σσ21[2Z(λ1)−Z(λ1+λ22)+2Z(λ2)]−2σ1σ2−1Γ(σ2+1)(λ2−λ1)σ1σ2[σ2Aσ1λ1+λ22−Z(λ1)+σ2Aσ1λ1+λ22+Z(λ2)]=λ2−λ14∫10[(1−(1−q)σ1σ1)σ2−43σσ21][Z′(2−q2λ1+q2λ2)−Z′(q2λ1+2−q2λ2)]dq, |
where σ1,σ2>0, B(σ1,σ2) and Γ are Euler Beta and Gamma functions, respectively.
Proof. Through the application of integration by parts, we obtain
J1=∫10[(1−(1−q)σ1σ1)σ2−43σσ21]Z′(2−q2λ1+q2λ2)dq=2λ2−λ1[(1−(1−q)σ1σ1)σ2−43σσ21]Z(2−q2λ1+q2λ2)|10−2σ2λ2−λ1∫10(1−(1−q)σ1σ1)σ2−1(1−q)σ1−1Z(2−q2λ1+q2λ2)dq=−23σσ21(λ2−λ1)Z(λ1+λ22)+83σσ21(λ2−λ1)Z(λ1)−(2λ2−λ1)2σ2∫λ1+λ22λ1(1−(2λ2−λ1)σ1(λ1+λ22−p)σ1σ1)σ2−1(2λ2−λ1)σ1−1(λ1+λ22−p)σ1−1Z(p)dp=−23σσ21(λ2−λ1)Z(λ1+λ22)+83σσ21(λ2−λ1)Z(λ1)−(2λ2−λ1)σ1σ2+1σ2∫λ1+λ22λ1((λ2−λ12)σ1−(λ1+λ22−p)σ1σ1)σ2−1Z(p)(λ1+λ22−p)1−σ1dp=−23σσ21(λ2−λ1)Z(λ1+λ22)+83σσ21(λ2−λ1)Z(λ1)−(2λ2−λ1)σ1σ2+1Γ(σ2+1)σ2Aσ1λ1+λ22−Z(λ1). | (2.1) |
Similarly, we obtain
J2=∫10[(1−(1−q)σ1σ1)σ2−43σσ21]Z′(q2λ1+2−q2λ2)dq=23σσ21(λ2−λ1)Z(λ1+λ22)−83σσ21(λ2−λ1)Z(λ2)−(2λ2−λ1)σ1σ2+1Γ(σ2+1)σ2Aσ1λ1+λ22+Z(λ2). | (2.2) |
From the equalities (2.1) and (2.2), the ensuing outcome is achieved:
λ2−λ14[J1−J2]=13σσ21[2Z(λ1)−Z(λ1+λ22)+2Z(λ2)]−2σ1σ2−1Γ(σ2+1)(λ2−λ1)σ1σ2[σ2Aσ1λ1+λ22−Z(λ1)+σ2Aσ1λ1+λ22+Z(λ2)]. |
So, Lemma 2.1 has been proven.
Theorem 2.1. Suppose the assumptions stipulated in Lemma 2.1 are valid and the function |Z′| is convex on [λ1,λ2], then we obtain the subsequent inequality.
|13σσ21[2Z(λ1)−Z(λ1+λ22)+2Z(λ2)]−2σ1σ2−1Γ(σ2+1)(λ2−λ1)σ1σ2[σ2Jσ1λ1+λ22−Z(λ1)+σ2Aσ1λ1+λ22+Z(λ2)]|≤λ2−λ14σσ21(43−1σ1B(σ2+1,1σ1))(|Z′(λ1)|+|Z′(λ2)|), | (2.3) |
where σ1,σ2>0, B(σ1,σ2), and Γ are Euler Beta and Gamma functions, respectively.
Proof. Applying the absolute value to Lemma 2.1 and leveraging the convexity of |Z′|, we obtain:
|13σσ21[2Z(λ1)−Z(λ1+λ22)+2Z(λ2)]−2σ1σ2−1Γ(σ2+1)(λ2−λ1)σ1σ2[σ2Jσ1λ1+λ22−Z(λ1)+σ2Aσ1λ1+λ22+Z(λ2)]|≤λ2−λ14∫10|(1−(1−q)σ1σ1)σ2−43σσ21|[|Z′(2−q2λ1+q2λ2)|+|Z′(q2λ1+2−q2λ2)|]dq≤λ2−λ14∫10[43σσ21−(1−(1−q)σ1σ1)σ2][2−q2|Z′(λ1)|+q2|Z′(λ2)|+q2|Z′(λ1)|+2−q2|Z′(λ2)|]dq=λ2−λ14σσ21(43−1σ1B(σ2+1,1σ1))(|Z′(λ1)|+|Z′(λ2)|). |
Therefore, we achieve the intended result.
Remark 2.1. If we choose σ1=1 in Theorem 2.1, the ensuing Milne-type inequality holds for Riemann-Liouville fractional integrals.
|13[2Z(λ1)−Z(λ1+λ22)+2Z(λ2)]−2σ2−1Γ(σ2+1)(λ2−λ1)σ2[Jσ2λ1+λ22−Z(λ1)+Aσ2λ1+λ22+Z(λ2)]|≤4σ2+112(σ2+1)(λ2−λ1)(|Z′(λ1)|+|Z′(λ2)|). |
Theorem 2.2. Assuming the conditions stipulated in Lemma 2.1 are met, and considering that the mapping |Z′|y, where y>1, exhibits convexity on the interval [λ1,λ2], the ensuing inequality holds:
|13σσ21[2Z(λ1)−Z(λ1+λ22)+2Z(λ2)]−2σ1σ2−1Γ(σ2+1)(λ2−λ1)σ1σ2[σ2Aσ1λ1+λ22−Z(λ1)+σ2Aσ1λ1+λ22+Z(λ2)]|≤λ2−λ14σσ21(4x3x−1σ1B(xσ2+1,1σ1))1x[(3|Z′(λ1)|y+|Z′(λ2)|y4)1y+(|Z′(λ1)|y+3|Z′(λ2)|y4)1y]≤λ2−λ141yσσ21(4x3x−1σ1B(xσ2+1,1σ1))1x(|Z′(λ1)|+|Z′(λ2)|), | (2.4) |
where 1x+1y=1, σ1,σ2>0, B(σ1,σ2), and Γ are Euler Beta and Gamma functions, respectively.
Proof. When we compute the absolute value of Lemma 2.1, the outcome is:
|13σσ21[2Z(λ1)−Z(λ1+λ22)+2Z(λ2)]−2σ1σ2−1Γ(σ2+1)(λ2−λ1)σ1σ2[σ2Aσ1λ1+λ22−Z(λ1)+σ2Aσ1λ1+λ22+Z(λ2)]|≤λ2−λ14[∫10|(1−(1−q)σ1σ1)σ2−43σσ21||Z′(2−q2λ1+q2λ2)|dq+∫10|(1−(1−q)σ1σ1)σ2−43σσ21||Z′(q2λ1+2−q2λ2)|dq]. | (2.5) |
By leveraging the "H"older inequality within inequality (2.5) and capitalizing on the convexity of |Z′|y, we get
∫10|(1−(1−q)σ1σ1)σ2−43σσ21||Z′(2−q2λ1+q2λ2)|dq≤(∫10|(1−(1−q)σ1σ1)σ2−43σσ21|xdq)1x(∫10|Z′(2−q2λ1+q2λ2)|ydq)1y≤(∫10[4x3xσxσ21−(1−(1−q)σ1σ1)xσ2]dq)1x[∫10(2−q2|Z′(λ1)|y+q2|Z′(λ2)|y)dq]1y=1σσ21(4x3x−1σ1B(xσ2+1,1σ1))1x(3|Z′(λ1)|y+|Z′(λ2)|y4)1y. | (2.6) |
Likewise, we can arrive at the inequality
∫10|(1−(1−q)σ1σ1)σ2−43σσ21||Z′(q2λ1+2−q2λ2)|dq≤1σσ21(4x3x−1σ1B(xσ2+1,1σ1))1x(|Z′(λ1)|y+3|Z′(λ2)|y4)1y. | (2.7) |
By substituting (2.6) and (2.7) in (2.5), we have
|13σσ21[2Z(λ1)−Z(λ1+λ22)+2Z(λ2)]−2σ1σ2−1Γ(σ2+1)(λ2−λ1)σ1σ2[σ2Aσ1λ1+λ22−Z(λ1)+σ2Aσ1λ1+λ22+Z(λ2)]|≤λ2−λ14(∫10[43σσ21−(1−(1−q)σ1σ1)σ2]xdq)1p[(3|Z′(λ1)|y+|Z′(λ2)|y4)1y+(|Z′(λ1)|y+3|Z′(λ2)|y4)1y]. |
Hence, the first inequality in Eq (2.4) has been successfully derived. Now, let's move forward with proving the second inequality. Let α1=3|Z′(λ1)|y, β1=|Z′(λ2)|y, α2=|Z′(λ1)|y, and β2=3|Z′(λ2)|y. By leveraging the facts that
n∑u=1(αu+βu)v≤n∑u=1αvu+n∑u=1αvu, 0≤v<1, |
and 1+31y≤4, the desired outcome may be determined right away, and Theorem 2.2 has been fully proven.
Remark 2.2. If we choose σ1=1 in Theorem 2.2, the following Milne-type inequality for Riemann-Liouville fractional integrals is derived:
|13[2Z(λ1)−Z(λ1+λ22)+2Z(λ2)]−2σ2−1Γ(σ2+1)(λ2−λ1)σ2[Jσ2λ1+λ22−Z(λ1)+Aσ2λ1+λ22+Z(λ2)]|≤λ2−λ14(4x3x−1xσ2+1)1x[(3|Z′(λ1)|y+|Z′(λ2)|y4)1q+(|Z′(λ1)|y+3|Z′(λ2)|y4)1y]≤λ2−λ141y(4x3x−1xσ2+1)1x(|Z′(λ1)|+|Z′(λ2)|). |
Theorem 2.3. Assuming all the conditions of Lemma 2.1 are met, when the function |Z′|y, where y≥1, demonstrates convex behavior over the interval [λ1,λ2], we get the subsequent inequality:
|13σσ21[2Z(λ1)−Z(λ1+λ22)+2Z(λ2)]−2σ1σ2−1Γ(σ2+1)(λ2−λ1)σ1σ2[σ2Aσ1λ1+λ22−Z(λ1)+σ2Aσ1λ1+λ22+Z(λ2)]| ≤λ2−λ14σσ21(43−1σ1B(σ2+1,1σ1))1−1y×([(1−12σ1[B(σ2+1,1σ1)+B(σ2+1,2σ1)])|Z′(λ1)|y +12σ1[B(σ2+1,1σ1)−B(σ2+1,2σ1)]|Z′(λ2)|y]1y)[12σ1[B(σ2+1,1σ1)−B(σ2+1,2σ1)]|Z′(λ1)|y +(1−12σ1[B(σ2+1,1σ1)+B(σ2+1,2σ1)])|Z′(λ2)|y]1y), | (2.8) |
where σ1,σ2>0, B(σ1,σ2) and Γ are Euler Beta and Gamma functions, respectively.
Proof. By employing the power-mean inequality in (2.5) and taking into account the convex nature of |Z′|y, we arrive at:
∫10|(1−(1−q)σ1σ1)σ2−43σσ21||Z′(2−q2λ1+q2λ2)|dq ≤(∫10|(1−(1−q)σ1σ1)σ2−43σσ21|dq)1−1y (∫10|(1−(1−q)σ1σ1)σ2−43σσ21||Z′(2−q2λ1+q2λ2)|ydq)1y ≤(43σσ21−1σσ2+11B(σ2+1,1σ1))1−1y (∫10[43σσ21−(1−(1−q)σ1σ1)σ2](2−q2|Z′(λ1)|y+q2|Z′(λ2)|y)dq)1y =(43σσ21−1σσ2+11B(σ2+1,1σ1))1−1y[(1σσ21−12σσ2+11[B(σ2+1,1σ1)+B(σ2+1,2σ1)])|Z′(λ1)|y +12σσ2+11[B(σ2+1,1σ1)−B(σ2+1,2σ1)]|Z′(λ2)|y]1y. | (2.9) |
By a similar method used in (2.9), we have
∫10|(1−(1−q)σ1σ1)σ2−43σσ21||Z′(q2λ1+2−q2λ2)|dq ≤(43σσ21−1σσ2+11B(σ2+1,1σ1))1−1y[12σσ2+11[B(σ2+1,1σ1)−B(σ2+1,2σ1)]|Z′(λ1)|y +(1σσ21−12σσ2+11[B(σ2+1,1σ1)+B(σ2+1,2σ1)])|Z′(λ2)|y]1y. | (2.10) |
Substituting (2.9) and (2.10) in (2.5), we get
|13σσ21[2Z(λ1)−Z(λ1+λ22)+2Z(λ2)]−2σ1σ2−1Γ(σ2+1)(λ2−λ1)σ1σ2[σ2Aσ1λ1+λ22−Z(λ1)+σ2Aσ1λ1+λ22+Z(λ2)]| ≤λ2−λ14σσ21(43−1σ1B(σ2+1,1σ1))1−1y ×([(1−12σ1[B(σ2+1,1σ1)+B(σ2+1,2σ1)])|Z′(λ1)|y +12σ1[B(σ2+1,1σ1)−B(σ2+1,2σ1)]|Z′(λ2)|y]1y) +[12σ1[B(σ2+1,1σ1)−B(σ2+1,2σ1)]|Z′(λ1)|y+(1−12σ1[B(σ2+1,1σ1)+B(σ2+1,2σ1)])|Z′(λ2)|y]1y). |
This completes the proof.
Remark 2.3. If we choose σ1=1 in Theorem 2.3, then we have the following Milne-type inequality for Riemann-Liouville fractional integrals
|13[2Z(λ1)−Z(λ1+λ22)+2Z(λ2)]−2σ2−1Γ(σ2+1)(λ2−λ1)σ2[Jσ2λ1+λ22−Z(λ1)+Aσ2λ1+λ22+Z(λ2)]|≤λ2−λ14(4σ2+13(σ2+1))1−1y×([(1−σ2+32(σ2+1)(σ2+2))|Z′(λ1)|y+σ2+12(σ2+1)(σ2+2)|Z′(λ2)|y]1y+[σ2+12(σ2+1)(σ2+2)|Z′(λ1)|y+(1−σ2+32(σ2+1)(σ2+2))|Z′(λ2)|y]1y). |
Example 2.1. Consider the function Z:[2,4]→R, Z(q)=q33. It is clear that |Z′| is convex on [2,4], then we have
2Z(λ1)−Z(λ1+λ22)+2Z(λ2)=39. |
By (1.4), we have
σ2Aσ1λ1+λ22−Z(λ1)= σ2Aσ13−Z(2)=1Γ(σ2)3∫2(1−(3−q)σ1σ1)σ2−1(3−q)σ1−1q33dq=13σσ21Γ(σ2)3∫2(1−(3−q)σ1)σ2−1[−(3−q)σ1+2+9(3−q)σ1+1−27(3−q)σ1+27(3−q)σ1−1]dq=13σσ21Γ(σ2)1∫0uσ2−1[−(1−u)3σ1+9(1−u)2σ1−27(1−u)1σ1+27]du=13σσ21Γ(σ2)[−B(σ2,3σ1+1)+9B(σ2,2σ1+1)−27B(σ2,1σ1+1)+27σ2] |
and similarly by (1.5), we have
σ2Aσ1λ1+λ22+Z(λ2)= σ2Aσ13+Z(4)=13σσ21Γ(σ2)[B(σ2,3σ1+1)+9B(σ2,2σ1+1)+27B(σ2,1σ1+1)+27σ2]. |
Hence, the computation of the left term in the inequalities (2.3), (2.4), and (2.8) results in:
|13σσ21[2Z(λ1)−Z(λ1+λ22)+2Z(λ2)]−2σ1σ2−1Γ(σ2+1)(λ2−λ1)σ1σ2[σ2Aσ1λ1+λ22−Z(λ1)+σ2Aσ1λ1+λ22+Z(λ2)]|=|213σσ21−2σ1σ2−1Γ(σ2+1)2σ1σ23σσ21Γ(σ2)[18B(σ2,2σ1+1)+54σ2]|=|7σσ21−3σ2σσ21[B(σ2,2σ1+1)+3σ2]|. |
Conversely, the right term in the inequality (2.3) is expressed as:
λ2−λ14σσ21(43−1σ1B(σ2+1,1σ1))(|Z′(λ1)|+|Z′(λ2)|)=12σσ21(43−1σ1B(σ2+1,1σ1))(4+16)=10σσ21(43−1σ1B(σ2+1,1σ1)). |
Similarly, for y=2, the right sides of the inequalities (2.4) and (2.8) reduce to
λ2−λ141yσσ21(4x3x−1σ1B(xσ2+1,1σ1))1x(|Z′(λ1)|+|Z′(λ2)|)=20σσ21(169−1σ1B(2σ2+1,1σ1))12 |
and
λ2−λ14σσ21(43−1σ1B(σ2+1,1σ1))1−1y×([(1−12σ1[B(σ2+1,1σ1)+B(σ2+1,2σ1)])|Z′(λ1)|y+12σ1[B(σ2+1,1σ1)−B(σ2+1,2σ1)]|Z′(λ2)|y]1y+[12σ1[B(σ2+1,1σ1)−B(σ2+1,2σ1)]|Z′(λ1)|y+(1−12σ1[B(σ2+1,1σ1)+B(σ2+1,2σ1)])|Z′(λ2)|y]1y)=12σσ21(43−1σ1B(σ2+1,1σ1))12×([16(1−12σ1[B(σ2+1,1σ1)+B(σ2+1,2σ1)])+128σ1[B(σ2+1,1σ1)−B(σ2+1,2σ1)]]12+[8σ1[B(σ2+1,1σ1)−B(σ2+1,2σ1)]+256(1−12σ1[B(σ2+1,1σ1)+B(σ2+1,2σ1)])]12), |
respectively. Consequently, we have the following inequalities from (2.4) and (2.8)
|7−3σ2[B(σ2,2σ1+1)+3σ2]|≤10(43−1σ1B(σ2+1,1σ1)), | (2.11) |
|7−3σ2[B(σ2,2σ1+1)+3σ2]|≤20(169−1σ1B(2σ2+1,1σ1))12, | (2.12) |
and
|7−3σ2[B(σ2,2σ1+1)+3σ2]|≤12(43−1σ1B(σ2+1,1σ1))12×([16(1−12σ1[B(σ2+1,1σ1)+B(σ2+1,2σ1)])+128σ1[B(σ2+1,1σ1)−B(σ2+1,2σ1)]]12+[8σ1[B(σ2+1,1σ1)−B(σ2+1,2σ1)]+256(1−12σ1[B(σ2+1,1σ1)+B(σ2+1,2σ1)])]12), | (2.13) |
respectively. One can see the validity of the inequalities (2.11), (2.12), and (2.13) in Figures 1–3, respectively.
Theorem 3.1. Assume that the conditions of Lemma 2.1 hold. If there exist ω,Ω∈R such that ω≤Z′(q)≤Ω for q∈[λ1,λ2], then we establish
|13σσ21[2Z(λ1)−Z(λ1+λ22)+2Z(λ2)]−2σ1σ2−1Γ(σ2+1)(λ2−λ1)σ1σ2[σ2Aσ1λ1+λ22−Z(λ1)+σ2Aσ1λ1+λ22+Z(λ2)]|≤λ2−λ112σσ21(43−1σ1B(σ2+1,1σ1))(Ω−ω), |
where σ1,σ2>0, B(σ1,σ2), and Γ are Euler Beta and Gamma functions, respectively.
Proof. With the help of Lemma 2.1, we get
13σσ21[2Z(λ1)−Z(λ1+λ22)+2Z(λ2)]−2σ1σ2−1Γ(σ2+1)(λ2−λ1)σ1σ2[σ2Aσ1λ1+λ22−Z(λ1)+σ2Aσ1λ1+λ22+Z(λ2)]=λ2−λ14∫10[(1−(1−q)σ1σ1)σ2−43σσ21][Z′(2−q2λ1+q2λ2)−Z′(q2λ1+2−q2λ2)]dq=λ2−λ14∫10[(1−(1−q)σ1σ1)σ2−43σσ21][ω+Ω2−Z′(q2λ1+2−q2λ2)]dq+λ2−λ14∫10[(1−(1−q)σ1σ1)σ2−43σσ21][Z′(2−q2λ1+q2λ2)−ω+Ω2]dq. | (3.1) |
By considering the absolute value of (3.1), we obtain:
|13σσ21[2Z(λ1)−Z(λ1+λ22)+2Z(λ2)]−2σ1σ2−1Γ(σ2+1)(λ2−λ1)σ1σ2[σ2Aσ1λ1+λ22−Z(λ1)+σ2Aσ1λ1+λ22+Z(λ2)]|≤λ2−λ14∫10[43σσ21−(1−(1−q)σ1σ1)σ2]|ω+Ω2−Z′(q2λ1+2−q2λ2)|dq+∫10[43σσ21−(1−(1−q)σ1σ1)σ2]|Z′(2−q2λ1+q2λ2)−ω+Ω2|dq. |
From ω≤Z′(q)≤Ω for q∈[λ1,λ2], we get
|Z′(2−q2λ1+q2λ2)−ω+Ω2|≤Ω−ω2, | (3.2) |
and
|ω+Ω2−Z′(q2λ1+2−q2λ2)|≤Ω−ω2. | (3.3) |
Using (3.2) and (3.3), we have
|13σσ21[2Z(λ1)−Z(λ1+λ22)+2Z(λ2)]−2σ1σ2−1Γ(σ2+1)(λ2−λ1)σ1σ2[σ2Aσ1λ1+λ22−Z(λ1)+σ2Aσ1λ1+λ22+Z(λ2)]|≤λ2−λ14(Ω−ω)∫10[43σσ21−(1−(1−q)σ1σ1)σ2]dq=λ2−λ14(43σσ21−1σσ2+11B(σ2+1,1σ1))(Ω−ω). |
The proof of the theorem is finished.
Remark 3.1. If we choose σ1=1 in Theorem 3.1, then we have the following Milne-type inequality for Riemann-Liouville fractional integrals
|13[2Z(λ1)−Z(λ1+λ22)+2Z(λ2)]−2σ2−1Γ(σ2+1)(λ2−λ1)σ2[Jσ2λ1+λ22−Z(λ1)+Aσ2λ1+λ22+Z(λ2)]|≤4σ2+112(σ2+1)(λ2−λ1)(Ω−ω). |
In this section, we introduce some fractional Milne-type inequalities applicable to Lipschitzian functions.
Theorem 4.1. Suppose that the assumptions of Lemma 2.1 hold. If Z′ is a L-Lipschitzian function on [λ1,λ2], then the result yields the subsequent inequality:
|13σσ21[2Z(λ1)−Z(λ1+λ22)+2Z(λ2)]−2σ1σ2−1Γ(σ2+1)(λ2−λ1)σ1σ2[σ2Aσ1λ1+λ22−Z(λ1)+σ2Aσ1λ1+λ22+Z(λ2)]|=(λ2−λ1)24σσ21(23−1σ1B(σ2+1,2σ1))L, |
where σ1,σ2>0, B(σ1,σ2), and Γ are Euler Beta and Gamma functions, respectively.
Proof. With help of Lemma 2.1, since Z′ is L -Lipschitzian function, we get
|13σσ21[2Z(λ1)−Z(λ1+λ22)+2Z(λ2)]−2σ1σ2−1Γ(σ2+1)(λ2−λ1)σ1σ2[σ2Aσ1λ1+λ22−Z(λ1)+σ2Aσ1λ1+λ22+Z(λ2)]|=|λ2−λ14∫10[43σσ21−(1−(1−q)σ1σ1)σ2][Z′(2−q2λ1+q2λ2)−Z′(q2λ1+2−q2λ2)]dq|≤λ2−λ14∫10[43σσ21−(1−(1−q)σ1σ1)σ2]|Z′(2−q2λ1+q2λ2)−Z′(q2λ1+2−q2λ2)|dq≤λ2−λ14∫10[43σσ21−(1−(1−q)σ1σ1)σ2]L(1−q)(λ2−λ1)dq=(λ2−λ1)24L(23σσ21−1σσ2+11B(σ2+1,2σ1)). |
This concludes the proof of this theorem.
Remark 4.1. If we choose σ1=1 in Theorem 4.1 then the following Milne-type inequality for Riemann-Liouville fractional integrals is established:
|13[2Z(λ1)−Z(λ1+λ22)+2Z(λ2)]−2σ2−1Γ(σ2+1)(λ2−λ1)σ2[Jσ2λ1+λ22−Z(λ1)+Aσ2λ1+λ22+Z(λ2)]|≤(λ2−λ1)24σσ21(23−1(σ2+1)(σ2+2))L. |
In this section, we demonstrate a Milne-type inequality using expanded fractional integrals of bounded variation.
Theorem 5.1. Let Z:[λ1,λ2]→R be a mapping of bounded variation on [λ1,λ2], then we get
|13[2Z(λ1)−Z(λ1+λ22)+2Z(λ2)]−2σ1σ2−1σσ21Γ(σ2+1)(λ2−λ1)σ1σ2[σ2Aσ1λ1+λ22−Z(λ1)+σ2Aσ1λ1+λ22+Z(λ2)]|≤23λ2⋁λ1(Z), |
where σ1,σ2>0, B(σ1,σ2), and Γ are Euler Beta and Gamma functions and d⋁c(Z) demonstrates the total variation of Z on [c,d].
Proof. Define the function Kσ2σ1(p) by
Kσ2σ1(p)={((λ2−λ12)σ1−(λ1+λ22−p)σ1)σ2−(λ2−λ1)σ1σ23⋅2σ1σ2−2,λ1≤p≤λ1+λ22−((λ2−λ12)σ1−(p−λ1+λ22)σ1)σ2+(λ2−λ1)σ1σ23⋅2σ1σ2−2,λ1+λ22<p≤λ2, |
then we have
λ2∫λ1Kσ2σ1(p)dZ(p)=λ1+λ22∫λ1(((λ2−λ12)σ1−(λ1+λ22−p)σ1)σ2−(λ2−λ1)σ1σ23⋅2σ1σ2−2)dZ(p)−λ2∫λ1+λ22(((λ2−λ12)σ1−(p−λ1+λ22)σ1)σ2−(λ2−λ1)σ1σ23⋅2σ1σ2−2)dZ(p). |
By applying integration by parts, the result is
λ1+λ22∫λ1(((λ2−λ12)σ1−(λ1+λ22−p)σ1)σ2−(λ2−λ1)σ1σ23⋅2σ1σ2−2)dZ(p)=(((λ2−λ12)σ1−(λ1+λ22−p)σ1)σ2−(λ2−λ1)σ1σ23⋅2σ1σ2−2)Z(p)|λ1+λ22λ1−σ1σ2λ1+λ22∫λ1((λ2−λ12)σ1−(λ1+λ22−p)σ1)σ2−1(λ1+λ22−p)σ1−1Z(p)dp=−(λ2−λ1)σ1σ23⋅2σ1σ2Z(λ1+λ22)+(λ2−λ1)σ13⋅2σ1σ2−2Z(λ1)−σσ21Γ(σ2+1)σ2Aσ1λ1+λ22+Z(λ2) | (5.1) |
and, similarly,
λ2∫λ1+λ22(((λ2−λ12)σ1−(p−λ1+λ22)σ1)σ2−(λ2−λ1)σ1σ23⋅2σ1σ2−2)dZ(p)=−(λ2−λ1)σ13⋅2σ1σ2−2Z(λ2)+(λ2−λ1)σ13⋅2σ1σ2Z(λ1+λ22)+σσ21Γ(σ2+1)σ2Aσ1λ1+λ22−Z(λ1). | (5.2) |
By (5.1) and (5.2), we have
λ2∫λ1Kσ2σ1(p)dZ(p)=(λ2−λ1)σ1σ22σ1σ2−1{13[2Z(λ1)−Z(λ1+λ22)+2Z(λ2)]−2σ1σ2−1σσ21Γ(σ2+1)(λ2−λ1)σ1σ2[σ2Aσ1λ1+λ22−Z(λ1)+σ2Aσ1λ1+λ22+Z(λ2)]}. |
That is,
|13[2Z(λ1)−Z(λ1+λ22)+2Z(λ2)]−2σ1σ2−1σσ21Γ(σ2+1)(λ2−λ1)σ1σ2[σ2Aσ1λ1+λ22−Z(λ1)+σ2Aσ1λ1+λ22+Z(λ2)]|=2σ1σ2−1(λ2−λ1)σ1σ2λ2∫λ1Kσ1(p)dZ(p). |
It is well known that if g,Z:[λ1,λ2]→R are such that g is continuous on [λ1,λ2] and Z is of bounded variation on [λ1,λ2], then λ2∫λ1g(q)dZ(q) exists and
|λ2∫λ1g(q)dZ(q)|≤supq∈[λ1,λ2]|g(q)|λ2⋁λ1(F). | (5.3) |
Otherwise, utilizing (5.3), we have
|13[2Z(λ1)−Z(λ1+λ22)+2Z(λ2)]−2σ1σ2−1σσ21Γ(σ2+1)(λ2−λ1)σ1σ2[σ2Aσ1λ1+λ22−Z(λ1)+σ2Aσ1λ1+λ22+Z(λ2)]|=2σ1σ2−1(λ2−λ1)σ1σ2|λ2∫λ1Kσ1(p)dZ(p)|≤2σ1σ2−1(λ2−λ1)σ1σ2[|λ1+λ22∫λ1(((λ2−λ12)σ1−(λ1+λ22−p)σ1)σ2−(λ2−λ1)σ1σ23⋅2σ1σ2−2)dZ(p)|+|λ2∫λ1+λ22(((λ2−λ12)σ1−(p−λ1+λ22)σ1)σ2−(λ2−λ1)σ1σ23⋅2σ1σ2−2)dZ(p)|]≤2σ1σ2−1(λ2−λ1)σ1σ2[supp∈[λ1,λ1+λ22]|((λ2−λ12)σ1−(λ1+λ22−p)σ1)σ2−(λ2−λ1)σ1σ23⋅2σ1σ2−2|λ1+λ22⋁λ1(Z)+supp∈[λ1+λ22,λ2]|((λ2−λ12)σ1−(p−λ1+λ22)σ1)σ2−(λ2−λ1)σ1σ23⋅2σ1σ2−2|λ2⋁λ1+λ22(Z)]=2σ1σ2−1(λ2−λ1)σ1σ2[(λ2−λ1)σ1σ23⋅2σ1σ2−2λ1+λ22⋁λ1(Z)+(λ2−λ1)σ1σ23⋅2σ1σ2−2λ2⋁λ1+λ22(Z)]=23λ2⋁λ1(Z). |
This finishes the proof.
Remark 5.1. If we choose σ1=1 in Theorem 5.1, then we have the following Milne-type inequality for Riemann-Liouville fractional integrals
|13[2Z(λ1)−Z(λ1+λ22)+2Z(λ2)]−2σ2−1Γ(σ2+1)(λ2−λ1)σ2[Jσ2λ1+λ22−Z(λ1)+Aσ2λ1+λ22+Z(λ2)]|≤23λ2⋁λ1(Z). |
This research effectively demonstrated Milne-type inequalities across various types of functions using expanded fractional integral operators. By establishing an important equality connected to these operators, we uncovered several Milne-type inequalities that apply to FCDs. To illustrate these discoveries, we provided an example. Additionally, we investigated Milne-type inequalities for bounded and Lipschitzian functions using fractional expanded integrals. Finally, we extended our study to include Milne-type inequalities for functions with bounded variation.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Research Groups Program under grant RGP.2/102/44.
The authors declare that there are no conflicts of interest regarding the publication of this article.
[1] |
S. Arumugam, V. Mathew, The fractional metric dimension of graphs, Discret. Math., 312 (2012), 1584–1590. doi: 10.1016/j.disc.2011.05.039
![]() |
[2] |
Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffman, M. Mihalak, et al., Network discovery and verification, IEEE J. Sel. Area Comm., 24 (2006), 2168–2181. doi: 10.1109/JSAC.2006.884015
![]() |
[3] |
G. Chartrand, L. Eroh, M. A. Johnson, O. R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discret. Appl. Math., 105 (2000), 99–113. doi: 10.1016/S0166-218X(00)00198-0
![]() |
[4] | V. Chvátal, Mastermind, Combinatorica, 3 (1983), 325–329. |
[5] | A. Estrada-Moreno, On the (k,t)-Metric dimension of a Graph, Ph.D. thesis, Universitat Rovira i Virgili, 2016. |
[6] |
E. Estrada, When local and global clustering of networks diverge, Linear Algebra Appl., 488 (2016), 249–263. doi: 10.1016/j.laa.2015.09.048
![]() |
[7] | F. Harary, R. A. Melter, On the metric dimension of a graph, Ars Combin., 2 (1976), 191–195. |
[8] |
S. Hayat, A. Khan, M. Y. H. Malik, M. Imran, M. K. Siddiqui, Fault-Tolerant Metric Dimension of Interconnection Networks, IEEE Access, 8 (2020), 145435–145445. doi: 10.1109/ACCESS.2020.3014883
![]() |
[9] |
M. Imran, On the metric dimension of barycentric subdivision of Cayley graphs, Acta Math. Appl. Sinica, 32 (2016), 1067–1072. doi: 10.1007/s10255-016-0627-0
![]() |
[10] | I. Javaid, M. T. Rahim, K. Ali, Families of regular graphs with constant metric dimension, Util. Math., 75 (2008), 21–33. |
[11] | A. Kelenc, D. Kuziak, A. Taranenko, I. G. Yero, On the mixed metric dimension of graphs, Appl. Math. Comput., 314 (2017), 429–438. |
[12] |
A. Kelenc, N. Tratnik, I. G. Yero, Uniquely identifying the edges of a graph: the edge metric dimension, Discret. Appl. Math., 251 (2018), 204–220. doi: 10.1016/j.dam.2018.05.052
![]() |
[13] | S. Khuller, B. Raghavachari, A. Rosenfield, Landmarks in graphs, Discret. Appl. Math., 70 (1996), 217–229. |
[14] | R. Nasir, S. Zafar, Z. Zahid, Edge metric dimension of graphs, Ars Comb., 147 (2018), 143–156. |
[15] |
O. R. Oellermann, J. P. Fransen, The strong metric dimension of graphs and digraphs, Discret. Appl. Math., 155 (2007), 356–364. doi: 10.1016/j.dam.2006.06.009
![]() |
[16] |
F. Okamoto, B. Phinezy, P. Zhang, The local metric dimension of a graph, Math. Bohem., 135 (2010), 239–255. doi: 10.21136/MB.2010.140702
![]() |
[17] | H. Raza, S. Hayat, X. F. Pan, On the fault-tolerant metric dimension of convex polytopes, Appl. Math. Comput., 339 (2018), 172–185. |
[18] |
H. Raza, S. Hayat, M. Imran, X. F. Pan, Fault-tolerant resolvability and extremal structures of graphs, Mathematics, 7 (2019), 78. doi: 10.3390/math7010078
![]() |
[19] |
H. Raza, S. Hayat, X. F. Pan, On the fault-tolerant metric dimension of certain interconnection networks, J. Appl. Math. Comput., 60 (2019), 517–535. doi: 10.1007/s12190-018-01225-y
![]() |
[20] |
A. Sebo, E. Tannier, On metric generators of graphs, Math. Oper. Res., 29 (2004), 383–393. doi: 10.1287/moor.1030.0070
![]() |
[21] |
H. M. A. Siddiqui, S. Hayat, A. Khan, M. Imran, A. Razzaq, J. B. Liu, Resolvability and fault-tolerant resolvability structures of convex polytopes, Theor. Comput. Sci., 796 (2019), 114-128. doi: 10.1016/j.tcs.2019.08.032
![]() |
[22] |
H. Shapiro, S. Soderberg, A combinatory detection problem, Am. Math. Mon., 70 (1963), 1066–1070. doi: 10.1080/00029890.1963.11992174
![]() |
[23] | P. J. Slater, Leaves of trees, Congr. Numer., 14 (1975), 549–559. |
[24] |
M. Wei, J. Yue, X. zhu, On the edge metric dimension of graphs, AIMS Mathematics, 5 (2020), 4459–4465. doi: 10.3934/math.2020286
![]() |
[25] |
N. Zubrilina, On the edge dimension of a graph, Discret. Math., 341 (2018), 2083–2088. doi: 10.1016/j.disc.2018.04.010
![]() |
1. | Talib Hussain, Loredana Ciurdariu, Eugenia Grecu, New Perspectives of Hermite–Hadamard–Mercer-Type Inequalities Associated with ψk-Raina’s Fractional Integrals for Differentiable Convex Functions, 2025, 9, 2504-3110, 203, 10.3390/fractalfract9040203 |