Research article

Oscillation theorems for higher order dynamic equations with superlinear neutral term

  • Received: 11 November 2020 Accepted: 09 March 2021 Published: 17 March 2021
  • MSC : 34N05, 39A10

  • In this paper, several oscillation criteria for a class of higher order dynamic equations with superlinear neutral term are established. The proposed results provide a unified platform that adequately covers both discrete and continuous equations and further sufficiently comments on oscillatory behavior of more general class of equations than the ones reported in the literature. We conclude the paper by demonstrating illustrative examples.

    Citation: Said R. Grace, Jehad Alzabut, Kamaleldin Abodayeh. Oscillation theorems for higher order dynamic equations with superlinear neutral term[J]. AIMS Mathematics, 2021, 6(6): 5493-5501. doi: 10.3934/math.2021325

    Related Papers:

  • In this paper, several oscillation criteria for a class of higher order dynamic equations with superlinear neutral term are established. The proposed results provide a unified platform that adequately covers both discrete and continuous equations and further sufficiently comments on oscillatory behavior of more general class of equations than the ones reported in the literature. We conclude the paper by demonstrating illustrative examples.



    加载中


    [1] R. P. Agarwal, M. Bohner, Basic calculus on time scales and some of its applications, Results Math., 35 (1999), 3–22. doi: 10.1007/BF03322019
    [2] R. P. Agarwal, S. R. Grace, Oscillation of higher-order difference equations, Appl. Math. Lett., 13 (2000), 81–88. doi: 10.1016/S0893-9659(99)00149-4
    [3] S. R. Grace, R. P. Agarwal, A. Zafer, Oscillation of higher order nonlinear dynamic equations on time scales, Adv. Differ. Equations, 2012 (2012), 67. doi: 10.1186/1687-1847-2012-67
    [4] S. R. Grace, On the oscillation of higher order dynamic equations, J. Adv. Res., 4 (2013), 201–204. doi: 10.1016/j.jare.2012.04.003
    [5] S. R. Grace, On the oscillation of $n$th order dynamic equations on time scales, Mediterr. J. Math., 10 (2013), 147–156. doi: 10.1007/s00009-012-0201-9
    [6] S. R. Grace, T. S. Hassan, Oscillation criteria for higher order nonlinear dynamic equations, Math. Nachr., 287 (2014), 1659–1673. doi: 10.1002/mana.201300157
    [7] S. R. Grace, R. P. Agarwal, M. Bohner, D. O'Regan, Oscillation of second-order strongly superlinear and strongly sublinear dynamic equations, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 3463–3471. doi: 10.1016/j.cnsns.2009.01.003
    [8] S. R. Grace, M. Bohner, R. P. Agarwal, On the oscillation of second-order half-linear dynamic equations, J. Differ. Equations Appl., 15 (2009), 451–460. doi: 10.1080/10236190802125371
    [9] B. Karpuz, Sufficient conditions for the oscillation and asymptotic beaviour of higher order dynamic equations of neutral type, Appl. Math. Comput., 221 (2013), 453–462. doi: 10.1016/j.amc.2013.06.090
    [10] X. Wu, T. X. Sun, H. J. Xi, C. H. Chen, Kamenev-type oscillation criteria for higher-order nonlinear dynamic equations on time scales, Adv. Differ. Equations, 2013 (2013), 248. doi: 10.1186/1687-1847-2013-248
    [11] T. X. Li, C. H. Zhang, E. Thandapani, Asymptotic behavior of fourth order neutral dynamic equations with noncanonical operators, Taiwan. J. Math., 18 (2014), 1003–1019. doi: 10.11650/tjm.18.2014.2678
    [12] C. Zhang, R. P. Agrawal, T. Li, Oscillation of second-order nonlinear neutral dynamic equations with noncanonical operators, Bull. Malays. Math. Sci. Soc., 38 (2015), 761–778. doi: 10.1007/s40840-014-0048-2
    [13] M. K. Yildiz, H. Oĝünmez, Oscillation results of higher order nonlinear neutral delay difference equations with a nonlinear neutral term, Hacettepe J. Math. Stat., 43 (2014), 809–814.
    [14] J. R. Graef, S. R. Grace, E. Tunc, Oscillatory behavior of even-order nonlinear differential equations with a sublinear neutral term, Opuscula Math., 39 (2019), 39–47. doi: 10.7494/OpMath.2019.39.1.39
    [15] M. Bohner, T. S. Hassan, T. X. Li, Fite-Hille-Wintner-type oscillation criteria for second-order half-linear dynamic equations with deviating arguments, Indagationes Math., 29 (2018), 548–560. doi: 10.1016/j.indag.2017.10.006
    [16] J. Dzurina, S. R. Grace, I. Jadhovska, T. X. Li, Oscillation criteria for second-order Emden-Flower delay differential equations with a sublinear term, Math. Nachr., 293 (2020), 910–922. doi: 10.1002/mana.201800196
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2390) PDF downloads(155) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog