Processing math: 47%
Research article Special Issues

The Faber polynomial expansion method and the Taylor-Maclaurin coefficient estimates of Bi-Close-to-Convex functions connected with the q-convolution

  • Received: 01 August 2020 Accepted: 03 September 2020 Published: 10 September 2020
  • MSC : Primary: 05A30, 30C45; Secondary: 11B65, 47B38

  • In this paper, we introduce a new class of analytic and bi-close-to-convex functions connected with q-convolution, which are defined in the open unit disk. We find estimates for the general Taylor-Maclaurin coefficients of the functions in this subclass by using the Faber polynomial expansion method. Several corollaries and consequences of our main results are also briefly indicated.

    Citation: H. M. Srivastava, Sheza M. El-Deeb. The Faber polynomial expansion method and the Taylor-Maclaurin coefficient estimates of Bi-Close-to-Convex functions connected with the q-convolution[J]. AIMS Mathematics, 2020, 5(6): 7087-7106. doi: 10.3934/math.2020454

    Related Papers:

    [1] Bashir Ahmad, Ahmed Alsaedi, Ymnah Alruwaily, Sotiris K. Ntouyas . Nonlinear multi-term fractional differential equations with Riemann-Stieltjes integro-multipoint boundary conditions. AIMS Mathematics, 2020, 5(2): 1446-1461. doi: 10.3934/math.2020099
    [2] Ahmed Alsaedi, Fawziah M. Alotaibi, Bashir Ahmad . Analysis of nonlinear coupled Caputo fractional differential equations with boundary conditions in terms of sum and difference of the governing functions. AIMS Mathematics, 2022, 7(5): 8314-8329. doi: 10.3934/math.2022463
    [3] Bashir Ahmad, Ahmed Alsaedi, Areej S. Aljahdali, Sotiris K. Ntouyas . A study of coupled nonlinear generalized fractional differential equations with coupled nonlocal multipoint Riemann-Stieltjes and generalized fractional integral boundary conditions. AIMS Mathematics, 2024, 9(1): 1576-1594. doi: 10.3934/math.2024078
    [4] Md. Asaduzzaman, Md. Zulfikar Ali . Existence of positive solution to the boundary value problems for coupled system of nonlinear fractional differential equations. AIMS Mathematics, 2019, 4(3): 880-895. doi: 10.3934/math.2019.3.880
    [5] Bashir Ahmad, Manal Alnahdi, Sotiris K. Ntouyas, Ahmed Alsaedi . On a mixed nonlinear boundary value problem with the right Caputo fractional derivative and multipoint closed boundary conditions. AIMS Mathematics, 2023, 8(5): 11709-11726. doi: 10.3934/math.2023593
    [6] M. Manigandan, Subramanian Muthaiah, T. Nandhagopal, R. Vadivel, B. Unyong, N. Gunasekaran . Existence results for coupled system of nonlinear differential equations and inclusions involving sequential derivatives of fractional order. AIMS Mathematics, 2022, 7(1): 723-755. doi: 10.3934/math.2022045
    [7] Ahmed Alsaedi, Bashir Ahmad, Afrah Assolami, Sotiris K. Ntouyas . On a nonlinear coupled system of differential equations involving Hilfer fractional derivative and Riemann-Liouville mixed operators with nonlocal integro-multi-point boundary conditions. AIMS Mathematics, 2022, 7(7): 12718-12741. doi: 10.3934/math.2022704
    [8] Dumitru Baleanu, S. Hemalatha, P. Duraisamy, P. Pandiyan, Subramanian Muthaiah . Existence results for coupled differential equations of non-integer order with Riemann-Liouville, Erdélyi-Kober integral conditions. AIMS Mathematics, 2021, 6(12): 13004-13023. doi: 10.3934/math.2021752
    [9] Subramanian Muthaiah, Manigandan Murugesan, Muath Awadalla, Bundit Unyong, Ria H. Egami . Ulam-Hyers stability and existence results for a coupled sequential Hilfer-Hadamard-type integrodifferential system. AIMS Mathematics, 2024, 9(6): 16203-16233. doi: 10.3934/math.2024784
    [10] Xiaoming Wang, Mehboob Alam, Akbar Zada . On coupled impulsive fractional integro-differential equations with Riemann-Liouville derivatives. AIMS Mathematics, 2021, 6(2): 1561-1595. doi: 10.3934/math.2021094
  • In this paper, we introduce a new class of analytic and bi-close-to-convex functions connected with q-convolution, which are defined in the open unit disk. We find estimates for the general Taylor-Maclaurin coefficients of the functions in this subclass by using the Faber polynomial expansion method. Several corollaries and consequences of our main results are also briefly indicated.


    Numerous phenomena are mathematically described using fractional order differential and integral operators. The fundamental advantage of these operators is that they are nonlocal. This makes it possible to describe the components and procedures used throughout the phenomenon's history. As a result, fractional-order models are more precise and useful than their equivalents in integer order. Because fractional calculus (FC) techniques are frequently used in a number of real-world applications, numerous scholars established this significant branch of mathematical analysis (see e.g., [1,2,3,4,5,6,7,8,9]).

    Recent studies on fractional differential equations (FDEs) with various boundary conditions (BCs) have been carried out by several researchers. Nonlocal nonlinear fractional-order boundary value issues, especially, have received a lot of attention. In the work of Bitsadze and Samarski (see [10]), when nonlocal conditions were first presented, they were used to describe physical occurrences that occurred within a specific domain's bounds. Due to a blood vessel's shifting form throughout the vessel, it is difficult to defend the assumption of a circular cross section in computational fluid dynamics analyses of blood flow problems. To overcome this issue, integral BCs have been introduced. Additionally, ill-posed parabolic backward problems are resolved using integral BCs. The mathematical models of bacterial self-regularization also depend heavily on integral BCs. In mathematical models of bacterial self-regularization, integral BCs are also essential.

    In the mathematical modelling of a number of practical issues, coupled systems of FDEs represent the main tools. Examples include fractional dynamics, chaos, financial economics, ecology, and bio-engineering, etc (see e.g., [1,2,3,4,5,6,7,8,9]), also see the recent interesting results in e.g., [11,12,13,14]. The study of fractional differential systems has been a well-liked and significant field of science, supplemented by many types of BCs. The advancement of this topic has been aided by several researchers who have published countless outputs. Modern functional analysis techniques greatly aid in obtaining existence (Exs.) and uniqueness (Unq.) findings for these issues. We recommend the reader study a number of papers for some recent research on fractional or sequential FDEs with nonlocal integral BCs (e.g., [15,16]).

    In [17], by using fixed point theorems (FPTs), the authors looked into the possibility of solving an initial value problem (IVP) involving a sequential FDE. In [18], using the method of upper and lower solutions and the monotone iterative technique, the Exs. and Unq. results for a periodic boundary value issue of nonlinear sequential FDEs were discovered. Since they contain multipoint and integral BCs as special examples, Riemann-Stieltjes BCs are highly general (see [19]). The astronomer T. J. Stieltjes generalization of the Riemann integral, the Riemann-Stieltjes integral, has potential uses in probability theory (see e.g., [20,21]).

    Banach and Schaefer FPTs have been employed in [22] (see also e.g., [23,24,25]) to study the Exs. and Unq. of solutions for a coupled system of nonlinear fractional integro-differential equations (Int-DifEqn.) involving Riemann-Liouville integrals with several continuous functions.

    {DαU(ρ)=f1(ρ,U(ρ),V(ρ))+mi=1ρ0(ρλ)αi1Γ(αi)φi(λ)gi(λ,U(λ),V(λ))dλ,DβV(ρ)=f2(ρ,U(ρ),V(ρ))+mi=1ρ0(ρλ)βiΓ(βi)ϕi(λ)hi(λ,U(λ),V(λ))dλ,U(0)=a>0,V(0)=b>0,ρ[0,1],

    where Dα,Dβ denote the Caputo fractional derivatives (CFD), 0<α,β<1;αi;βi are nonnegative real numbers, φi and ϕi are some continuous functions. It should be remarked that the authors in [26] considered the short-memory which can be considered in some work.

    The authors in [27] investigated a boundary value problem of coupled systems of nonlinear Riemann-Liouvillle fractional Int-DifEqn. supplemented with nonlocal Riemann-Liouvillle fractional Int-Dif. BCs. The results obtained by using some standard FPTs (with ρ[0,T], 1<α,β2)

    {DαU(ρ)=A(ρ,U(ρ),V(ρ),(ϕ1U)(ρ),(ψ1V)(ρ)),DβV(ρ)=B(ρ,U(ρ),V(ρ),(ϕ2U)(ρ),(ψ2V)(ρ)),

    with the following coupled Riemann-Liouville Int-Dif. BCs (with 0<η<T, 0<σ<T)

    {Dα2u(0+)=0,Dα1u(0+)=νIα1υ(η),Dβ2u(0+)=0,Dβ1υ(0+)=μIβ1u(σ),

    where the Riemann-Liouville derivatives is denoted by D(.), and I(.) denotes the Riemann-Liouville integral of fractional order (.), and f,g:[0,T]×R4R are given continuous functions, ν,μ are real constants, and ϕi,ψi,i=1,2 are given operators.

    For a nonlinear coupled system of Liouville-Caputo type fractional Int-DifEqn. with non-local discrete and integral BCs, the Exs. and Unq. of solutions have been studied in [28]. The Exs. results are obtained by usng Leray-Schauder FPT, while the Unq. results by the concept of Banach FPT.

    {CDqx(r1)=A(r1,x(r1),y(r1))),CDpy(r1)=B(r1,x(r1),y(r1))),x(0)=αξ0x(r2)dr2,x(1)=β10g(x(r2))dr2,y(0)=α1θ0y(r2)dr2,y(1)=β110g(y(r2))dr2,r1[0,1],1<q,p2,0ξ,θ1,

    where CDq,CDp denote the Caputo fractional derivatives (CFDs) of order q,p,A,B:[0,1]×R×RR are given continuous functions, and α,β,α1,β1 are real constants.

    In [29], the authors discussed the FDEs with integral and ordinary-fractional flux BCs

    {CDp1x(κ)=F(s,x(κ),y(κ))),CDp2y(κ)=G(s,x(κ),y(κ))),x(0)+x(1)=a10x(r2)dr2,x(0)=bCDq1x(1),y(0)+y(1)=z10y(r2)dr2,y(0)=bC1De1y(1),s[0,1],1<p1,p22,0q,e11,

    where CDp1,CDp2,CDq1,CDe1 denote the CFDs of order p1,p2,F,G:[0,1]×R×RR are given continuous functions, and a,z,b,b1 are real constants. The Exs. results have been analyzed in [30] for coupled system of FDEs (with μ(0,1),1<α,β<2,0<η<1)

    {DαU(μ)=A(μ,V(μ),DpV(μ))),DβV(μ)=B(μ,U(μ),DqU(μ))),U(0)=0,U(1)=γU(η),V(0)=0,V(1)=γV(η),

    where D denotes the Riemann-Liouville FDs of order (), A,B:[0,1]×R2R, are given continuous functions, and γ is a real constant.

    Exs. of solutions for nonlinear coupled Caputo fractional Int-DifEqn has been investigated in [16],

    {CDαu(ρ)=f(ρ,u(ρ),v(ρ),CDζ1υ(ρ),Iξυ(ρ)),ρ[0,T]:=U,CDβυ(ρ)=g(ρ,u(ρ),u(ρ),CDι1υ(ρ),Iςυ(ρ)),ρ[0,T]:=U,

    with nonlocal integral and multi-point BCs

    {U(0)=ψ1(V),U(0)=ε1ν10V(θ)dθ,U(0)=0,,Un2(0)=0,U(T)=λ1δ10V(θ)dθ+μ1k2j=1wjV(θj),V(0)=ψ2(V),V(0)=ε2ν20U(θ)dθ,V(0)=0,,Vn2(0)=0,V(T)=λ2δ20U(θ)dθ+μ2k2j=1wjU(φj),

    where CDα,CDβ,CDζ1,CDι1 are the Caputo FDs of order n1<α,β<n, 0<ζ1,ι1<1, Iξ,Iς are the Riemann-Liouville fractional integrals (FI) of order ξ,ς>0.

    In this paper, we investigate the Exs. and Unq. of solutions for the following nonlinear coupled system of FDEs involving Riemann-Liouville and Caputo derivatives with coupled Riemann-Stieltjes integro-multipoint boundary conditions

    {RLDf1[(cDh1+α1)x(t)+β1Is1H(t,x(t),y(t))]=ϕ(t,x(t),y(t)),1<h1,f12,t[q,p],RLDf2[(cDh2+α2)y(t)+β2Is2U(t,x(t),y(t))]=ψ(t,x(t),y(t)),1<h2,f22,t[q,p], (1.1)

    with coupled non-conjugate Riemann-Stieltjes integro-multipoint BCs:

    {x(q)=τ2i=1ηiy(ξi)+pqy(κ)dΛ(κ),x(q)=0,x(p)=0,x(p)=0,y(q)=τ2i=1ηix(ξi)+pqx(κ)dΛ(κ),y(q)=0,y(p)=0,y(p)=0, (1.2)

    where cDa denotes the Caputo fractional differential operator of order a with (a=h1,h2), RlDb denotes the Riemann-Liouville fractional differential operator of order b with (b=f1,f2), with h1+f1>3,h2+f2>3, Is1,Is2 are Riemann-Liouville FI of order s1,s2>1, αi,βiR,i=1,2, H,ϕ,U,ψ:[q,p]×R2R are given continuous functions, Λ is a function of bounded variation, q<ξ1<ξ2<<ξn2<p, ηjR, j=1,2,n2. It should be remarked that some fundamental assumptions for orders of fractional derivatives are postulated in our study and potential relaxation of this limitations can be considered in some further study. The main contribution of this article can be seen as follows:

    (1) A generalization of the results obtained in [16].

    (2) A generalization of the results obtained in [29].

    (3) A generalization of the results obtained in [30].

    Here we emphasize that the present work is motivated by a recent work [31]. Next section recalls some basic definitions of FC and present an auxiliary lemma. In section 3, we discuss the existence of solutions for the given problem while the uniqueness results is presented in section 4, section 5 shows examples that illustrate our results, and section 6 concludes our work.

    Now, we recall some basic definitions of fractional calculus.

    Definition 2.1. [8] For β>0, the Riemann-Liouville FI of order β for ϑL1[q,p], existing almost everywhere on [q,p], (with <q<p<) is defined by

    Iβϑ(t)=tq(ts)β1Γ(β)ϑ(s)ds,

    where Γ denotes the Euler gamma function.

    Definition 2.2. [8] For, β(n1,n],nN, and gACn[q,p], the Riemann-Liouville and CFDs of order β are respectively defined by

    RLDβϑ(t)=dndtntq(ts)nβ1Γ(nβ)ϑ(s)dsandcDβϑ(r)=rq(rs)nβ1Γ(nβ)ϑ(n)(s)ds.

    Lemma 2.1. For m1<βm,t[q,p], the general solution of the FDE cDβx(b)=0, is

    x(b)=r0+r1(bq)+r2(bq)2+...+rm1(bq)m1,

    riR,i=0,1,...,m1. Moreover,

    (IβcDβx)(b)=x(b)+m1i=0ri(bq)i.

    Lemma 2.2. [8] For β>0 and xC(q,p)L(q,p), the general solution of (RLDβx)(b)=0 is

    x(b)=σ1(bq)β1+σ2(bq)β2++σm1(bq)βm1+σm(bq)βm,

    where σjR,j=1,2,,m, and

    (IβRLDβx)(b)=x(b)+σ1(bq)β1+σ2(bq)β2++σm1(bq)βm1+σm(bq)βm=x(b)+mj=1σi(bq)βj.

    On the other hand, (RLDβIβx)(b)=x(b).

    See also Lemma A.1 in Appendix. A for more details.

    Denote by X={x(t)|x(t)C([q,p],R)} as the Banach space (BSp.) of all functions (continuous) from [q,p] into R equipped with the norm x=supt[q,p]|x(t)|. Obviously (X,.) is a BSp. and as a result, the product space (X×X,.) is a BSp. with the norm (r,s)=r+s for (r,s)X×X.

    By Lemma A.1, we define an operator A:X×XX×X as

    A(x,y)(t):=(A1(x,y)(t),A2(x,y)(t)), (3.1)

    where

    A1(x,y)(t)=α1tq(tκ)h11Γ(h1)x(κ)dκβ1tq(tκ)s1+h11Γ(s1+h1)H(κ,x(κ),y(κ))dκ+tq(tκ)h1+f11Γ(h1+f1)ϕ(κ,x(κ),y(κ))dκ+V1(t)[α1pq(pκ)h11Γ(h1)x(κ)dκ+β1pq(pκ)s1+h11Γ(s1+h1)H(κ,x(κ),y(κ))dκpq(pκ)h1+f11Γ(h1+f1)ϕ(κ,x(κ),y(κ))dκ]+V2(t)[α1pq(pκ)h12Γ(h11)x(κ)dκ+β1pq(pκ)s1+h12Γ(s1+h11)H(κ,x(κ),y(κ))dκpq(pκ)h1+f12Γ(h1+f11)ϕ(κ,x(κ),y(κ))dκ]+V3(t)[α1n2i=1ηiξiq(ξiκ)h11Γ(h1)x(κ)dκβ1τ2i=1ηiξiq(ξiκ)s1+h11Γ(s1+h1)H(κ,x(κ),y(κ))dκ+τ2i=1ηiξiq(ξiκ)h1+f11Γ(h1+f1)ϕ(κ,x(κ),y(κ))dκ+pq(α1κq(κu)h11Γ(h1)x(u)duβ1κq(κu)s1+h11Γ(s1+h1)H(u,x(u),y(u))du+κq(κu)h1+f11Γ(h1+f1)ϕ(u,x(u),y(u))du)dΛ(κ)]+V4(t)[α2pq(pκ)h21Γ(h2)y(κ)dκ+β2pq(pκ)s2+h21Γ(s2+h2)U(κ,x(κ),y(κ))dκpq(pκ)h2+f21Γ(h2+f2)ψ(κ,x(κ),y(κ))dκ]+V5(t)[α2pq(pκ)h22Γ(h21)y(κ)dκ+β2pq(pκ)s2+h22Γ(s2+h21)U(κ,x(κ),y(κ))dκpq(pκ)h2+f22Γ(h2+f21)ψ(κ,x(κ),y(κ))dκ]+V6(t)[α2τ2i=1ηiξiq(ξiκ)h21Γ(h2)y(κ)dκβ2τ2i=1ηiξiq(ξiκ)s2+h21Γ(s2+h2)U(κ,x(κ),y(κ))dκ+τ2i=1ηiξiq(ξiκ)h2+f21Γ(h2+f2)ψ(κ,x(κ),y(κ))dκ+pq(α2κq(κu)h21Γ(h2)y(u)duβ2κq(κu)s2+h21Γ(s2+h2)U(u,x(u),y(u))du+κq(κu)h2+f21Γ(h2+f2)ψ(u,x(u),y(u))du)dΛ(κ)]], (3.2)
    A2(x,y)(t)=α2tq(tκ)h21Γ(h2)y(κ)dκβ2tq(tκ)s2+h21Γ(s2+h2)U(κ,x(κ),y(κ))dκ+tq(tκ)h2+f21Γ(h2+f2)ψ(κ,x(κ),y(κ))dκ+W1(t)[α1pq(pκ)h11Γ(h1)x(κ)dκ+β1pq(pκ)s1+h11Γ(s1+h1)H(κ,x(κ),y(κ))dκpq(pκ)h1+f11Γ(h1+f1)ϕ(κ,x(κ),y(κ))dκ]+W2(t)[α1pq(pκ)h12Γ(h11)x(κ)dκ+β1pq(pκ)s1+h12Γ(s1+h11)H(κ,x(κ),y(κ))dκpq(pκ)h1+f12Γ(h1+f11)ϕ(κ,x(κ),y(κ))dκ]+W3(t)[α1τ2i=1ηiξiq(ξiκ)h11Γ(h1)x(κ)dκβ1τ2i=1ηiξiq(ξiκ)s1+h11Γ(s1+h1)H(κ,x(κ),y(κ))dκ+τ2i=1ηiξiq(ξiκ)h1+f11Γ(h1+f1)ϕ(κ,x(κ),y(κ))dκ+pq(α1κq(κu)h11Γ(h1)x(u)duβ1κq(κu)s1+h11Γ(s1+h1)H(u,x(u),y(u))du+κq(κu)h1+f11Γ(h1+f1)ϕ(u,x(u),y(u))du)dΛ(κ)]+W4(t)[α2pq(pκ)h21Γ(h2)y(κ)dκ+β2pq(pκ)s2+h21Γ(s2+h2)U(κ,x(κ),y(κ))dκpq(pκ)h2+f21Γ(h2+f2)ψ(κ,x(κ),y(κ))dκ]+W5(t)[α2pq(pκ)h22Γ(h21)y(κ)dκ+β2pq(pκ)s2+h22Γ(s2+h21)U(κ,x(κ),y(κ))dκpq(pκ)h2+f22Γ(h2+f21)ψ(κ,x(κ),y(κ))dκ]+W6(t)[α2τ2i=1ηiξiq(ξiκ)h21Γ(h2)y(κ)dκβ2τ2i=1ηiξiq(ξiκ)s2+h21Γ(s2+h2)U(κ,x(κ),y(κ))dκ+τ2i=1ηiξiq(ξiκ)h2+f21Γ(h2+f2)ψ(κ,x(κ),y(κ))dκ+pq(α2κq(κu)h21Γ(h2)y(u)duβ2κq(κu)s2+h21Γ(s2+h2)U(u,x(u),y(u))du+κq(κu)h2+f21Γ(h2+f2)ψ(u,x(u),y(u))du)dΛ(κ)], (3.3)

    and Vi(t)(i=1,,6) and Wj(t),j=1,...,6 are given by (A.4) and (A.5) respectively. From now on, we impose that H,ϕ,U,ψ:[q,p]×R2R are continuous functions satisfying the following condition:

    (H1) For all t[q,p],x,yR, real constants ϖi,εi,ni,mi0(i=1,2),ϖ0,ε0,n0,m0>0:

    |H(t,x,y)|ϖ0+ϖ1|x|+ϖ2|y|,
    |ϕ(t,x,y)|ε0+ε1|x|+ε2|y|,
    |U(t,x,y)|n0+n1|x|+n2|y|,
    |ψ(t,x,y)|m0+m1|x|+m2|y|.

    For simplicity, we use the following notations:

    F0=|α1|{(pq)h1Γ(h1+1)+˜V1(pq)h1Γ(h1+1)+˜V2(pq)h11Γ(h1)+˜V3(τ2i=1|ηi|(ξiq)h1Γ(h1+1)+pq(κq)h1Γ(h1+1)dΛ(κ))},F1=|β1|{(pq)s1+h1Γ(s1+h1+1)+˜V1(pq)s1+h1Γ(s1+h1+1)+˜V2(pq)s1+h11Γ(s1+h1)+˜V3(τ2i=1|ηi|(ξiq)s1+h1Γ(s1+h1+1)+pq(κq)s1+h1Γ(s1+h1+1)dΛ(κ))},F2={(pq)h1+f1Γ(h1+f1+1)+˜V1(pq)h1+f1Γ(h1+f1+1)+˜V2(pq)h1+f11Γ(h1+f1)+˜V3(τ2i=1|ηi|(ξiq)h1+f1Γ(h1+f1+1)+pq(κq)h1+f1Γ(h1+f1+1)dΛ(κ))},F3=|α2|{˜V4(pq)h2Γ(h2+1)+˜V5(pq)h21Γ(h2)+˜V6(τ2i=1|ηi|(ξiq)h2Γ(h2+1)+pq(κq)h2Γ(h2+1)dΛ(κ))},F4=|β2|{˜V4(pq)s2+h2Γ(s2+h2+1)+˜V5(pq)s2+h21Γ(s2+h2)+˜V6(τ2i=1|ηi|(ξiq)s2+h2Γ(s2+h2+1)+pq(κq)s2+h2Γ(s2+h2+1)dΛ(κ))},F5={˜V4(pq)h2+f2Γ(h2+f2+1)+˜V5(pq)h2+f21Γ(h2+f2)+˜V6(τ2i=1|ηi|(ξiq)h2+f2Γ(h2+f2+1)+pq(κq)h2+f2Γ(h2+f2+1)dΛ(κ))}, (3.4)
    G0=|α1|{˜W1(pq)h1Γ(h1+1)+˜W2(pq)h11Γ(h1)+˜W3(τ2i=1|ηi|(ξiq)h1Γ(h1+1)+pq(κq)h1Γ(h1+1)dΛ(κ))},G1=|β1|{˜W1(pq)s1+h1Γ(s1+h1+1)+˜W2(pq)s1+h11Γ(s1+h1)+˜W3(τ2i=1|ηi|(ξiq)s1+h1Γ(s1+h1+1)+pq(κq)s1+h1Γ(s1+h1+1)dΛ(κ))},G2={˜W1(pq)h1+f1Γ(h1+f1+1)+˜W2(pq)h1+f11Γ(h1+f1)+˜W3(τ2i=1|ηi|(ξiq)h1+f1Γ(h1+f1+1)+pq(κq)h1+f1Γ(h1+f1+1)dΛ(κ))},G3=|α2|{(pq)h2Γ(h2+1)+˜W4(pq)h2Γ(h2+1)+˜W5(pq)h21Γ(h2)+˜W6(τ2i=1|ηi|(ξiq)h2Γ(h2+1)+pq(κq)h2Γ(h2+1)dΛ(κ))},G4=|β2|{(pq)s2+h2Γ(s2+h2+1)+˜W4(pq)s2+h2Γ(s2+h2+1)+˜W5(pq)s2+h21Γ(s2+h2)+˜W6(τ2i=1|ηi|(ξiq)s2+h2Γ(s2+h2+1)+pq(κq)s2+h2Γ(s2+h2+1)dΛ(κ))},G5={(pq)h2+f2Γ(h2+f2+1)+˜W4(pq)h2+f2Γ(h2+f2+1)+˜W5(pq)h2+f21Γ(h2+f2)+˜W6(τ2i=1|ηi|(ξiq)h2+f2Γ(h2+f2+1)+pq(κq)h2+f2Γ(h2+f2+1)dΛ(κ))}, (3.5)

    where ˜Vi=supt[q,p]|Vi(t)|,i=1,...,6 and ˜Wj=supt[q,p]|Wj(t)|,j=1,...,6,

    O0=(F1+G1)ϖ0+(F2+G2)ε0+(F4+G4)n0+(F5+G5)m0, (3.6)
    O1=(F0+G0)+(F1+G1)ϖ1+(F2+G2)ε1+(F4+G4)|n1+(F5+G5)m1, (3.7)
    O2=(F1+G1)ϖ2+(F2+G2)ε2+(F3+G3)+(F4+G4)n2+(F5+G5)m2, (3.8)
    O=max{O1,O2}. (3.9)

    Now we introduce our Exs. results. In the first method we use Leray-Schauder alternative to show the Exs. of solution for the systems (1.1) and (1.2).

    Lemma 3.1. (Leray-Schauder alternative [32]): Let a completely continuous operator S:JJ. Assume that E(S)={yJ:y=λS(y), 0<λ<1}. Then:

    (1) the set E(S) is unbounded, or

    (2) S has at lest one FP.

    Theorem 3.1. If continuous functions H,ϕ,U,ψ:[q,p]×R2R satisfying (H1). Then the systems (1.1) and (1.2) has at least one solution on [q,p] if O<1, where O is given by (3.9).

    Proof. We start by proving that the operator A:X×XX×X is completely continuous. Since the functions H,ϕ,U and ψ, are continuous, then the operator A is continuous.

    Let PX×X be bounded. Then constants ζi>0(i=1,...,4): |H(t,x(t),y(t))|ζ1,|ϕ(t,x(t),y(t))|ζ2,|U(t,x(t),y(t))|ζ3,|ψ(t,x(t),y(t))|ζ4,(x,y)P. Then, for any (x,y)P, we have

    |A1(x,y)(t)||α1|tq(tκ)h11Γ(h1)|x(κ)|dκ+|β1|tq(tκ)s1+h11Γ(s1+h1)ζ1dκ+tq(tκ)h1+f11Γ(h1+f1)ζ2dκ+|V1(t)|[|α1|pq(pκ)h11Γ(h1)|x(κ)|dκ+|β1|pq(pκ)s1+h11Γ(s1+h1)ζ1dκ+pq(pκ)h1+f11Γ(h1+f1)ζ2dκ]+|V2(t)|[|α1|pq(pκ)h12Γ(h11)|x(κ)|dκ+|β1|pq(pκ)s1+h12Γ(s1+h11)ζ1dκ+pq(pκ)h1+f12Γ(h1+f11)ζ2dκ]+|V3(t)|[|α1|τ2i=1|ηi|ξiq(ξiκ)h11Γ(h1)|x(κ)|dκ+|β1|τ2i=1|ηi|ξiq(ξiκ)s1+h11Γ(s1+h1)ζ1dκ+τ2i=1|ηi|ξiq(ξiκ)h1+f11Γ(h1+f1)ζ2dκ+pq(|α1|κq(κu)h11Γ(h1)|x(u)|du+|β1|κq(κu)s1+h11Γ(s1+h1)ζ1du+κq(κu)h1+f11Γ(h1+f1)ζ2du)dΛ(κ)]+|V4(t)|[|α2|pq(pκ)h21Γ(h2)|y(κ)|dκ+|β2|pq(pκ)s2+h21Γ(s2+h2)ζ3dκ+pq(pκ)h2+f21Γ(h2+f2)ζ4dκ]+|V5(t)|[|α2|pq(pκ)h22Γ(h21)|y(κ)|dκ+|β2|pq(pκ)s2+h22Γ(s2+h21)ζ3dκ+pq(pκ)h2+f22Γ(h2+f21)ζ4dκ]+|V6(t)|[|α2|τ2i=1|ηi|ξiq(ξiκ)h21Γ(h2)|y(κ)|dκ+|β2|τ2i=1|ηi|ξiq(ξiκ)s2+h21Γ(s2+h2)ζ3dκ+τ2i=1|ηi|ξiq(ξiκ)h2+f21Γ(h2+f2)ζ4dκ+pq(|α2|κq(κu)h21Γ(h2)|y(u)|du+|β2|κq(κu)s2+h21Γ(s2+h2)ζ3du+κq(κu)h2+f21Γ(h2+f2)ζ4du)dΛ(κ)]F0|x(t)|+F1ζ1+F2ζ2+F3|y(t)|+F4ζ3+F5ζ4,

    which implies that,

    A1(x,y)F0x+F1ζ1+F2ζ2+F3y+F4ζ3+F5ζ4.

    Similarly, we can get

    A2(x,y)G0x+G1ζ1+G2ζ2+G3y+G4ζ3+G5ζ4.

    Hence, the operator A is uniformly bounded, since A(x,y)(F0+G0)x+(F1+G1)ζ1+(F2+G2)ζ2+(F3+G3)y+(F4+G4)ζ3+(F5+G5)ζ4.

    Next, we show that A is equicontinuous. For t1,t2[q,p] with t1<t2, we obtain

    |A1(x,y)(t2)A1(x,y)(t1)||α1|[|t1q[(t2κ)h11(t1κ)h11]Γ(h1)x(κ)dκ|+|t2t1(t2κ)h11Γ(h1)x(κ)dκ|]+|β1|[|t1q[(t2κ)s1+h11(t1κ)s1+h11]Γ(s1+h1)H(κ,x(κ),y(κ))dκ|+|t2t1(t2κ)s1+h11Γ(s1+h1)H(κ,x(κ),y(κ))dκ|]+|t1q[(t2κ)h1+f11(t1κ)h1+f11]Γ(h1+f1)ϕ(κ,x(κ),y(κ))dκ|+|t2t1(t2κ)h1+f11Γ(h1+f1)ϕ(κ,x(κ),y(κ))dκ|+|V1(t2)V1(t1)|[|α1|pq(pκ)h11Γ(h1)|x(κ)|dκ+|β1|pq(pκ)s1+h11Γ(s1+h1)|H(κ,x(κ),y(κ))|dκ+pq(pκ)h1+f11Γ(h1+f1)|ϕ(κ,x(κ),y(κ))|dκ]+|V2(t2)V2(t1)|[|α1|pq(pκ)h12Γ(h11)|x(κ)|dκ+|β1|pq(pκ)s1+h12Γ(s1+h11)|H(κ,x(κ),y(κ))|dκ+pq(pκ)h1+f12Γ(h1+f11)|ϕ(κ,x(κ),y(κ))|dκ]+|V3(t2)V3(t1)|[|α1|τ2i=1|ηi|ξiq(ξiκ)h11Γ(h1)|x(κ)|dκ+|β1|τ2i=1|ηi|ξiq(ξiκ)s1+h11Γ(s1+h1)|H(κ,x(κ),y(κ))|dκ+τ2i=1|ηi|ξiq(ξiκ)h1+f11Γ(h1+f1)|ϕ(κ,x(κ),y(κ))|dκ+pq(|α1|κq(κu)h11Γ(h1)|x(u)|du+|β1|κq(κu)s1+h11Γ(s1+h1)|H(u,x(u),y(u))|du+κq(κu)h1+f11Γ(h1+f1)|ϕ(u,x(u),y(u))|du)dΛ(κ)]
    +|V4(t2)V4(t1)|[|α2|pq(pκ)h21Γ(h2)|y(κ)|dκ+|β2|pq(pκ)s2+h21Γ(s2+h2)|U(κ,x(κ),y(κ))|dκ+pq(pκ)h2+f21Γ(h2+f2)|ψ(κ,x(κ),y(κ))|dκ]+|V5(t2)V5(t1)|[|α2|pq(pκ)h22Γ(h21)|y(κ)|dκ+|β2|pq(pκ)s2+h22Γ(s2+h21)|U(κ,x(κ),y(κ))|dκ+pq(pκ)h2+f22Γ(h2+f21)|ψ(κ,x(κ),y(κ))|dκ]+|V6(t2)V6(t1)|[|α2|τ2i=1|ηi|ξiq(ξiκ)h21Γ(h2)|y(κ)|dκ+|β2|τ2i=1|ηi|ξiq(ξiκ)s2+h21Γ(s2+h2)|U(κ,x(κ),y(κ))|dκ+τ2i=1|ηi|ξiq(ξiκ)h2+f21Γ(h2+f2)|ψ(κ,x(κ),y(κ))|dκ+pq(|α2|κq(κu)h21Γ(h2)|y(u)|du+|β2|κq(κu)s2+h21Γ(s2+h2)|U(u,x(u),y(u))|du+κq(κu)h2+f21Γ(h2+f2)|ψ(u,x(u),y(u))|du)dΛ(κ)]|α1|xΓ(h1+1)(|(t2q)h1(t1q)h1|+2(t2t1)h1)+|β1|ζ1Γ(s1+h1+1)(|(t2q)s1+h1(t1q)s1+h1|+2(t2t1)s1+h1)
    +ζ2Γ(h1+f1+1)(|(t2q)h1+f1(t1q)h1+f1|+2(t2t1)h1+f1)+|V1(t2)V1(t1)|[|α1|pq(pκ)h11Γ(h1)|x(κ)|dκ+|β1|pq(pκ)s1+h11Γ(s1+h1)ζ1dκ+pq(pκ)h1+f11Γ(h1+f1)ζ2dκ]+|V2(t2)V2(t1)|[|α1|pq(pκ)h12Γ(h11)|x(κ)|dκ+|β1|pq(pκ)s1+h12Γ(s1+h11)ζ1dκ+pq(pκ)h1+f12Γ(h1+f11)ζ2dκ]+|V3(t2)V3(t1)|[|α1|τ2i=1|ηi|ξiq(ξiκ)h11Γ(h1)|x(κ)|dκ+|β1|τ2i=1|ηi|ξiq(ξiκ)s1+h11Γ(s1+h1)ζ1dκ+τ2i=1|ηi|ξiq(ξiκ)h1+f11Γ(h1+f1)ζ2dκ+pq(|α1|κq(κu)h11Γ(h1)|x(u)|du+|β1|κq(κu)s1+h11Γ(s1+h1)ζ2du+κq(κu)h1+f11Γ(h1+f1)|ζ3du)dΛ(κ)]+|V4(t2)V4(t1)|[|α2|pq(pκ)h21Γ(h2)|y(κ)|dκ+|β2|pq(pκ)s2+h21Γ(s2+h2)ζ3dκ+pq(pκ)h2+f21Γ(h2+f2)ζ4dκ]+|V5(t2)V5(t1)|[|α2|pq(pκ)h22Γ(h21)|y(κ)|dκ+|β2|pq(pκ)s2+h22Γ(s2+h21)ζ3dκ+pq(pκ)h2+f22Γ(h2+f21)ζ4dκ]+|V6(t2)V6(t1)|[|α2|τ2i=1|ηi|ξiq(ξiκ)h21Γ(h2)|y(κ)|dκ+|β2|τ2i=1|ηi|ξiq(ξiκ)s2+h21Γ(s2+h2)ζ3dκ+τ2i=1|ηi|ξiq(ξiκ)h2+f21Γ(h2+f2)ζ4dκ+pq(|α2|κq(κu)h21Γ(h2)|y(u)|du+|β2|κq(κu)s2+h21Γ(s2+h2)ζ3du+κq(κu)h2+f21Γ(h2+f2)ζ4du)dΛ(κ)].

    Similarly, we can find that \|\mathcal{A}_2(x, y)-\mathcal{A}_2(x, y)\|\rightarrow 0 independent of x and y as t_2\rightarrow t_1 . Therefore, the operator \mathcal{A}(x, y) is equicontinuous. As a consequence of our steps together with the Arzela-Ascoli theorem, the operator \mathcal{A} is completely continuous. Next, we prove that the set \mathcal{E} = \{(x, y)\in \mathfrak{X}^*\times\mathfrak{X}^*|(x, y) = \sigma \mathcal{A}(x, y), 0\leq\sigma\leq1\} is bounded. Take (x, y)\in\mathcal{E}, then (x, y) = \sigma\mathcal{A}(x, y) and \forall t\in[\mathfrak{q}, \mathfrak{p}], we have

    x(t) = \sigma\mathcal{A}_1(x, y)(t), \; y(t) = \sigma\mathcal{A}_2(x, y)(t).

    In consequence, we have

    \begin{eqnarray*} |x(t)|& \leq& \mathcal{F}_0|x|+\mathcal{F}_1(\varpi_0+\varpi_1|x|+\varpi_2|y|)+\mathcal{F}_2(\varepsilon_0+\varepsilon_1|x|+\varepsilon_2|y|)\\ &+&\mathcal{F}_3|y|+\mathcal{F}_4(n_0+n_1|x|+n_2|y|)+\mathcal{F}_5(m_0+m_1|x|+m_2|y|), \end{eqnarray*}

    which yields

    \begin{eqnarray} \|x\| &\leq& \mathcal{F}_0\|x\|+\mathcal{F}_1(\varpi_0+\varpi_1\|x\|+\varpi_2\|y\|)+\mathcal{F}_2(\varepsilon_0+\varepsilon_1\|x\|+\varepsilon_2\|y\|)\\ &+&\mathcal{F}_3\|y\|+\mathcal{F}_4(n_0+n_1\|x\|+n_2\|y\|)+\mathcal{F}_5(m_0+m_1\|x\|+m_2\|y\|). \end{eqnarray} (3.10)

    In a similar manner, we can find that

    \begin{eqnarray} \|y\| &\leq& \mathcal{G}_0\|x\|+\mathcal{G}_1(\varpi_0+\varpi_1\|x\|+\varpi_2\|y\|)+\mathcal{G}_2(\varepsilon_0+\varepsilon_1\|x\|+\varepsilon_2\|y\|)\\ &+&\mathcal{G}_3\|y\|+\mathcal{G}_4(n_0+n_1\|x\|+n_2\|y\|)+\mathcal{G}_5(m_0+m_1\|x\|+m_2\|y\|). \end{eqnarray} (3.11)

    From (3.10) and (3.11) together with notations (3.6)–(3.9) lead to

    \begin{eqnarray*} \|x\|+\|y\|&\leq& [(\mathcal{F}_1+\mathcal{G}_1)\varpi_0+(\mathcal{F}_2+\mathcal{G}_2)\varepsilon_0+(\mathcal{F}_4+\mathcal{G}_4)n_0+(\mathcal{F}_5+\mathcal{G}_5)m_0]\\ &+&[(\mathcal{F}_0+\mathcal{G}_0)+(\mathcal{F}_1+\mathcal{G}_1)|\varpi_1+(\mathcal{F}_2+\mathcal{G}_2)\varepsilon_1+(\mathcal{F}_4+\mathcal{G}_4)n_1\\ &+&(\mathcal{F}_5+\mathcal{G}_5)m_1]\|x\| +[(\mathcal{F}_1+\mathcal{G}_1)\varpi_2+(\mathcal{F}_2+\mathcal{G}_2)\varepsilon_2+(\mathcal{F}_3+\mathcal{G}_3)\\ &+&(\mathcal{F}_4+\mathcal{G}_4)n_2+(\mathcal{F}_5+\mathcal{G}_5)m_2]\|y\|. \end{eqnarray*}

    Which implies,

    \begin{eqnarray*} \|(x, y)\|&\leq& {\bf O}_0+\max\{{\bf O}_1+{\bf O}_2\}\|(x, y)\|\\ &\leq& {\bf O}_0+{\bf O}\|(x, y)\|, \end{eqnarray*}

    consequently,

    \|(x, y)\|\leq\frac{{\bf O}_0}{1-{\bf O}}.

    This prove that the set \mathcal{E} is bounded. Thus, by Lemma 3.1, the operator \mathcal{A} has at least one FP. Therefore, the systems (1.1) and (1.2) has at least one solution on [\mathfrak{q}, \mathfrak{p}] .

    Next results are based on Krasnoselskii FPTs. We assume continuous functions H, \phi, \mathfrak{U}, \psi:[\mathfrak{q}, \mathfrak{p}]\times\mathbb{R}^{2}\rightarrow \mathbb{R} satisfying the condition:

    ( \mathcal{H}_2 ) For all t\in[\mathfrak{q}, \mathfrak{p}] and \mathtt{x}_j, \mathtt{y}_j\in \mathbb{R} (j = 1, 2), \exists L_i, \; i = 1, ..., 4 :

    |H(t, \mathtt{x}_1, \mathtt{y}_1)-H(t, \mathtt{x}_2, \mathtt{y}_2)|\leq L_1 (|\mathtt{x}_1-\mathtt{x}_2|+|\mathtt{y}_1-\mathtt{y}_2|),
    |\phi(t, \mathtt{x}_1, \mathtt{y}_1)-\phi(t, \mathtt{x}_2, \mathtt{y}_2)|\leq L_2 (|\mathtt{x}_1-\mathtt{x}_2|+|\mathtt{y}_1-\mathtt{y}_2|),
    |\mathfrak{U}(t, \mathtt{x}_1, \mathtt{y}_1)-\mathfrak{U}((t, \mathtt{x}_2, \mathtt{y}_2)|\leq L_3 (|\mathtt{x}_1-\mathtt{x}_2|+|\mathtt{y}_1-\mathtt{y}_2|),
    |\psi(t, \mathtt{x}_1, \mathtt{y}_1)-\psi(t, \mathtt{x}_2, \mathtt{y}_2)|\leq L_4 (|\mathtt{x}_1-\mathtt{x}_2|+|\mathtt{y}_1-\mathtt{y}_2|);

    For simplicity, we introduce the following notations:

    \begin{eqnarray} \mathfrak{N} = \Delta_1+ \Delta_2, \end{eqnarray} (3.12)
    \begin{eqnarray} \overline{\mathfrak{N}} = \overline{\Delta}_1+\overline{\Delta}_2, \end{eqnarray} (3.13)
    \begin{eqnarray} \Delta_1 = \mathcal{F}_{0}+L_1\mathcal{F}_{1}+L_2\mathcal{F}_{2}, \end{eqnarray} (3.14)
    \begin{eqnarray} \Delta_2 = \mathcal{F}_{3}+L_3\mathcal{F}_{4}+L_4\mathcal{F}_{5}, \end{eqnarray} (3.15)
    \begin{eqnarray} \Delta_3 = \mathcal{Q}_{0}+L_1\mathcal{Q}_{1}+L_2\mathcal{Q}_{2}, \end{eqnarray} (3.16)
    \begin{eqnarray} \overline{\Delta}_1 = \mathcal{G}_{0}+L_1\mathcal{G}_{1}+L_2\mathcal{G}_{2}, \end{eqnarray} (3.17)
    \begin{eqnarray} \overline{\Delta}_2 = \mathcal{G}_{3}+L_3\mathcal{G}_{4}+L_4\mathcal{G}_{5}, \end{eqnarray} (3.18)
    \begin{eqnarray} \overline{\Delta}_3 = \mathcal{Q}_{3}+L_3\mathcal{Q}_{4}+L_4\mathcal{Q}_{5}, \end{eqnarray} (3.19)

    where

    \begin{eqnarray} \mathcal{Q}_0& = & \mathcal{F}_0-|\alpha_1|\frac{(\mathfrak{p}-\mathfrak{q})^{\mathfrak{h}_1}}{\Gamma(\mathfrak{h}_1+1)}, \; \mathcal{Q}_1 = \mathcal{F}_1-|\beta_1|\frac{(\mathfrak{p}-\mathfrak{q})^{\mathfrak{s}_1+\mathfrak{h}_1}}{\Gamma(\mathfrak{s}_1+\mathfrak{h}_1+1)}, \; \mathcal{Q}_2 = \mathcal{F}_2-\frac{(\mathfrak{p}-\mathfrak{q})^{\mathfrak{h}_1+\mathfrak{f}_1}}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1+1)}, \\ \mathcal{Q}_3& = & \mathcal{G}_3-|\alpha_2|\frac{(\mathfrak{p}-\mathfrak{q})^{\mathfrak{h}_2}}{\Gamma(\mathfrak{h}_2+1)}, \; \mathcal{Q}_4 = \mathcal{G}_4-|\beta_2|\frac{(\mathfrak{p}-\mathfrak{q})^{\mathfrak{s}_2+\mathfrak{h}_2}}{\Gamma(\mathfrak{s}_2+\mathfrak{h}_2+1)}, \; \mathcal{Q}_5 = \mathcal{G}_5-\frac{(\mathfrak{p}-\mathfrak{q})^{\mathfrak{h}_2+\mathfrak{f}_2}}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2+1)}, \\ \end{eqnarray} (3.20)

    and \mathcal{F}_i, \; \mathcal{G}_i\; (i = 0, ..., 5) are given by (3.4) and (3.5).

    Lemma 3.2. (Krasnoselskii) Let \mathcal{B}\neq \emptyset be a closed, bounded, convex subset of a BSp. \mathcal{K} . Let operators \mathcal{M}_1, \mathcal{M}_2 : \mathcal{B}\rightarrow \mathcal{K} :

    (a) \mathcal{M}_1z_1+\mathcal{M}_{2}z_2 \in \mathcal{B} where z_1, z_2 \in \mathcal{B};

    (b) \mathcal{M}_1 is compact and continuous;

    (c) \mathcal{M}_2 is a contraction mapping.

    Then \exists z \in \mathcal{B} : z = \mathcal{M}_1z+\mathcal{M}_{2}z .

    Here we prove the Unq. result of solution for the systems (1.1) and (1.2) by applying Banach's FPTs.

    For simplicity we use the following notations:

    \begin{eqnarray} \mathfrak{B} = \mathfrak{B}_1+\mathfrak{B}_2, \; \; \mathfrak{B}_1 = \mathfrak{Z}_1\mathcal{F}_1+\mathfrak{Z}_2\mathcal{F}_2, \; \; \mathfrak{B}_2 = \mathfrak{Z}_3\mathcal{F}_4+\mathfrak{Z}_4\mathcal{F}_5, \end{eqnarray} (4.1)
    \begin{eqnarray} \overline{\mathfrak{B}} = \overline{\mathfrak{B}}_1+\overline{\mathfrak{B}}_2, \; \; \overline{\mathfrak{B}}_1 = \mathfrak{Z}_1\mathcal{G}_1+\mathfrak{Z}_2\mathcal{G}_2, \; \; \overline{\mathfrak{B}}_2 = \mathfrak{Z}_3\mathcal{G}_4+\mathfrak{Z}_4\mathcal{G}_5, \end{eqnarray} (4.2)
    \begin{eqnarray} \mathfrak{Z}_1 & = & \sup\limits_{t\in [\mathfrak{q}, \mathfrak{p}]}|H(t, 0, 0)| < \infty , \; \; \mathfrak{Z}_2 = \sup\limits_{t\in [\mathfrak{q}, \mathfrak{p}]}|\phi(t, 0, 0, )| < \infty, \; \mathfrak{Z}_3 = \sup\limits_{t\in [\mathfrak{q}, \mathfrak{p}]}|\mathfrak{U}(t, 0, 0, )| < \infty, \\ \mathfrak{Z}_4& = & \sup\limits_{t\in [\mathfrak{q}, \mathfrak{p}]}|\psi(t, 0, 0, )| < \infty. \end{eqnarray} (4.3)

    Theorem 4.1. Let the condition (\mathcal{H}_2) holds. Then (1.1) and (1.2) has a unique solution on [\mathfrak{q}, \mathfrak{p}] if

    \begin{equation} \mathfrak{N}+\overline{\mathfrak{N}} < 1, \end{equation} (4.4)

    where \mathfrak{N} and \overline{\mathfrak{N}} are given by (3.12) and (3.13) respectively.

    Proof. Setting \mathfrak{S} > \frac{\mathfrak{B}+\overline{\mathfrak{B}}}{1-\mathfrak{N}-\overline{\mathfrak{N}}}, where \mathfrak{N}, \overline{\mathfrak{N}}, \mathfrak{B} and \overline{\mathfrak{B}} are given by (3.12), (3.13), (4.1) and (4.2) respectively. We show that \mathcal{A}S_{\mathfrak{S}}\subset S_{\mathfrak{S}}, where S_{\mathfrak{S}} = \{(x, y)\in\mathfrak{X}^*\times\mathfrak{X}^*:\|(x, y)\|\leq\mathfrak{S}\}, and the operator \mathcal{A} is given by (3.1).

    By assumption (\mathcal{H}_2) together with (4.3), for (x, y)\in S_{\mathfrak{S}}, \; e\in[\mathfrak{q}, \mathfrak{p}], we have

    \begin{eqnarray*} |H(e, x(e), y(e))| \leq |H(e, x(e), y(e))-H(e, 0, 0)|+|H(e, 0, 0)| \leq L_1 (\|x\|+\|y\|)+\mathfrak{Z}_1 \leq L_1 \mathfrak{S} + \mathfrak{Z}_1, \end{eqnarray*}
    \begin{eqnarray*} |\phi(e, x(e), y(e))| \leq |\phi(e, x(e), y(e))-\phi(e, 0, 0)|+|\phi(e, 0, 0)| \leq L_2 (\|x\|+\|y\|)+\mathfrak{Z}_2 \leq L_2 \mathfrak{S} + \mathfrak{Z}_2. \end{eqnarray*}
    \begin{eqnarray*} |\mathfrak{U}(e, x(e), y(e))| \leq |\mathfrak{U}(e, x(e), y(e))-\mathfrak{U}(e, 0, 0)|+|\mathfrak{U}(e, 0, 0)| \leq L_3 (\|x\|+\|y\|)+\mathfrak{Z}_3 \leq L_3 \mathfrak{S} + \mathfrak{Z}_3, \end{eqnarray*}
    \begin{eqnarray*} |\psi(e, x(e), y(e))| \leq |\psi(e, x(e), y(e))-\psi(e, 0, 0)|+|\psi(e, 0, 0)| \leq L_4 (\|x\|+\|y\|)+\mathfrak{Z}_4 \leq L_4 \mathfrak{S} + \mathfrak{Z}_4. \end{eqnarray*}

    By using (3.12) and (4.1), we obtain

    \begin{eqnarray*} |\mathcal{A}_1(x, y)(e)|&\leq&\|x\|\mathcal{F}_0+(L_1\mathfrak{S}+\mathfrak{Z}_1)\mathcal{F}_1+(L_2\mathfrak{S}+\mathfrak{Z}_2)\mathcal{F}_2\\ &+&\|y\|\mathcal{F}_3+(L_3\mathfrak{S}+\mathfrak{Z}_3)\mathcal{F}_4+(L_4\mathfrak{S}+\mathfrak{Z}_4)\mathcal{F}_5\\ &\leq&\Big(\mathcal{F}_0+L_1\mathcal{F}_1+L_2\mathcal{F}_2+|\mathcal{F}_3+L_3\mathcal{F}_4+L_4\mathcal{F}_5\Big)\mathfrak{S}\\ &+&\Big(\mathfrak{Z}_1\mathcal{F}_1+\mathfrak{Z}_2\mathcal{F}_2+\mathfrak{Z}_3\mathcal{F}_4+\mathfrak{Z}_4\mathcal{F}_5\Big)\\ & = &(\Delta_1+\Delta_2)\mathfrak{S}+(\mathfrak{B}_1+\mathfrak{B}_2)\\ & = &\mathfrak{N}\mathfrak{S}+\mathfrak{B}, \end{eqnarray*}

    hence,

    \begin{eqnarray} \|\mathcal{A}_1(x, y)\|&\leq&\mathfrak{N}\mathfrak{S}+\mathfrak{B}. \end{eqnarray} (4.5)

    In the same way, by using (3.13) and (4.2), we obtain

    \begin{eqnarray*} |\mathcal{A}_2(x, y)(e)|&\leq&\Big(\mathcal{G}_0+L_1\mathcal{G}_1+L_2\mathcal{G}_2+\mathcal{G}_3+L_3\mathcal{G}_4+L_4\mathcal{G}_5\Big)\mathfrak{S}\\ &+&\Big(\mathfrak{Z}_1|\mathcal{G}_1+\mathfrak{Z}_2\mathcal{G}_2+|\mathfrak{Z}_3\mathcal{G}_4+\mathfrak{Z}_4\mathcal{G}_5\Big)\\ & = &(\overline\Delta_1+\overline\Delta_2)\mathfrak{S}+(\overline{\mathfrak{B}}_1+\overline{\mathfrak{B}}_2)\\ & = &\overline{\mathfrak{N}} \mathfrak{S}+ \overline{\mathfrak{B}}, \end{eqnarray*}

    which lead to

    \begin{eqnarray} \|\mathcal{A}_2(x, y)\|&\leq&\overline{\mathfrak{N}} \mathfrak{S}+ \overline{\mathfrak{B}}. \end{eqnarray} (4.6)

    Consequently, from (4.5) and (4.6) we get

    \begin{eqnarray*} \|\mathcal{A} (x, y)\|& \leq&(\mathfrak{N}\mathfrak{S}+\mathfrak{B})+(\overline{\mathfrak{N}} \mathfrak{S}+ \overline{\mathfrak{B}})\\ &\leq&(\mathfrak{N}+\overline{\mathfrak{N}})\mathfrak{S}+(\mathfrak{B}+\overline{\mathfrak{B}})\leq\mathfrak{S}. \end{eqnarray*}

    Therefore, \mathcal{A}S_{\mathfrak{S}} \subset S_{\mathfrak{S}}. Now, for any (x_1, y_1), (x_2, y_2)\in\mathfrak{X}^*\times\mathfrak{X}^*, \; e\in[\mathfrak{q}, \mathfrak{p}] and by using conditions (\mathcal{H}_2) , (3.12) and (3.13), we get

    \begin{eqnarray*} &&\|\mathcal{A}_1 (x_1, y_1)-\mathcal{A}_1 (x_2, y_2)\| = \sup\limits_{t\in[\mathfrak{q}, \mathfrak{p}]}|\mathcal{A}_1 (x_1, y_1)(e)-\mathcal{A}_1 (x_2, y_2)(e)|\\ &\leq& \sup\limits_{e\in[\mathfrak{q}, \mathfrak{p}]}\Bigg\{|\alpha_1|\int_{\mathfrak{q}}^{e}\frac {(e-\kappa)^{\mathfrak{h}_{1}-1}}{\Gamma(\mathfrak{h}_{1})}|x_1(\kappa)-x_2(\kappa)|d\kappa\\ &+&|\beta_1|\int_{\mathfrak{q}}^{e}\frac {(e-\kappa)^{\mathfrak{s}_1+\mathfrak{h}_{1}-1}}{\Gamma(\mathfrak{s}_1+\mathfrak{h}_{1})}\Big|H(\kappa, x_1(\kappa), y_1(\kappa))-H(\kappa, x_2(\kappa), y_2(\kappa))\Big|d\kappa\\ &+&\int_{\mathfrak{q}}^{e}\frac {(e-\kappa)^{\mathfrak{h}_1+\mathfrak{f}_1-1}}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1)}\Big|\phi(\kappa, x_1(\kappa), y_1(\kappa))-\phi(\kappa, x_2(\kappa), y_2(\kappa))\Big|d\kappa\\ &+&|\mathcal{V}_1(e)|\Big[|\alpha_1|\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_1-1}}{\Gamma(\mathfrak{h}_1)}|x_1(\kappa)-x_2(\kappa)|d\kappa\\\nonumber &+&|\beta_1|\int_{\mathfrak{q}}^{\mathfrak{p}}\frac{(\mathfrak{p}-\kappa)^{\mathfrak{s}_1+\mathfrak{h}_1-1}}{\Gamma(\mathfrak{s}_1+\mathfrak{h}_1)}\Big|H(\kappa, x_1(\kappa), y_1(\kappa))-H(\kappa, x_2(\kappa), y_2(\kappa))\Big|d\kappa\\\nonumber &+&\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_1+\mathfrak{f}_1-1}}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1)}\Big|\phi(\kappa, x_1(\kappa), y_1(\kappa))-\phi(\kappa, x_2(\kappa), y_2(\kappa))\Big|d\kappa\Big]\\\nonumber &+&|\mathcal{V}_2(e)|\Big[|\alpha_1|\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_1-2}}{\Gamma(\mathfrak{h}_1-1)}|x_1(\kappa)-x_2(\kappa)|d\kappa\\\nonumber &+&|\beta_1|\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{s}_1+\mathfrak{h}_1-2}}{\Gamma(\mathfrak{s}_1+\mathfrak{h}_1-1)}\Big|H(\kappa, x_1(\kappa), y_1(\kappa))-H(\kappa, x_2(\kappa), y_2(\kappa))\Big|d\kappa\\\nonumber &+&\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_1+\mathfrak{f}_1-2}}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1-1)}\Big|\phi(\kappa, x_1(\kappa), y_1(\kappa))-\phi(\kappa, x_2(\kappa), y_2(\kappa))\Big|d\kappa\Big]\\\nonumber &+&|\mathcal{V}_3(e)|\Big[|\alpha_1|\sum\limits_{i = 1}^{\tau-2}{|\eta_{i}|}\int_{\mathfrak{q}}^{\xi_{i}}\frac {(\xi_{i}-\kappa)^{\mathfrak{h}_1-1}}{\Gamma(\mathfrak{h}_1)}|x_1(\kappa)-x_2(\kappa)|d\kappa \\\nonumber &+&|\beta_1|\sum\limits_{i = 1}^{\tau-2}{|\eta_{i}|}\int_{\mathfrak{q}}^{\xi_{i}}\frac {(\xi_{i}-\kappa)^{\mathfrak{s}_1+\mathfrak{h}_1-1}}{\Gamma(\mathfrak{s}_1+\mathfrak{h}_1)}\Big|H(\kappa, x_1(\kappa), y_1(\kappa))-H(\kappa, x_2(\kappa), y_2(\kappa))\Big|d\kappa\\\nonumber &+&\sum\limits_{i = 1}^{\tau-2}{|\eta_{i}|}\int_{\mathfrak{q}}^{\xi_{i}}\frac {(\xi_{i}-\kappa)^{\mathfrak{h}_1+\mathfrak{f}_1-1}}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1)}\Big|\phi(\kappa, x_1(\kappa), y_1(\kappa))-\phi(\kappa, x_2(\kappa), y_2(\kappa))\Big|d\kappa\\\nonumber \end{eqnarray*}
    \begin{eqnarray*} &+&\int_{\mathfrak{q}}^{\mathfrak{p}}\Big(|\alpha_1|\int_{\mathfrak{q}}^{\kappa}\frac {(\kappa-u)^{\mathfrak{h}_1-1}}{\Gamma(\mathfrak{h}_1)}|x_1(u)-x_2(u)|du\\\nonumber &+&|\beta_1|\int_{\mathfrak{q}}^{\kappa}\frac {(\kappa-u)^{\mathfrak{s}_1+\mathfrak{h}_1-1}}{\Gamma(\mathfrak{s}_1+\mathfrak{h}_1)}\Big|H(u, x_1(u), y_1(u))-H(u, x_2(u), y_2(u))\Big|du\\\nonumber &+&\int_{\mathfrak{q}}^{\kappa}\frac {(\kappa-u)^{\mathfrak{h}_1+\mathfrak{f}_1-1}}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1)}\Big|\phi(u, x_1(u), y_1(u))-\phi(u, x_2(u), y_2(u))\Big|du\Big)d\Lambda(\kappa)\Big]\\\nonumber &+&|\mathcal{V}_4(e)|\Big[|\alpha_2|\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_2-1}}{\Gamma(\mathfrak{h}_2)}|y_1(\kappa)-y_2(\kappa)|d\kappa\\\nonumber &+&|\beta_2|\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{s}_2+\mathfrak{h}_2-1}}{\Gamma(\mathfrak{s}_2+\mathfrak{h}_2)}\Big|\mathfrak{U}(\kappa, x_1(\kappa), y_1(\kappa))-\mathfrak{U}(\kappa, x_2(\kappa), y_2(\kappa))\Big|d\kappa\\\nonumber &+&\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_2+\mathfrak{f}_2-1}}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2)}\Big|\psi(\kappa, x_1(\kappa), y_1(\kappa))-\psi(\kappa, x_2(\kappa), y_2(\kappa))\Big|d\kappa\Big]\\\nonumber &+&|\mathcal{V}_5(e)|\Big[|\alpha_2|\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_2-2}}{\Gamma(\mathfrak{h}_2-1)}|y_1(\kappa)-y_2(\kappa)|d\kappa\\\nonumber &+&|\beta_2|\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{s}_2+\mathfrak{h}_2-2}}{\Gamma(\mathfrak{s}_2+\mathfrak{h}_2-1)}\Big|\mathfrak{U}(\kappa, x_1(\kappa), y_1(\kappa))-\mathfrak{U}(\kappa, x_2(\kappa), y_2(\kappa))\Big|d\kappa\\\nonumber &+&\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_2+\mathfrak{f}_2-2}}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2-1)}\Big|\psi(\kappa, x_1(\kappa), y_1(\kappa))-\psi(\kappa, x_2(\kappa), y_2(\kappa))\Big|d\kappa\Big]\\\nonumber &+&|\mathcal{V}_6(e)|\Big[|\alpha_2|\sum\limits_{i = 1}^{\tau-2}{|\eta_{i}|}\int_{\mathfrak{q}}^{\xi_{i}}\frac {(\xi_{i}-\kappa)^{\mathfrak{h}_2-1}}{\Gamma(\mathfrak{h}_2)}|y_1(\kappa)-y_2(\kappa)|d\kappa\\\nonumber &+&|\beta_2|\sum\limits_{i = 1}^{\tau-2}{|\eta_{i}|}\int_{\mathfrak{q}}^{\xi_{i}}\frac {(\xi_{i}-\kappa)^{\mathfrak{s}_2+\mathfrak{h}_2-1}}{\Gamma(\mathfrak{s}_2+\mathfrak{h}_2)}\Big|\mathfrak{U}(\kappa, x_1(\kappa), y_1(\kappa))-\mathfrak{U}(\kappa, x_2(\kappa), y_2(\kappa))\Big|d\kappa\\\nonumber &+&\sum\limits_{i = 1}^{\tau-2}{|\eta_{i}|}\int_{\mathfrak{q}}^{\xi_{i}}\frac {(\xi_{i}-\kappa)^{\mathfrak{h}_2+\mathfrak{f}_2-1}}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2)}\Big|\psi(\kappa, x_1(\kappa), y_1(\kappa))-\psi(\kappa, x_2(\kappa), y_2(\kappa))\Big|d\kappa\\\nonumber &+&\int_{\mathfrak{q}}^{\mathfrak{p}}\Big(|\alpha_2|\int_{\mathfrak{q}}^{\kappa}\frac {(\kappa-u)^{\mathfrak{h}_2-1}}{\Gamma(\mathfrak{h}_2)}|y_1(u)-y_2(u)|du\\\nonumber &+&|\beta_2|\int_{\mathfrak{q}}^{\kappa}\frac {(\kappa-u)^{\mathfrak{s}_2+\mathfrak{h}_2-1}}{\Gamma(\mathfrak{s}_2+\mathfrak{h}_2)}\Big|\mathfrak{U}(u, x_1(u), y_1(u))-\mathfrak{U}(u, x_1(u), y_1(u))\Big|du\\ &+&\int_{\mathfrak{q}}^{\kappa}\frac {(\kappa-u)^{\mathfrak{h}_2+\mathfrak{f}_2-1}}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2)}\Big|\psi(u, x_1(u), y_1(u))-\psi(u, x_2(u), y_2(u))\Big|du\Big)d\Lambda(\kappa)\Big]\Bigg\}\\\nonumber &\leq&\Bigg\{\mathcal{F}_0\|x_1-x_2\|+L_1\mathcal{F}_1\Big(\|x_1-x_2\|+\|y_1-y_2\|\Big)+L_2\mathcal{F}_2\Big(\|x_1-x_2\|+\|y_1-y_2\|\Big)\\\nonumber &+&\mathcal{F}_3\|y_1-y_2\|+L_3\mathcal{F}_4\Big(\|x_1-x_2\|+\|y_1-y_2\|\Big)+L_4\mathcal{F}_5\Big(\|x_1-x_2\|+\|y_1-y_2\|\Big)\Bigg\}\\\nonumber &\leq&\Big(\mathcal{F}_0+L_1\mathcal{F}_1+L_2\mathcal{F}_2+\mathcal{F}_3+L_3\mathcal{F}_4+L_4\mathcal{F}_5\Big)\Big(\|x_1-x_2\|+\|y_1-y_2\|\Big)\\ & = &\Big(\Delta_1+\Delta_2\Big)\Big(\|x_1-x_2\|+\|y_1-y_2\|\Big)\\ & = &\mathfrak{N}\Big(\|x_1-x_2\|+\|y_1-y_2\|\Big). \end{eqnarray*}

    Similarly

    \begin{eqnarray*} \|\mathcal{A}_2 (x_1, y_1)-\mathcal{A}_2 (x_2, y_2)\|& = & \sup\limits_{e\in[\mathfrak{q}, \mathfrak{p}]}|\mathcal{A}_2 (x_1, y_1)(e)-\mathcal{A}_2 (x_2, y_2)(e)|\\ &\leq&\Big(\overline{\Delta}_1+\overline{\Delta}_2\Big)\Big(\|x_1-x_2\|+\|y_1-y_2\|\Big)\\ & = &\overline{\mathfrak{N}}\Big(\|x_1-x_2\|+\|y_1-y_2\|\Big). \end{eqnarray*}

    Consequently, we obtain

    \begin{equation} \nonumber \|\mathcal{A} (x_1, y_1) - \mathcal{A} (x_2, y_2))\| \leq (\mathfrak{N}+\overline{\mathfrak{N}})(\|x_1-x_2\|+\|y_1-y_2\|), \end{equation}

    which implies that \mathcal{A} is a contraction operator by the assumption (4.4). Hence, by Banach's FPT, the operator \mathcal{A} has a unique FP, which is the unique solution of systems (1.1) and (1.2) on [\mathfrak{q}, \mathfrak{p}].

    This section presents examples that illustrate our results.

    Example 5.1. Assume the coupled system of FDEs given by

    \begin{equation} \left\{ \begin{array}{ll} ^{RL}D^{19/11}\Big[(^cD^{39/21}+\frac{1}{414})x(t)+\frac{4}{407} I^{8/3}H(t, x(t), y(t))\Big] = \phi(t, x(t), y(t)), \\ ^{RL}D^{29/17}\Big[(^cD^{38/23}+\frac{3}{880})x(t)+\frac{1}{336} I^{16/5}\mathfrak{U}(t, x(t), y(t))\Big] = \psi(t, x(t), y(t)), \; t\in[-2, -1], \end{array} \right . \end{equation} (5.1)

    with the BCs

    \begin{equation} \left\{ \begin{array}{ll} x'(-2) = 0, \; x(-1) = 0, \; x'(-1) = 0, \; x(-2) = \sum\limits_{i = 1}^{3}\eta_i y(\xi_i)+\int_{-2}^{-1}y(\kappa)d\Lambda(\kappa) , \\ y'(-2) = 0, \; y(-1) = 0, \; y'(-1) = 0, \; y(-2) = \sum\limits_{i = 1}^{3}\eta_i x(\xi_i)+\int_{-2}^{-1}x(\kappa)d\Lambda(\kappa). \end{array} \right. \end{equation} (5.2)

    where \mathfrak{q} = -2, \; \mathfrak{p} = -1, \; \mathfrak{f}_{1} = \frac{19}{11}, \; \mathfrak{h}_{1} = \frac{39}{21}, \; \mathfrak{f}_{2} = \frac{29}{17}, \mathfrak{h}_{2} = \frac{38}{23}, \; \mathfrak{s}_{1} = \frac{8}{3}, \; \mathfrak{s}_{2} = \frac{16}{5}, \; \alpha_1 = \frac{1}{414}, \; \beta_1 = \frac{4}{407}, \; \alpha_2 = \frac{3}{880}, \beta_2 = \frac{1}{336}, \; \xi_{1} = \frac{-7}{4}, \; \xi_{2} = \frac{-3}{2}, \; \xi_{3} = \frac{-5}{4}, \; \eta_{1} = -3, \; \eta_{2} = \frac{9}{4}, \; \eta_{3} = \frac{5}{2}

    \begin{eqnarray*} H(t, x(t), y(t))& = &\frac{1}{\ln(5)}+\frac{\sin x(t)}{933}+\frac{y(t)}{(t^2+649)}, \\ \phi(t, x(t), y(t))& = &\frac{1}{66}+\frac{x(t)}{(t^8+22)^2}+\frac{y(t)|x(t)|}{800(1+|x(t)|)}, \\ \mathfrak{U}(t, x(t), y(t))& = &\frac{2y(t)}{23(1+y(t))}+\frac{\sin(2\pi x(t))}{900\pi}+\frac{y(t)}{\sqrt{t^4+2400}}, \end{eqnarray*}

    and

    \begin{eqnarray*} \psi(t, x(t), y(t)) = \frac{1}{312+t^3}+\frac{\sin x(t)|\tan^{-1}y(t)|}{57\pi}+\frac{y(t)}{12(\sqrt[4]{t^2+6560})}. \end{eqnarray*}

    Using the given data, we have that \mathcal{F}_0\simeq 0.016050, \; \mathcal{F}_1\simeq 0.002735, \; \mathcal{F}_2\simeq 1.04237, \; \mathcal{F}_3\simeq 0.0294380, \; \mathcal{F}_4\simeq 0.000408, \; \mathcal{F}_5\simeq 1.26577, \; \mathcal{G}_0\simeq 0.017124, \mathcal{G}_1\simeq 0.002247, \; \mathcal{G}_2\simeq 0.918958, \; \mathcal{G}_3\simeq0.245213, \; \mathcal{G}_4\simeq0.006572, \; \mathcal{G}_5\simeq 16.2678. Clearly,

    \begin{eqnarray*} |H(t, x(t), y(t))| &\leq& \frac{1}{\ln(5)}+\frac{1}{933} \|x\|+\frac{1}{650} \|y\|, \; \; |\phi(t, x(t), y(t))| \leq \frac{1}{66}+\frac{1}{529} \|x\|+\frac{1}{800} \|y\|, \end{eqnarray*}
    \begin{eqnarray*} |\mathfrak{U}(t, x(t), y(t))|&\leq& \frac{2}{23}+\frac{1}{450}\|x\|+\frac{1}{49}\|y\|, \; \; |\psi(t, x(t), y(t))| \leq \frac{1}{313}+\frac{1}{114} \|x\|+\frac{1}{108} \|y\|, \end{eqnarray*}

    with \varpi_0 = \frac{1}{\ln(5)}, \; \varpi_1 = \frac{1}{933}, \; \varpi_2 = \frac{1}{650}, \; \varepsilon_0 = \frac{1}{66}, \; \varepsilon_1 = \frac{1}{529}\; \varepsilon_2 = \frac{1}{800}, \; n_0 = \frac{2}{23}, \; n_1 = \frac{1}{450}, \; n_2 = \frac{1}{49}, \; m_0 = \frac{1}{313}, \; m_1 = \frac{1}{114}, and m_2 = \frac{1}{108}. Using (3.7) and (3.8), we find that {\bf O}_1\simeq 0.190707, \; {\bf O}_2\simeq 0.439600 and {\bf O} = \max\{{\bf O}_1, {\bf O}_2\}\simeq 0.439600 < 1. Therefore, by Theorem 3.1, the problems (5.1) and (5.2) have at least one solution on [-2, -1].

    Example 5.2. Consider the system (5.1) with the coupled BCs (5.2) and

    \begin{eqnarray*} H(a, x(a), y(a))& = &e^{-2a}\cos 2a+\frac{1}{70}\Big(\sin x(a)+y(a) \Big), \; \; a\in[-2, -1], \\ \phi(a, x(a), y(a))& = &30a^5+\frac{1}{510}\Big(\frac{|x(a)|}{1+|x(a)|}+\cos y(a) \Big), \; \; a\in[-2, -1], \\ \mathfrak{U}(a, x(a), y(a))& = &\frac{1}{4\sqrt{a^6+6399}}\Big(x(a)+\tan^{-1} y(a) \Big), \; \; a\in[-2, -1], \\ \psi(a, x(a), y(a))& = &2\sec a+\frac{1}{1800}\Big(\sin^2 x(a)+\frac{2|y(a)|}{1+|y(a)|} \Big), \; \; a\in[-2, -1]. \end{eqnarray*}

    Clearly,

    \begin{eqnarray*} |H(a, x_1, y_1)-H(a, x_2, y_2)|&\leq& \frac{1}{70}(\|x_1-x_2\|+\|y_1-y_2\|), \\ |\phi(a, x_1, y_1)-\phi(a, x_2, y_2)|&\leq& \frac{1}{510}(\|x_1-x_2\|+\|y_1-y_2\|), \\ |\mathfrak{U}(a, x_1, y_1)-\mathfrak{U}((a, x_2, y_2)|&\leq& \frac{1}{320}(\|x_1-x_2\|+\|y_1-y_2\|), \\ |\psi(a, x_1, y_1)-\psi(a, x_2, y_2)|&\leq& \frac{1}{900}(\|x_1-x_2\|+\|y_1-y_2\|). \end{eqnarray*}

    Using the given data in Example (5.1), we find that \mathfrak{N}+\overline{\mathfrak{N}}\simeq0.331246 < 1. Thus, in view of Theorem 4.1 the problem (5.1) has a unique solution on [-2, -1] .

    We managed to employ Leray-Schauder alternative, Banach, and the Krasnoselskii fixed point theory to study the Existence and Uniqueness of solutions for a nonlinear coupled system of fractional differential equations involving Riemann-Liouville and Caputo derivatives with coupled Riemann-Stieltjes integro-multipoint boundary conditions. The system under study is a generalized version of many recent studied system. We used some examples to illustrate the results. Potential future work could be to investigate our results based on other fractional derivates such as, e.g., Abu-Shady-Kaabar fractional derivative, Katugampola derivative, and conformable derivative.

    The authors declare that there are no competing interests.

    Lemma A.1. Let H, \Phi, U, \Psi \in C(\mathfrak{q}, \mathfrak{p})\cap L(\mathfrak{q}, \mathfrak{p}), the solution of the linear system of FDEs:

    \begin{eqnarray} \left\{ \begin{array}{rcl} ^{RL}D^{\mathfrak{f}_{1}}\Big[(^cD^{\mathfrak{h}_{1}}+\alpha_{1})x(t)+\beta_{1} I^{\mathfrak{s}_{1}}H^*(t)\Big] = \Phi(t), \; 1 < \mathfrak{h}_{1}, \mathfrak{f}_{1}\leq 2, \; t\in (\mathfrak{q}, \mathfrak{p}), \\ ^{RL}D^{\mathfrak{f}_{2}}\Big[(^cD^{\mathfrak{h}_{2}}+\alpha_{2})y(t)+\beta_{2} I^{\mathfrak{s}_{2}}\mathfrak{U}^*(t)\Big] = \Psi(t), \; 1 < \mathfrak{h}_{2}, \mathfrak{f}_{2}\leq 2, \; t\in (\mathfrak{q}, \mathfrak{p}), \end{array} \right. \end{eqnarray} (A.1)

    with the BCs (1.2) is equivalent to the system:

    \begin{eqnarray} x(t)& = &-\alpha_1\int_{\mathfrak{q}}^{t}\frac {(t-\kappa)^{\mathfrak{h}_{1}-1}}{\Gamma(\mathfrak{h}_{1})}x(\kappa)d\kappa-\beta_1\int_{\mathfrak{q}}^{t}\frac {(t-\kappa)^{\mathfrak{s}_1+\mathfrak{h}_{1}-1}}{\Gamma(\mathfrak{s}_1+\mathfrak{h}_{1})}H^*(\kappa)d\kappa+\int_{\mathfrak{q}}^{t}\frac {(t-\kappa)^{\mathfrak{h}_1+\mathfrak{f}_1-1}}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1)}\Phi(\kappa)d\kappa\\ &+&\mathcal{V}_1(t)\Big[\alpha_1\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_1-1}}{\Gamma(\mathfrak{h}_1)}x(\kappa)d\kappa+\beta_1\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{s}_1+\mathfrak{h}_1-1}}{\Gamma(\mathfrak{s}_1+\mathfrak{h}_1)}H^*(\kappa)d\kappa -\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_1+\mathfrak{f}_1-1}}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1)}\Phi(\kappa)d\kappa\Big]\\ &+&\mathcal{V}_{2}(t)\Big[\alpha_1\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_1-2}}{\Gamma(\mathfrak{h}_1-1)}x(\kappa)d\kappa+\beta_1\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{s}_1+\mathfrak{h}_1-2}}{\Gamma(\mathfrak{s}_1+\mathfrak{h}_1-1)}H^*(\kappa)d\kappa-\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_1+\mathfrak{f}_1-2}}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1-1)}\Phi(\kappa)d\kappa\Big]\\ &+&\mathcal{V}_{3}(t)\Big[-\alpha_1\sum\limits_{i = 1}^{\tau-2}{\eta_{i}}\int_{\mathfrak{q}}^{\xi_{i}}\frac {(\xi_{i}-\kappa)^{\mathfrak{h}_1-1}}{\Gamma(\mathfrak{h}_1)}x(\kappa)d\kappa -\beta_1\sum\limits_{i = 1}^{\tau-2}{\eta_{i}}\int_{\mathfrak{q}}^{\xi_{i}}\frac {(\xi_{i}-\kappa)^{\mathfrak{s}_1+\mathfrak{h}_1-1}}{\Gamma(\mathfrak{s}_1+\mathfrak{h}_1)}H^*(\kappa)d\kappa\\ &+&\sum\limits_{i = 1}^{\tau-2}{\eta_{i}}\int_{\mathfrak{q}}^{\xi_{i}}\frac {(\xi_{i}-\kappa)^{\mathfrak{h}_1+\mathfrak{f}_1-1}}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1)}\Phi(\kappa)d\kappa\\ &+&\int_{\mathfrak{q}}^{\mathfrak{p}}\Big(-\alpha_1\int_{\mathfrak{q}}^{\kappa}\frac {(\kappa-u)^{\mathfrak{h}_1-1}}{\Gamma(\mathfrak{h}_1)}x(u)du -\beta_1\int_{\mathfrak{q}}^{\kappa}\frac {(\kappa-u)^{\mathfrak{s}_1+\mathfrak{h}_1-1}}{\Gamma(\mathfrak{s}_1+\mathfrak{h}_1)}H^*(u)du\\ &+&\int_{\mathfrak{q}}^{\kappa}\frac {(\kappa-u)^{\mathfrak{h}_1+\mathfrak{f}_1-1}}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1)}\Phi(u)du\Big)d\Lambda(\kappa)\Big] +\mathcal{V}_{4}(t)\Big[\alpha_2\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_2-1}}{\Gamma(\mathfrak{h}_2)}y(\kappa)d\kappa\\ &+&\beta_2\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{s}_2+\mathfrak{h}_2-1}}{\Gamma(\mathfrak{s}_2+\mathfrak{h}_2)}\mathfrak{U}^*(\kappa)d\kappa -\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_2+\mathfrak{f}_2-1}}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2)}\Psi(\kappa)d\kappa\Big] +\mathcal{V}_{5}(t)\Big[\alpha_2\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_2-2}}{\Gamma(\mathfrak{h}_2-1)}y(\kappa)d\kappa\\ &+&\beta_2\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{s}_2+\mathfrak{h}_2-2}}{\Gamma(\mathfrak{s}_2+\mathfrak{h}_2-1)}\mathfrak{U}^*(\kappa)d\kappa -\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_2+\mathfrak{f}_2-2}}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2-1)}\Psi(\kappa)d\kappa\Big]\\ &+&\mathcal{V}_{6}(t)\Big[-\alpha_2\sum\limits_{i = 1}^{\tau-2}{\eta_{i}}\int_{\mathfrak{q}}^{\xi_{i}}\frac {(\xi_{i}-\kappa)^{\mathfrak{h}_2-1}}{\Gamma(\mathfrak{h}_2)}y(\kappa)d\kappa -\beta_2\sum\limits_{i = 1}^{\tau-2}{\eta_{i}}\int_{\mathfrak{q}}^{\xi_{i}}\frac {(\xi_{i}-\kappa)^{\mathfrak{s}_2+\mathfrak{h}_2-1}}{\Gamma(\mathfrak{s}_2+\mathfrak{h}_2)}\mathfrak{U}^*(\kappa)d\kappa\\ &+&\sum\limits_{i = 1}^{\tau-2}{\eta_{i}}\int_{\mathfrak{q}}^{\xi_{i}}\frac {(\xi_{i}-\kappa)^{\mathfrak{h}_2+\mathfrak{f}_2-1}}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2)}\Psi(\kappa)d\kappa \\ &+&\int_{\mathfrak{q}}^{\mathfrak{p}}\Big(-\alpha_2\int_{\mathfrak{q}}^{\kappa}\frac {(\kappa-u)^{\mathfrak{h}_2-1}}{\Gamma(\mathfrak{h}_2)}y(u)du -\beta_2\int_{\mathfrak{q}}^{\kappa}\frac {(\kappa-u)^{\mathfrak{s}_2+\mathfrak{h}_2-1}}{\Gamma(\mathfrak{s}_2+\mathfrak{h}_2)}\mathfrak{U}^*(u)du\\ &+&\int_{\mathfrak{q}}^{\kappa}\frac {(\kappa-u)^{\mathfrak{h}_2+\mathfrak{f}_2-1}}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2)}\Psi(u)du\Big)d\Lambda(\kappa)\Big], \end{eqnarray} (A.2)
    \begin{eqnarray} y(t)& = &-\alpha_2\int_{\mathfrak{q}}^{t}\frac {(t-\kappa)^{\mathfrak{h}_{2}-1}}{\Gamma(\mathfrak{h}_{2})}y(\kappa)d\kappa-\beta_2\int_{\mathfrak{q}}^{t}\frac {(t-\kappa)^{\mathfrak{s}_2+\mathfrak{h}_{2}-1}}{\Gamma(\mathfrak{s}_2+\mathfrak{h}_{2})}\mathfrak{U}^*(\kappa)d\kappa+\int_{\mathfrak{q}}^{t}\frac {(t-\kappa)^{\mathfrak{h}_2+\mathfrak{f}_2-1}}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2)}\Psi(\kappa)d\kappa\\ &+&\mathcal{W}_{1}(t)\Big[\alpha_1\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_1-1}}{\Gamma(\mathfrak{h}_1)}x(\kappa)d\kappa+\beta_1\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{s}_1+\mathfrak{h}_1-1}}{\Gamma(\mathfrak{s}_1+\mathfrak{h}_1)}H^*(\kappa)d\kappa -\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_1+\mathfrak{f}_1-1}}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1)}\Phi(\kappa)d\kappa\Big]\\ &+&\mathcal{W}_{2}(t)\Big[\alpha_1\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_1-2}}{\Gamma(\mathfrak{h}_1-1)}x(\kappa)d\kappa+\beta_1\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{s}_1+\mathfrak{h}_1-2}}{\Gamma(\mathfrak{s}_1+\mathfrak{h}_1-1)}H^*(\kappa)d\kappa-\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_1+\mathfrak{f}_1-2}}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1-1)}\Phi(\kappa)d\kappa\Big]\\ &+&\mathcal{W}_{3}(t)\Big[-\alpha_1\sum\limits_{i = 1}^{\tau-2}{\eta_{i}}\int_{\mathfrak{q}}^{\xi_{i}}\frac {(\xi_{i}-\kappa)^{\mathfrak{h}_1-1}}{\Gamma(\mathfrak{h}_1)}x(\kappa)d\kappa -\beta_1\sum\limits_{i = 1}^{\tau-2}{\eta_{i}}\int_{\mathfrak{q}}^{\xi_{i}}\frac {(\xi_{i}-\kappa)^{\mathfrak{s}_1+\mathfrak{h}_1-1}}{\Gamma(\mathfrak{s}_1+\mathfrak{h}_1)}H^*(\kappa)d\kappa \\ &+&\sum\limits_{i = 1}^{\tau-2}{\eta_{i}}\int_{\mathfrak{q}}^{\xi_{i}}\frac {(\xi_{i}-\kappa)^{\mathfrak{h}_1+\mathfrak{f}_1-1}}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1)}\Phi(\kappa)d\kappa\\ &+&\int_{\mathfrak{q}}^{\mathfrak{p}}\Big(-\alpha_1\int_{\mathfrak{q}}^{\kappa}\frac {(\kappa-u)^{\mathfrak{h}_1-1}}{\Gamma(\mathfrak{h}_1)}x(u)du -\beta_1\int_{\mathfrak{q}}^{\kappa}\frac {(\kappa-u)^{\mathfrak{s}_1+\mathfrak{h}_1-1}}{\Gamma(\mathfrak{s}_1+\mathfrak{h}_1)}H(u)du\\ &+&\int_{\mathfrak{q}}^{\kappa}\frac {(\kappa-u)^{\mathfrak{h}_1+\mathfrak{f}_1-1}}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1)}\Phi(u)du\Big)d\Lambda(\kappa)\Big] +\mathcal{W}_{4}(t)\Big[\alpha_2\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_2-1}}{\Gamma(\mathfrak{h}_2)}y(\kappa)d\kappa\\ &+&\beta_2\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{s}_2+\mathfrak{h}_2-1}}{\Gamma(\mathfrak{s}_2+\mathfrak{h}_2)}\mathfrak{U}^*(\kappa)d\kappa -\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_2+\mathfrak{f}_2-1}}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2)}\Psi(\kappa)d\kappa\Big] +\mathcal{W}_{5}(t)\Big[\alpha_2\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_2-2}}{\Gamma(\mathfrak{h}_2-1)}y(\kappa)d\kappa\\&+&\beta_2\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{s}_2+\mathfrak{h}_2-2}}{\Gamma(\mathfrak{s}_2+\mathfrak{h}_2-1)}\mathfrak{U}^*(\kappa)d\kappa -\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_2+\mathfrak{f}_2-2}}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2-1)}\Psi(\kappa)d\kappa\Big]\\ &+&\mathcal{W}_{6}(t)\Big[-\alpha_2\sum\limits_{i = 1}^{\tau-2}{\eta_{i}}\int_{\mathfrak{q}}^{\xi_{i}}\frac {(\xi_{i}-\kappa)^{\mathfrak{h}_2-1}}{\Gamma(\mathfrak{h}_2)}y(\kappa)d\kappa -\beta_2\sum\limits_{i = 1}^{\tau-2}{\eta_{i}}\int_{\mathfrak{q}}^{\xi_{i}}\frac {(\xi_{i}-\kappa)^{\mathfrak{s}_2+\mathfrak{h}_2-1}}{\Gamma(\mathfrak{s}_2+\mathfrak{h}_2)}\mathfrak{U}^*(\kappa)d\kappa\\ &+&\sum\limits_{i = 1}^{\tau-2}{\eta_{i}}\int_{\mathfrak{q}}^{\xi_{i}}\frac {(\xi_{i}-\kappa)^{\mathfrak{h}_2+\mathfrak{f}_2-1}}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2)}\Psi(\kappa)d\kappa\\ &+&\int_{\mathfrak{q}}^{\mathfrak{p}}\Big(-\alpha_2\int_{\mathfrak{q}}^{\kappa}\frac {(\kappa-u)^{\mathfrak{h}_2-1}}{\Gamma(\mathfrak{h}_2)}y(u)du -\beta_2\int_{\mathfrak{q}}^{\kappa}\frac {(\kappa-u)^{\mathfrak{s}_2+\mathfrak{h}_2-1}}{\Gamma(\mathfrak{s}_2+\mathfrak{h}_2)}\mathfrak{U}^*(u)du\\ &+&\int_{\mathfrak{q}}^{\kappa}\frac {(\kappa-u)^{\mathfrak{h}_2+\mathfrak{f}_2-1}}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2)}\Psi(u)du\Big)d\Lambda(\kappa)\Big], \end{eqnarray} (A.3)

    where

    \begin{eqnarray} \mathcal{V}_i(t)& = & \mathfrak{B}_{1}(t)\rho_i+\mathfrak{Q}_{1}(t)\omega_i+\epsilon_{i}, \; i = 1, ..., 6, \end{eqnarray} (A.4)
    \begin{eqnarray} \mathcal{W}_j(t)& = & \mathfrak{B}_{2}(t)\tau_j+\mathfrak{Q}_{2}(t)\lambda_j+\delta_{j}, \; j = 1, ..., 6, \end{eqnarray} (A.5)
    \begin{eqnarray} \mathfrak{B}_{\ell}(t) = \frac{(t-\mathfrak{q})^{\mathfrak{h}_\ell+\mathfrak{f}_\ell-1}\Gamma(\mathfrak{f}_\ell)}{\Gamma(\mathfrak{h}_\ell+\mathfrak{f}_\ell)}, \; \mathfrak{Q}_{\ell}(t) = \frac{(t-\mathfrak{q})^{\mathfrak{h}_\ell+\mathfrak{f}_\ell-2}\Gamma(\mathfrak{f}_\ell-1)}{\Gamma(\mathfrak{h}_\ell+\mathfrak{f}_\ell-1)}, \; \ell = 1, 2, \end{eqnarray} (A.6)
    \begin{eqnarray} \left\{ \begin{array}{rcl} \rho_{1}& = & \frac{(A_4A^{2}_{7}-A_4)\mu_3+A_4A_{7}\mu_1}{\sigma}, \; \rho_{2} = \frac{(-A_2A^{2}_{7}+A_6A_7+A_2)\mu_3+(-A_2A_{7}+A_6)\mu_1}{\sigma}, \\ \rho_{3}& = & \frac{A_4A_{7}\mu_3+A_4\mu_1}{\sigma}, \; \rho_{4} = \frac{-A_4\mu_1}{\sigma}, \; \rho_{5} = \frac{A_4\mu_2}{\sigma}, \; \rho_{6} = \frac{A_4\mu_3}{\sigma}, \end{array} \right. \end{eqnarray} (A.7)
    \begin{eqnarray} \left\{ \begin{array}{rcl} \omega_{1}& = & \frac{-(A_3A^{2}_{7}-A_3)\mu_3-A_3A_{7}\mu_1}{\sigma}, \; \omega_{2} = \frac{(A_1A^{2}_{7}-A_5A_7-A_1)\mu_3+(A_1A_{7}-A_5)\mu_1}{\sigma}, \\ \omega_{3}& = & \frac{-(A_3A_{7}\mu_3+A_3\mu_1)}{\sigma}, \; \omega_{4} = \frac{A_3\mu_1}{\sigma}, \; \omega_{5} = \frac{-A_3\mu_2}{\sigma}, \; \omega_{6} = \frac{-A_3\mu_3}{\sigma}, \end{array} \right. \end{eqnarray} (A.8)
    \begin{eqnarray} \left\{ \begin{array}{rcl} \epsilon_{1}& = & \frac{\nu_1A_{7}\mu_3+\nu_1\mu_1}{\sigma}, \; \epsilon_{2} = \frac{-(\nu_2A_{7}\mu_3+\nu_2\mu_1)}{\sigma}, \\ \epsilon_{3}& = & \frac{-(\nu_3A_{7}\mu_3+\nu_3\mu_1)}{\sigma}, \; \epsilon_{4} = \frac{\nu_3\mu_1}{\sigma}, \; \epsilon_{5} = \frac{-\nu_3\mu_2}{\sigma}, \; \epsilon_{6} = \frac{-\nu_3\mu_3}{\sigma}, \end{array} \right. \end{eqnarray} (A.9)
    \begin{eqnarray} \left\{ \begin{array}{rcl} \tau_{1}& = & \frac{-B_4\nu_1}{\sigma}, \; \tau_{2} = \frac{B_4\nu_2}{\sigma}, \; \tau_{3} = \frac{B_4\nu_3}{\sigma}, \; \tau_{4} = \frac{(A^{2}_{7}B_4-B_4)\nu_3+A_7B_4\nu_1}{\sigma}, \\ \tau_{5}& = & \frac{(-A^{2}_{7}B_2+A_7B_6+B_2)\nu_3-(A_7B_2-B_6)\nu_1}{\sigma}, \; \tau_{6} = \frac{A_7B_4\nu_3+B_4\nu_1}{\sigma}, \end{array} \right. \end{eqnarray} (A.10)
    \begin{eqnarray} \left\{ \begin{array}{rcl} \lambda_{1}& = & \frac{B_3\nu_1}{\sigma}, \; \lambda_{2} = \frac{-B_3\nu_2}{\sigma}, \; \lambda_{3} = \frac{-B_3\nu_3}{\sigma}, \; \lambda_{4} = \frac{-(A^{2}_{7}B_3-B_3)\nu_3-A_7B_3\nu_1}{\sigma}, \\ \lambda_{5}& = & \frac{(A^{2}_{7}B_1-A_7B_5-B_1)\nu_3+(A_7B_1-B_5)\nu_1}{\sigma}, \; \lambda_{6} = \frac{-A_7B_3\nu_3-B_3\nu_1}{\sigma}, \end{array} \right. \end{eqnarray} (A.11)
    \begin{eqnarray} \left\{ \begin{array}{rcl} \delta_{1}& = & \frac{\mu_3\nu_1}{\sigma}, \; \delta_{2} = \frac{-\mu_3\nu_2}{\sigma}, \; \delta_{3} = \frac{-\mu_3\nu_3}{\sigma}, \; \delta_{4} = \frac{\mu_1A_7\nu_3+\mu_1\nu_1}{\sigma}, \\ \delta_{5}& = & \frac{-\mu_2A_7\nu_3-\mu_2\nu_1}{\sigma}, \; \delta_{6} = \frac{-\mu_3A_7\nu_3-\mu_3\nu_1}{\sigma}, \end{array} \right. \end{eqnarray} (A.12)
    \begin{eqnarray} \mu_1& = &B_3B_6-B_4B_5, \; \mu_2 = B_1B_6-B_2B_5, \; \mu_3 = B_1B_4-B_2B_3, \end{eqnarray} (A.13)
    \begin{eqnarray} \nu_1& = &A_3A_6-A_4A_5, \; \nu_2 = A_1A_6-A_2A_5, \; \nu_3 = A_1A_4-A_2A_3, \end{eqnarray} (A.14)
    \begin{eqnarray} \left\{ \begin{array}{rcl} A_{1}& = & \frac{(\mathfrak{p}-\mathfrak{q})^{\mathfrak{h}_1+\mathfrak{f}_1-1}\Gamma(\mathfrak{f}_1)}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1)}, \ A_{2} = \frac{(\mathfrak{p}-\mathfrak{q})^{\mathfrak{h}_1+\mathfrak{f}_1-2}\Gamma(\mathfrak{f}_1-1)}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1-1)}, \\ A_{3}& = & \frac{(\mathfrak{p}-\mathfrak{q})^{\mathfrak{h}_1+\mathfrak{f}_1-2}\Gamma(\mathfrak{f}_1)}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1-1)}, \ A_{4} = \frac{(\mathfrak{p}-\mathfrak{q})^{\mathfrak{h}_1+\mathfrak{f}_1-3}\Gamma(\mathfrak{f}_1-1)}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1-2)}, \\ A_{5}& = & \sum\limits_{i = 1}^{\tau-2}\eta_{i}\frac{(\xi_{i}-\mathfrak{q})^{\mathfrak{h}_1+\mathfrak{f}_1-1}\Gamma(\mathfrak{f}_1)}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1)}+\int_{\mathfrak{q}}^{\mathfrak{p}}\frac{(\kappa-\mathfrak{q})^{\mathfrak{h}_1+\mathfrak{f}_1-1}\Gamma(\mathfrak{f}_1)}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1)}d\Lambda(\kappa), \\ A_{6}& = & \sum\limits_{i = 1}^{\tau-2}\eta_{i}\frac{(\xi_{i}-\mathfrak{q})^{\mathfrak{h}_1+\mathfrak{f}_1-2}\Gamma(\mathfrak{f}_1-1)}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1-1)}+\int_{\mathfrak{q}}^{\mathfrak{p}}\frac{(\kappa-\mathfrak{q})^{\mathfrak{h}_1+\mathfrak{f}_1-2}\Gamma(\mathfrak{f}_1-1)}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1-1)}d\Lambda(\kappa), \; \\ A_{7}& = & \sum\limits_{i = 1}^{\tau-2}\eta_{i}+\int_{\mathfrak{q}}^{\mathfrak{p}}d\Lambda(\kappa), \end{array} \right. \end{eqnarray} (A.15)
    \begin{eqnarray} \left\{ \begin{array}{rcl} B_{1}& = & \frac{(\mathfrak{p}-\mathfrak{q})^{\mathfrak{h}_2+\mathfrak{f}_2-1}\Gamma(\mathfrak{f}_2)}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2)}, \ B_{2} = \frac{(\mathfrak{p}-\mathfrak{q})^{\mathfrak{h}_2+\mathfrak{f}_2-2}\Gamma(\mathfrak{f}_2-1)}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2-1)}, \\ B_{3}& = & \frac{(\mathfrak{p}-\mathfrak{q})^{\mathfrak{h}_2+\mathfrak{f}_2-2}\Gamma(\mathfrak{f}_2)}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2-1)}, \ B_{4} = \frac{(\mathfrak{p}-\mathfrak{q})^{\mathfrak{h}_2+\mathfrak{f}_2-3}\Gamma(\mathfrak{f}_2-1)}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2-2)}, \\ B_{5}& = & \sum\limits_{i = 1}^{\tau-2}\eta_{i}\frac{(\xi_{i}-\mathfrak{q})^{\mathfrak{h}_2+\mathfrak{f}_2-1}\Gamma(\mathfrak{f}_2)}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2)}+\int_{\mathfrak{q}}^{\mathfrak{p}}\frac{(\kappa-\mathfrak{q})^{\mathfrak{h}_2+\mathfrak{f}_2-1}\Gamma(\mathfrak{f}_2)}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2)}d\Lambda(\kappa), \\ B_{6}& = & \sum\limits_{i = 1}^{\tau-2}\eta_{i}\frac{(\xi_{i}-\mathfrak{q})^{\mathfrak{h}_2+\mathfrak{f}_2-2}\Gamma(\mathfrak{f}_2-1)}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2-1)}+\int_{\mathfrak{q}}^{\mathfrak{p}}\frac{(\kappa-\mathfrak{q})^{\mathfrak{h}_2+\mathfrak{f}_2-2}\Gamma(\mathfrak{f}_2-1)}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2-1)}d\Lambda(\kappa), \end{array} \right. \end{eqnarray} (A.16)

    and it is assumed that

    \begin{eqnarray} \sigma = (\nu_3A^{2}_{7}+\nu_1A_7-\nu_3)\mu_3+(\nu_3A_{7}+\nu_1)\mu_1\neq 0, \end{eqnarray} (A.17)

    Proof. Solving the FDE (A.1) in a standard manner and using Lemmas 2.1 and 2.2, we get

    \begin{eqnarray} x(t)& = &-\alpha_1\int_{\mathfrak{q}}^{t}\frac {(t-\kappa)^{\mathfrak{h}_1-1}}{\Gamma(\mathfrak{h}_1)}x(\kappa)d\kappa-\beta_1\int_{\mathfrak{q}}^{t}\frac {(t-\kappa)^{\mathfrak{s}_1+\mathfrak{h}_1-1}}{\Gamma(\mathfrak{s}_1+\mathfrak{h}_1)}H^*(\kappa)d\kappa+\int_{\mathfrak{q}}^{t}\frac {(t-\kappa)^{\mathfrak{h}_1+\mathfrak{f}_1-1}}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1)}\Phi(\kappa)d\kappa\\ &+&c_{1}\frac{(t-\mathfrak{q})^{\mathfrak{h}_1+\mathfrak{f}_1-1}\Gamma(\mathfrak{f}_1)}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1)}+c_{2}\frac{(t-\mathfrak{q})^{\mathfrak{h}_1+\mathfrak{f}_1-2}\Gamma(\mathfrak{f}_1-1)}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1-1)} +c_{3}+c_{4}(t-\mathfrak{q}), \end{eqnarray} (A.18)
    \begin{eqnarray} x'(t)& = &-\alpha_1\int_{\mathfrak{q}}^{t}\frac {(t-\kappa)^{\mathfrak{h}_1-2}}{\Gamma(\mathfrak{h}_1-1)}x(\kappa)d\kappa-\beta_1\int_{\mathfrak{q}}^{t}\frac {(t-\kappa)^{\mathfrak{s}_1+\mathfrak{h}_1-2}}{\Gamma(\mathfrak{s}_1+\mathfrak{h}_1-1)}H^*(\kappa)d\kappa+\int_{\mathfrak{q}}^{t}\frac {(t-\kappa)^{\mathfrak{h}_1+\mathfrak{f}_1-2}}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1-1)}\Phi(\kappa)d\kappa\\ &+&c_{1}\frac{(t-\mathfrak{q})^{\mathfrak{h}_1+\mathfrak{f}_1-2}\Gamma(\mathfrak{f}_1)}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1-1)}+c_{2}\frac{(t-\mathfrak{q})^{\mathfrak{h}_1+\mathfrak{f}_1-3}\Gamma(\mathfrak{f}_1-1)}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1-2)} +c_{4}. \end{eqnarray} (A.19)
    \begin{eqnarray} y(t)& = &-\alpha_2\int_{\mathfrak{q}}^{t}\frac {(t-\kappa)^{\mathfrak{h}_2-1}}{\Gamma(\mathfrak{h}_2)}y(\kappa)d\kappa-\beta_2\int_{\mathfrak{q}}^{t}\frac {(t-\kappa)^{\mathfrak{s}_2+\mathfrak{h}_2-1}}{\Gamma(\mathfrak{s}_2+\mathfrak{h}_2)}\mathfrak{U}^*(\kappa)d\kappa+\int_{\mathfrak{q}}^{t}\frac {(t-\kappa)^{\mathfrak{h}_2+\mathfrak{f}_2-1}}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2)}\Psi(\kappa)d\kappa\\ &+&b_{1}\frac{(t-\mathfrak{q})^{\mathfrak{h}_2+\mathfrak{f}_2-1}\Gamma(\mathfrak{f}_2)}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2)}+b_{2}\frac{(t-\mathfrak{q})^{\mathfrak{h}_2+\mathfrak{f}_2-2}\Gamma(\mathfrak{f}_2-1)}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2-1)} +b_{3}+b_{4}(t-\mathfrak{q}), \end{eqnarray} (A.20)
    \begin{eqnarray} y'(t)& = &-\alpha_2\int_{\mathfrak{q}}^{t}\frac {(t-\kappa)^{\mathfrak{h}_2-2}}{\Gamma(\mathfrak{h}_2-1)}y(\kappa)d\kappa-\beta_2\int_{\mathfrak{q}}^{t}\frac {(t-\kappa)^{\mathfrak{s}_2+\mathfrak{h}_2-2}}{\Gamma(\mathfrak{s}_2+\mathfrak{h}_2-1)}\mathfrak{U}^*(\kappa)d\kappa+\int_{\mathfrak{q}}^{t}\frac {(t-\kappa)^{\mathfrak{h}_2+\mathfrak{f}_2-2}}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2-1)}\Psi(\kappa)d\kappa\\ &+&b_{1}\frac{(t-\mathfrak{q})^{\mathfrak{h}_2+\mathfrak{f}_2-2}\Gamma(\mathfrak{f}_2)}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2-1)}+b_{2}\frac{(t-\mathfrak{q})^{\mathfrak{h}_2+\mathfrak{f}_2-3}\Gamma(\mathfrak{f}_2-1)}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2-2)} +b_{4}. \end{eqnarray} (A.21)

    c_i, b_i \in \mathbb{R}, i = 1, \cdots, 4 are some unknown arbitrary constants.

    Using the BCs (1.2) in Eqs (A.18)–(A.21), together with notations (A.15) and (A.16), we obtain c_4 = 0, \; b_4 = 0, and a system of equations in c_i, \; b_i(i = 1, 2, 3) given by

    \begin{eqnarray} \left\{ \begin{array}{rcl} A_1c_1+A_2c_2+c_3& = &K_1, \\ B_1b_1+B_2b_2+b_3& = &E_1, \\ A_3c_1+A_4c_2& = &K_2, \\ B_3b_1+B_4b_2& = &E_2, \\ c_3-B_5b_1-B_6b_2-A_7b_3& = &E_3, \\ b_3-A_5c_1-A_6c_2-A_7c_3& = &K_3, \end{array} \right. \end{eqnarray} (A.22)

    where A_{i}\; (i = 1, ..., 7), \; B_{j}\; (j = 1, ..., 6) are given by (A.15) and (A.16) and K_{i}, E_{i}, i = 1, 2, 3, are defined by

    \begin{eqnarray} K_{1}& = &\alpha_1\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_1-1}}{\Gamma(\mathfrak{h}_1)}x(\kappa)d\kappa+\beta_1\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{s}_1+\mathfrak{h}_1-1}}{\Gamma(\mathfrak{s}_1+\mathfrak{h}_1)}H^*(\kappa)d\kappa-\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_1+\mathfrak{f}_1-1}}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1)}\Phi(\kappa)d\kappa, \\ K_{2}& = &\alpha_1\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_1-2}}{\Gamma(\mathfrak{h}_1-1)}x(\kappa)d\kappa+\beta_1\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{s}_1+\mathfrak{h}_1-2}}{\Gamma(\mathfrak{s}_1+\mathfrak{h}_1-1)}H^*(\kappa)d\kappa-\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_1+\mathfrak{f}_1-2}}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1-1)}\Phi(\kappa)d\kappa, \\ K_{3}& = &-\alpha_1\sum\limits_{i = 1}^{\tau-2}{\eta_{i}}\int_{\mathfrak{q}}^{\xi_{i}}\frac {(\xi_{i}-\kappa)^{\mathfrak{h}_1-1}}{\Gamma(\mathfrak{h}_1)}x(\kappa)d\kappa-\beta_1\sum\limits_{i = 1}^{\tau-2}{\eta_{i}}\int_{\mathfrak{q}}^{\xi_{i}}\frac {(\xi_{i}-\kappa)^{\mathfrak{s}_1+\mathfrak{h}_1-1}}{\Gamma(\mathfrak{s}_1+\mathfrak{h}_1)}H^*(\kappa)d\kappa\\ &+&\sum\limits_{i = 1}^{\tau-2}{\eta_{i}}\int_{\mathfrak{q}}^{\xi_{i}}\frac {(\xi_{i}-\kappa)^{\mathfrak{h}_1+\mathfrak{f}_1-1}}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1)}\Phi(\kappa)d\kappa +\int_{\mathfrak{q}}^{\mathfrak{p}}\Big(-\alpha_1\int_{\mathfrak{q}}^{\kappa}\frac {(\kappa-u)^{\mathfrak{h}_1-1}}{\Gamma(\mathfrak{h}_1)}x(u)du\\ &-&\beta_1\int_{\mathfrak{q}}^{\kappa}\frac {(\kappa-u)^{\mathfrak{s}_1+\mathfrak{h}_1-1}}{\Gamma(\mathfrak{s}_1+\mathfrak{h}_1)}H^*(u)du +\int_{\mathfrak{q}}^{\kappa}\frac {(\kappa-u)^{\mathfrak{h}_1+\mathfrak{f}_1-1}}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1)}\Phi(u)du\Big)d\Lambda(\kappa), \\ E_{1}& = &\alpha_2\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_2-1}}{\Gamma(\mathfrak{h}_2)}y(\kappa)d\kappa+\beta_2\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{s}_2+\mathfrak{h}_2-1}}{\Gamma(\mathfrak{s}_2+\mathfrak{h}_2)}\mathfrak{U}^*(\kappa)d\kappa-\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_2+\mathfrak{f}_2-1}}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2)}\Psi(\kappa)d\kappa, \\ E_{2}& = &\alpha_2\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_2-2}}{\Gamma(\mathfrak{h}_2-1)}y(\kappa)d\kappa+\beta_2\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{s}_2+\mathfrak{h}_2-2}}{\Gamma(\mathfrak{s}_2+\mathfrak{h}_2-1)}\mathfrak{U}^*(\kappa)d\kappa-\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_2+\mathfrak{f}_2-2}}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2-1)}\Psi(\kappa)d\kappa, \\ E_{3}& = &-\alpha_2\sum\limits_{i = 1}^{\tau-2}{\eta_{i}}\int_{\mathfrak{q}}^{\xi_{i}}\frac {(\xi_{i}-\kappa)^{\mathfrak{h}_2-1}}{\Gamma(\mathfrak{h}_2)}y(\kappa)d\kappa-\beta_2\sum\limits_{i = 1}^{\tau-2}{\eta_{i}}\int_{\mathfrak{q}}^{\xi_{i}}\frac {(\xi_{i}-\kappa)^{\mathfrak{s}_2+\mathfrak{h}_2-1}}{\Gamma(\mathfrak{s}_2+\mathfrak{h}_2)}\mathfrak{U}^*(\kappa)d\kappa\\ &+&\sum\limits_{i = 1}^{\tau-2}{\eta_{i}}\int_{\mathfrak{q}}^{\xi_{i}}\frac {(\xi_{i}-\kappa)^{\mathfrak{h}_2+\mathfrak{f}_2-1}}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2)}\Psi(\kappa)d\kappa +\int_{\mathfrak{q}}^{\mathfrak{p}}\Big(-\alpha_2\int_{\mathfrak{q}}^{\kappa}\frac {(\kappa-u)^{\mathfrak{h}_2-1}}{\Gamma(\mathfrak{h}_2)}y(u)du\\ &-&\beta_2\int_{\mathfrak{q}}^{\kappa}\frac {(\kappa-u)^{\mathfrak{s}_2+\mathfrak{h}_2-1}}{\Gamma(\mathfrak{s}_2+\mathfrak{h}_2)}\mathfrak{U}^*(u)du +\int_{\mathfrak{q}}^{\kappa}\frac {(\kappa-u)^{\mathfrak{h}_2+\mathfrak{f}_2-1}}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2)}\Psi(u)du\Big)d\Lambda(\kappa), \end{eqnarray} (A.23)

    Solving the system (A.22) for c_i, \; b_i (i = 1, 2, 3) , we find that

    \begin{eqnarray} c_1& = &\rho_1K1+\rho_2K_2+\rho_3K_3+\rho_4E_1+\rho_5E_2+\rho_6E_3, \end{eqnarray} (A.24)
    \begin{eqnarray} c_2& = &\omega_1K1+\omega_2K_2+\omega_3K_3+\omega_4E_1+\omega_5E_2+\omega_6E_3, \end{eqnarray} (A.25)
    \begin{eqnarray} c_3& = &\epsilon_1K1+\epsilon_2K_2+\epsilon_3K_3+\epsilon_4E_1+\epsilon_5E_2+\epsilon_6E_3, \end{eqnarray} (A.26)
    \begin{eqnarray} b_1& = &\tau_1K1+\tau_2K_2+\tau_3K_3+\tau_4E_1+\tau_5E_2+\tau_6E_3, \end{eqnarray} (A.27)
    \begin{eqnarray} b_1& = &\lambda_1K1+\lambda_2K_2+\lambda_3K_3+\lambda_4E_1+\lambda_5E_2+\rho_6E_3, \end{eqnarray} (A.28)
    \begin{eqnarray} b_1& = &\delta_1K1+\delta_2K_2+\delta_3K_3+\delta_4E_1+\delta_5E_2+\delta_6E_3, \end{eqnarray} (A.29)

    where \rho_{i}, \; \omega_i, \; \epsilon_i, \; \tau_i, \; \lambda_i and \delta_{i}\; (i = 1, ..., 6) are given by (A.7)–(A.12) respectively.

    Inserting the values of c_1, c_2, c_3, c_4, b_1, b_2, b_{3} and b_{4} in (A.18) and (A.20), we get (A.2) and (A.3). The converse follows by direct computation. This completes the proof.



    [1] H. Aldweby, M. Darus, On a subclass of bi-univalent functions associated with the q-derivative operator, J. Math. Comput. Sci., 19 (2019), 58-64. doi: 10.22436/jmcs.019.01.08
    [2] M. Arif, M. Ul Haq, J. L. Liu, A subfamily of univalent functions associated with q-analogue of Noor integral operator, J. Funct. Spaces, 2018 (2018), 1-5.
    [3] L. de Branges, A proof of the Bieberbach conjecture, Acta Math., 154 (1985), 137-152. doi: 10.1007/BF02392821
    [4] D. A. Brannan, J. G. Clunie, Aspects of contemporary complex analysis, Proceedings of the NATO Advanced Study Institute (University of Durham, Durham; (1979), 1-20), New York and London: Academic Press, (1980), 79-95.
    [5] D. A. Brannan, J. Clunie, W. E. Kirwan, Coefficient estimates for a class of star-like functions, Canad. J. Math., 22 (1970), 476-485. doi: 10.4153/CJM-1970-055-8
    [6] D. A. Brannan, T. S. Taha, On some classes of bi-unvalent functions, In: Mathematical Analysis and Its Applications (Kuwait; (1985), 18-21) (S. M. Mazhar, A. Hamoui, N. S. Faour, Eds.), KFAS Proceedings Series, 3, Oxford: Pergamon Press (Elsevier Science Limited), (1988), 53-60; see also Studia Univ. Babeş-Bolyai Math., 31 (1986), 70-77.
    [7] T. Bulboacă, Differential subordinations and superordinations: Recent results, House of Scientific Book Publishers, Cluj-Napoca, 2005.
    [8] S. Bulut, Faber polynomial coefficient estimates for a subclass of analytic bi-univalent functions, Filomat, 30 (2016), 1567-1575. doi: 10.2298/FIL1606567B
    [9] M. Çaglar, E. Deniz, Initial coefficients for a subclass of bi-univalent functions defined by Sălăgean differential operator, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 66 (2017), 85-91.
    [10] P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, Bd. 259, New York, Berlin, Heidelberg and Tokyo: Springer-Verlag, 1983.
    [11] S. M. El-Deeb, Maclaurin coefficient estimates for new subclasses of bi-univalent functions connected with a q-analogue of Bessel function, Abstr. Appl. Anal., 2020 (2020), 1-7.
    [12] S. M. El-Deeb, T. Bulboacă, Fekete-Szegö inequalities for certain class of analytic functions connected with q-analogue of Bessel function, J. Egyptian Math. Soc., 27 (2019), 1-11. doi: 10.1186/s42787-019-0001-5
    [13] S. M. El-Deeb, T. Bulboacă, Differential sandwich-type results for symmetric functions connected with a q-analog integral operator, Mathematics, 7 (2019), 1-17.
    [14] S. M. El-Deeb, T. Bulboacă, B. M. El-Matary, Maclaurin coefficient estimates of bi-univalent functions connected with the q-derivative, Mathematics, 8 (2020), 1-14.
    [15] S. M. El-Deeb, T. Bulboacă, J. Dziok, Pascal distribution series connected with certain subclasses of univalent functions, Kyungpook Math. J., 59 (2019), 301-314.
    [16] S. M. El-Deeb, H. Orhan, Fekete-Szegö problem for certain class of analytic functions connected with q-analogue of integral operator, Ann. Univ. Oradea Fasc. Math., 28 (2021). In press.
    [17] S. Elhaddad, M. Darus, Coefficient estimates for a subclass of bi-univalent functions defined by q-derivative operator, Mathematics, 8 (2020), 1-14.
    [18] G. Faber, Über polynomische Entwickelungen, Math. Ann., 57 (1903), 389-408. doi: 10.1007/BF01444293
    [19] G. Gasper, M. Rahman, Basic hypergeometric series (with a Foreword by Richard Askey), Encyclopedia of Mathematics and Its Applications, 35, Cambridge, New York, Port Chester, Melbourne and Sydney: Cambridge University Press, 1990; 2 Eds., Encyclopedia of Mathematics and Its Applications, 96, Cambridge, London and New York: Cambridge University Press, 2004.
    [20] M. E. H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Variables Theory Appl., 14 (1990), 77-84. doi: 10.1080/17476939008814407
    [21] F. H. Jackson, On q-functions and a certain difference operator, Trans. Royal Soc. Edinburgh, 46 (1908), 253-281.
    [22] F. H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193-203.
    [23] P. N. Kamble, M. G. Shrigan, Coefficient estimates for a subclass of bi-univalent functions defined by Sălăgean type q-calculus operator, Kyungpook Math. J., 58 (2018), 677-688.
    [24] W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J., 1 (1952), 169-185.
    [25] Q. Khan, M. Arif, M. Raza, et al. Some applications of a new integral operator in q-analog for multivalent functions, Mathematics, 7 (2019), 1-13.
    [26] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18 (1967), 63-68. doi: 10.1090/S0002-9939-1967-0206255-1
    [27] S. Mahmood, N. Raza, E. S. A. Abujarad, et al. Geometric properties of certain classes of analytic functions associated with a q-integral operator, Symmetry, 11 (2019), 1-14.
    [28] S. S. Miller, P. T. Mocanu, Differential subordination: Theory and applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, New York and Basel: Marcel Dekker Incorporated, 225 (2000).
    [29] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z| < 1, Arch. Rational Mech. Anal., 32 (1969), 100-112.
    [30] S. Porwal, An application of a Poisson distribution series on certain analytic functions, J. Complex Anal., 2014 (2014), 1-3.
    [31] F. M. Sakar, H. Ö. Güeny, Coefficient bounds for a new subclass of analytic bi-close-to-convex functions by making use of Faber polynomial expansion, Turkish J. Math., 41 (2017), 888-895. doi: 10.3906/mat-1605-117
    [32] L. Shi, Q. Khan, G. Srivastava, et al. A study of multivalent q-starlike functions connected with circular domain, Mathematics, 7 (2019), 1-12.
    [33] H. M. Srivastava, Certain q-polynomial expansions for functions of several variables, I and II, IMA J. Appl. Math., 30 (1983), 315-323; ibid. 33 (1984), 205-209. doi: 10.1093/imamat/30.3.315
    [34] H. M. Srivastava, Univalent functions, fractional calculus, and associated generalized hypergeometric functions, In: Univalent functions, fractional calculus, and their applications (H. M. Srivastava, S. Owa, Eds.), New York, Chichester, Brisbane and Toronto: Halsted Press (Ellis Horwood Limited, Chichester) and John Wiley and Sons, (1989), 329-354.
    [35] H. M. Srivastava, Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A: Sci., 44 (2020), 327-344. doi: 10.1007/s40995-019-00815-0
    [36] H. M. Srivastava, Q. Z. Ahmad, N. Khan, et al. Some applications of higher-order derivatives involving certain subclasses of analytic and multivalent functions, J. Nonlinear Var. Anal., 2 (2018), 343-353.
    [37] H. M. Srivastava, Ş. Altinkaya, S. Yalçn, Hankel determinant for a subclass of bi-univalent functions defined by using a symmetric q-derivative operator, Filomat, 32 (2018), 503-516. doi: 10.2298/FIL1802503S
    [38] H. M. Srivastava, Ş. Altınkaya, S. Yalçin, Certain subclasses of bi-univalent functions associated with the Horadam polynomials, Iran. J. Sci. Technol. Trans. A: Sci., 43 (2019), 1873-1879. doi: 10.1007/s40995-018-0647-0
    [39] H. M. Srivastava, S. Arjika, A. S. Kelil, Some homogeneous q-difference operators and the associated generalized Hahn polynomials, Appl. Set-Valued Anal. Optim., 1 (2019), 187-201.
    [40] H. M. Srivastava, D. Bansal, Close-to-convexity of a certain family of q-Mittag-Leffler functions, J. Nonlinear Var. Anal., 1 (2017), 61-69.
    [41] H. M. Srivastava, S. S. Eker, R. M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29 (2015), 1839-1845. doi: 10.2298/FIL1508839S
    [42] H. M. Srivastava, S. S. Eker, S. G. Hamidi, et al. Faber polynomial coefficient estimates for biunivalent functions defined by the Tremblay fractional derivative operator, Bull. Iran. Math. Soc., 44 (2018), 149-157. doi: 10.1007/s41980-018-0011-3
    [43] H. M. Srivastava, S. M. El-Deeb, A certain class of analytic functions of complex order connected with a q-analogue of integral operators, Miskolc Math. Notes, 21 (2020), 417-433. doi: 10.18514/MMN.2020.3102
    [44] H. M. Srivastava, S. Gaboury, F. Ghanim, Coefficient estimates for a general subclass of analytic and bi-univalent functions of the Ma-Minda type, Rev. Real Acad. Cienc. Exactas Fís. Natur. Ser. A Mat., (RACSAM), 112 (2018), 1157-1168.
    [45] H. M. Srivastava, P. W. Karlsson, Multiple Gaussian Hypergeometric Series, New York, Chichester, Brisbane and Toronto: Halsted Press (Ellis Horwood Limited, Chichester) and John Wiley and Sons, 1985.
    [46] H. M. Srivastava, B. Khan, N. Khan, et al. Coefficient inequalities for q-starlike functions associated with the Janowski functions, Hokkaido Math. J., 48 (2019), 407-425. doi: 10.14492/hokmj/1562810517
    [47] H. M. Srivastava, S. Khan, Q. Z. Ahmad, et al. The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain q-integral operator, Stud. Univ. Babeş-Bolyai Math., 63 (2018), 419- 436.
    [48] H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188-1192. doi: 10.1016/j.aml.2010.05.009
    [49] H. M. Srivastava, A. Motamednezhad, E. A. Adegan, Faber polynomial coefficient estimates for biunivalent functions defined by using differential subordination and a certain fractional derivative operator, Mathematics, 8 (2020), 1-12.
    [50] H. M. Srivastava, F. M. Sakar, H. Ö. Güney, Some general coefficient estimates for a new class of analytic and bi-univalent functions defined by a linear combination, Filomat, 34 (2018), 1313- 1322.
    [51] H. M. Srivastava, N. Raza, E. S. A. AbuJarad, et al. Fekete-Szegö inequality for classes of (p, q)- starlike and (p, q)-convex functions, Rev. Real Acad. Cienc. Exactas Fís. Natur. Ser. A Mat., (RACSAM), 113 (2019), 3563-3584.
    [52] H. M. Srivastava, M. Tahir, B. Khan, et al. Some general classes of q-starlike functions associated with the Janowski functions, Symmetry, 11 (2019), 1-14.
    [53] H. M. Srivastava, M. Tahir, B. Khan, et al. Some general families of q-starlike functions associated with the Janowski functions, Filomat, 33 (2019), 2613-2626. doi: 10.2298/FIL1909613S
    [54] H. M. Srivastava, A. K. Wanas, Initial Maclaurin coefficient bounds for new subclasses of analytic and m-fold symmetric bi-univalent functions defined by a linear combination, Kyungpook Math. J., 59 (2019), 493-503.
    [55] H. Tang, Q. Khan, M. Arif, et al. Some applications of a new integral operator in q-analog for multivalent functions, Mathematics, 7 (2019), 1-13.
    [56] H. E. Ö. Uçar, Coefficient inequality for q-starlike functions, Appl. Math. Comput., 276 (2016), 122-126.
    [57] B. Wongsaijai, N. Sukantamala, Certain properties of some families of generalized starlike functions with respect to q-calculus, Abstr. Appl. Anal., 2016 (2016), 1-8.
  • This article has been cited by:

    1. Hasanen A. Hammad, Hassen Aydi, Manuel De la Sen, The existence and stability results of multi-order boundary value problems involving Riemann-Liouville fractional operators, 2023, 8, 2473-6988, 11325, 10.3934/math.2023574
    2. Kamal Shah, Muhammad Sher, Muhammad Sarwar, Thabet Abdeljawad, Analysis of a nonlinear problem involving discrete and proportional delay with application to Houseflies model, 2024, 9, 2473-6988, 7321, 10.3934/math.2024355
    3. Yan Qiao, Tao Lu, Solvability of a Class of Fractional Advection–Dispersion Coupled Systems, 2024, 12, 2227-7390, 2873, 10.3390/math12182873
    4. Lamya Almaghamsi, Ymnah Alruwaily, Kulandhaivel Karthikeyan, El-sayed El-hady, On Coupled System of Langevin Fractional Problems with Different Orders of μ-Caputo Fractional Derivatives, 2023, 7, 2504-3110, 337, 10.3390/fractalfract7040337
    5. Safoura Rezaei Aderyani, Reza Saadati, Chenkuan Li, Tofigh Allahviranloo, 2024, Chapter 9, 978-3-031-55563-3, 231, 10.1007/978-3-031-55564-0_9
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4338) PDF downloads(153) Cited by(13)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog