In this paper, several oscillation criteria for a class of higher order dynamic equations with superlinear neutral term are established. The proposed results provide a unified platform that adequately covers both discrete and continuous equations and further sufficiently comments on oscillatory behavior of more general class of equations than the ones reported in the literature. We conclude the paper by demonstrating illustrative examples.
Citation: Said R. Grace, Jehad Alzabut, Kamaleldin Abodayeh. Oscillation theorems for higher order dynamic equations with superlinear neutral term[J]. AIMS Mathematics, 2021, 6(6): 5493-5501. doi: 10.3934/math.2021325
In this paper, several oscillation criteria for a class of higher order dynamic equations with superlinear neutral term are established. The proposed results provide a unified platform that adequately covers both discrete and continuous equations and further sufficiently comments on oscillatory behavior of more general class of equations than the ones reported in the literature. We conclude the paper by demonstrating illustrative examples.
[1] | R. P. Agarwal, M. Bohner, Basic calculus on time scales and some of its applications, Results Math., 35 (1999), 3–22. doi: 10.1007/BF03322019 |
[2] | R. P. Agarwal, S. R. Grace, Oscillation of higher-order difference equations, Appl. Math. Lett., 13 (2000), 81–88. doi: 10.1016/S0893-9659(99)00149-4 |
[3] | S. R. Grace, R. P. Agarwal, A. Zafer, Oscillation of higher order nonlinear dynamic equations on time scales, Adv. Differ. Equations, 2012 (2012), 67. doi: 10.1186/1687-1847-2012-67 |
[4] | S. R. Grace, On the oscillation of higher order dynamic equations, J. Adv. Res., 4 (2013), 201–204. doi: 10.1016/j.jare.2012.04.003 |
[5] | S. R. Grace, On the oscillation of $n$th order dynamic equations on time scales, Mediterr. J. Math., 10 (2013), 147–156. doi: 10.1007/s00009-012-0201-9 |
[6] | S. R. Grace, T. S. Hassan, Oscillation criteria for higher order nonlinear dynamic equations, Math. Nachr., 287 (2014), 1659–1673. doi: 10.1002/mana.201300157 |
[7] | S. R. Grace, R. P. Agarwal, M. Bohner, D. O'Regan, Oscillation of second-order strongly superlinear and strongly sublinear dynamic equations, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 3463–3471. doi: 10.1016/j.cnsns.2009.01.003 |
[8] | S. R. Grace, M. Bohner, R. P. Agarwal, On the oscillation of second-order half-linear dynamic equations, J. Differ. Equations Appl., 15 (2009), 451–460. doi: 10.1080/10236190802125371 |
[9] | B. Karpuz, Sufficient conditions for the oscillation and asymptotic beaviour of higher order dynamic equations of neutral type, Appl. Math. Comput., 221 (2013), 453–462. doi: 10.1016/j.amc.2013.06.090 |
[10] | X. Wu, T. X. Sun, H. J. Xi, C. H. Chen, Kamenev-type oscillation criteria for higher-order nonlinear dynamic equations on time scales, Adv. Differ. Equations, 2013 (2013), 248. doi: 10.1186/1687-1847-2013-248 |
[11] | T. X. Li, C. H. Zhang, E. Thandapani, Asymptotic behavior of fourth order neutral dynamic equations with noncanonical operators, Taiwan. J. Math., 18 (2014), 1003–1019. doi: 10.11650/tjm.18.2014.2678 |
[12] | C. Zhang, R. P. Agrawal, T. Li, Oscillation of second-order nonlinear neutral dynamic equations with noncanonical operators, Bull. Malays. Math. Sci. Soc., 38 (2015), 761–778. doi: 10.1007/s40840-014-0048-2 |
[13] | M. K. Yildiz, H. Oĝünmez, Oscillation results of higher order nonlinear neutral delay difference equations with a nonlinear neutral term, Hacettepe J. Math. Stat., 43 (2014), 809–814. |
[14] | J. R. Graef, S. R. Grace, E. Tunc, Oscillatory behavior of even-order nonlinear differential equations with a sublinear neutral term, Opuscula Math., 39 (2019), 39–47. doi: 10.7494/OpMath.2019.39.1.39 |
[15] | M. Bohner, T. S. Hassan, T. X. Li, Fite-Hille-Wintner-type oscillation criteria for second-order half-linear dynamic equations with deviating arguments, Indagationes Math., 29 (2018), 548–560. doi: 10.1016/j.indag.2017.10.006 |
[16] | J. Dzurina, S. R. Grace, I. Jadhovska, T. X. Li, Oscillation criteria for second-order Emden-Flower delay differential equations with a sublinear term, Math. Nachr., 293 (2020), 910–922. doi: 10.1002/mana.201800196 |