Research article Special Issues

Metric dimension and edge metric dimension of windmill graphs

  • Received: 13 April 2021 Accepted: 15 June 2021 Published: 18 June 2021
  • MSC : 05C12, 05C40, 05C76, 05C85

  • Graph invariants provide an amazing tool to analyze the abstract structures of graphs. Metric dimension and edge metric dimension as graph invariants have numerous applications, among them are robot navigation, pharmaceutical chemistry, etc. In this article, we compute the metric and edge metric dimension of two classes of windmill graphs such as French windmill graph and Dutch windmill graph, and also certain generalizations of these graphs.

    Citation: Pradeep Singh, Sahil Sharma, Sunny Kumar Sharma, Vijay Kumar Bhat. Metric dimension and edge metric dimension of windmill graphs[J]. AIMS Mathematics, 2021, 6(9): 9138-9153. doi: 10.3934/math.2021531

    Related Papers:

  • Graph invariants provide an amazing tool to analyze the abstract structures of graphs. Metric dimension and edge metric dimension as graph invariants have numerous applications, among them are robot navigation, pharmaceutical chemistry, etc. In this article, we compute the metric and edge metric dimension of two classes of windmill graphs such as French windmill graph and Dutch windmill graph, and also certain generalizations of these graphs.



    加载中


    [1] S. Arumugam, V. Mathew, The fractional metric dimension of graphs, Discret. Math., 312 (2012), 1584–1590. doi: 10.1016/j.disc.2011.05.039
    [2] Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffman, M. Mihalak, et al., Network discovery and verification, IEEE J. Sel. Area Comm., 24 (2006), 2168–2181. doi: 10.1109/JSAC.2006.884015
    [3] G. Chartrand, L. Eroh, M. A. Johnson, O. R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discret. Appl. Math., 105 (2000), 99–113. doi: 10.1016/S0166-218X(00)00198-0
    [4] V. Chvátal, Mastermind, Combinatorica, 3 (1983), 325–329.
    [5] A. Estrada-Moreno, On the $(k, t)$-Metric dimension of a Graph, Ph.D. thesis, Universitat Rovira i Virgili, 2016.
    [6] E. Estrada, When local and global clustering of networks diverge, Linear Algebra Appl., 488 (2016), 249–263. doi: 10.1016/j.laa.2015.09.048
    [7] F. Harary, R. A. Melter, On the metric dimension of a graph, Ars Combin., 2 (1976), 191–195.
    [8] S. Hayat, A. Khan, M. Y. H. Malik, M. Imran, M. K. Siddiqui, Fault-Tolerant Metric Dimension of Interconnection Networks, IEEE Access, 8 (2020), 145435–145445. doi: 10.1109/ACCESS.2020.3014883
    [9] M. Imran, On the metric dimension of barycentric subdivision of Cayley graphs, Acta Math. Appl. Sinica, 32 (2016), 1067–1072. doi: 10.1007/s10255-016-0627-0
    [10] I. Javaid, M. T. Rahim, K. Ali, Families of regular graphs with constant metric dimension, Util. Math., 75 (2008), 21–33.
    [11] A. Kelenc, D. Kuziak, A. Taranenko, I. G. Yero, On the mixed metric dimension of graphs, Appl. Math. Comput., 314 (2017), 429–438.
    [12] A. Kelenc, N. Tratnik, I. G. Yero, Uniquely identifying the edges of a graph: the edge metric dimension, Discret. Appl. Math., 251 (2018), 204–220. doi: 10.1016/j.dam.2018.05.052
    [13] S. Khuller, B. Raghavachari, A. Rosenfield, Landmarks in graphs, Discret. Appl. Math., 70 (1996), 217–229.
    [14] R. Nasir, S. Zafar, Z. Zahid, Edge metric dimension of graphs, Ars Comb., 147 (2018), 143–156.
    [15] O. R. Oellermann, J. P. Fransen, The strong metric dimension of graphs and digraphs, Discret. Appl. Math., 155 (2007), 356–364. doi: 10.1016/j.dam.2006.06.009
    [16] F. Okamoto, B. Phinezy, P. Zhang, The local metric dimension of a graph, Math. Bohem., 135 (2010), 239–255. doi: 10.21136/MB.2010.140702
    [17] H. Raza, S. Hayat, X. F. Pan, On the fault-tolerant metric dimension of convex polytopes, Appl. Math. Comput., 339 (2018), 172–185.
    [18] H. Raza, S. Hayat, M. Imran, X. F. Pan, Fault-tolerant resolvability and extremal structures of graphs, Mathematics, 7 (2019), 78. doi: 10.3390/math7010078
    [19] H. Raza, S. Hayat, X. F. Pan, On the fault-tolerant metric dimension of certain interconnection networks, J. Appl. Math. Comput., 60 (2019), 517–535. doi: 10.1007/s12190-018-01225-y
    [20] A. Sebo, E. Tannier, On metric generators of graphs, Math. Oper. Res., 29 (2004), 383–393. doi: 10.1287/moor.1030.0070
    [21] H. M. A. Siddiqui, S. Hayat, A. Khan, M. Imran, A. Razzaq, J. B. Liu, Resolvability and fault-tolerant resolvability structures of convex polytopes, Theor. Comput. Sci., 796 (2019), 114-128. doi: 10.1016/j.tcs.2019.08.032
    [22] H. Shapiro, S. Soderberg, A combinatory detection problem, Am. Math. Mon., 70 (1963), 1066–1070. doi: 10.1080/00029890.1963.11992174
    [23] P. J. Slater, Leaves of trees, Congr. Numer., 14 (1975), 549–559.
    [24] M. Wei, J. Yue, X. zhu, On the edge metric dimension of graphs, AIMS Mathematics, 5 (2020), 4459–4465. doi: 10.3934/math.2020286
    [25] N. Zubrilina, On the edge dimension of a graph, Discret. Math., 341 (2018), 2083–2088. doi: 10.1016/j.disc.2018.04.010
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4602) PDF downloads(418) Cited by(22)

Article outline

Figures and Tables

Figures(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog