Research article Special Issues

A nonlinear delay integral equation related to infectious diseases

  • Received: 23 July 2023 Revised: 15 October 2023 Accepted: 07 November 2023 Published: 14 November 2023
  • A class of nonlinear integral equations with delay, related to infectious diseases, is studied. Making use of some tools from operators theory, we deal with the well-posedness in an adequate functional space, approximation of solution, estimates of lower/upper solutions and the data dependence of solutions.

    Citation: Munirah Aali Alotaibi, Bessem Samet. A nonlinear delay integral equation related to infectious diseases[J]. Electronic Research Archive, 2023, 31(12): 7337-7348. doi: 10.3934/era.2023371

    Related Papers:

  • A class of nonlinear integral equations with delay, related to infectious diseases, is studied. Making use of some tools from operators theory, we deal with the well-posedness in an adequate functional space, approximation of solution, estimates of lower/upper solutions and the data dependence of solutions.



    加载中


    [1] K. L. Cooke, J. L. Kaplan, A periodicity threshold theorem for epidemics and population growth, Math. Biosci., 31 (1976), 87–104. https://doi.org/10.1016/0025-5564(76)90042-0 doi: 10.1016/0025-5564(76)90042-0
    [2] F. A. Rihan, Delay Differential Equations and Applications to Biology, Springer, Germany, 2021. https://doi.org/10.1007/978-981-16-0626-7
    [3] A. Bica, The error estimation in terms of the first derivative in a numerical method for the solution of a delay integral equation from biomathematics, Rev. Anal. Numér. Théorie Approximation, 34 (2005), 23–36. https://doi.org/10.33993/jnaat341-788 doi: 10.33993/jnaat341-788
    [4] M. Dobriţoiu, A. M. Dobriţoiu, An approximating algorithm for the solution of an integral equation from epidemics, Ann. Univ. Ferrara, 56 (2010), 237–248. https://doi.org/10.1007/s11565-010-0109-x doi: 10.1007/s11565-010-0109-x
    [5] M. Dobriţoiu, M. A. Şerban, Step method for a system of integral equations from biomathematics, Appl. Math. Comput., 227 (2014), 412–421. https://doi.org/10.1016/j.amc.2013.11.038 doi: 10.1016/j.amc.2013.11.038
    [6] M. Otadi, M. Mosleh, Universal approximation method for the solution of integral equations, Math. Sci., 11 (2017), 181–187. https://doi.org/10.1007/s40096-017-0212-6 doi: 10.1007/s40096-017-0212-6
    [7] D. Guo, V. Lakshmikantham, Positive solution of nonlinear integral equation arising in infectious diseases, J. Math. Anal. Appl., 134 (1988), 1–8. https://doi.org/10.1016/0022-247X(88)90002-9 doi: 10.1016/0022-247X(88)90002-9
    [8] R. Torrejón, Positive almost periodic solutions of a state-dependent delay nonlinear integral equation, Nonlinear Anal. Theory Methods Appl., 20 (1993), 1383–1416. https://doi.org/10.1016/0362-546X(93)90167-Q doi: 10.1016/0362-546X(93)90167-Q
    [9] K. Ezzinbi, M. A. Hachimi, Existence of positive almost periodic solutions of functional equations via Hilbert's projective metric, Nonlinear Anal. Theory Methods Appl., 26 (1996), 1169–1176. https://doi.org/10.1016/0362-546X(94)00331-B doi: 10.1016/0362-546X(94)00331-B
    [10] V. Berinde, Approximating fixed points of weak $\varphi$-contractions using the Picard iteration, Fixed Point Theory, 4 (2003), 131–142.
    [11] V. Berinde, I. A. Rus, Asymptotic regularity, fixed points and successive approximations, Filomat, 34 (2020), 965–981. https://doi.org/10.2298/FIL2003965B doi: 10.2298/FIL2003965B
    [12] A. Petruşel, I. A. Rus, Stability of Picard operators under operator perturbations, Ann. West Univ. Timisoara Math. Comput. Sci., 56 (2018), 3–12. https://doi.org/10.2478/awutm-2018-0012 doi: 10.2478/awutm-2018-0012
    [13] I. A. Rus, Weakly Picard mappings, Commentat. Math. Univ. Carol., 34 (1993), 769–773.
    [14] I. A. Rus, Fiber Picard operators theorem and applications, Studia Univ. Babeş-Bolyai, Math., 44 (1999), 89–98.
    [15] I. A. Rus, A. Petruşel, M. A. Şerban, Fiber Picard operators on gauge spaces and applications, Z. Anal. Anwend., 27 (2008), 407–423. https://doi.org/10.4171/ZAA/1362 doi: 10.4171/ZAA/1362
    [16] M. Dobriţoiu, I. A. Rus, M. A. Şerban, An integral equation arising from infectious diseases via Picard operators, Studia Univ. Babeş-Bolyai Math., 52 (2007), 81–94.
    [17] S. B. Prešić, Sur une classe d'inéquations aux différences finies et sur la convergence de certaines suites, Publ. Inst. Math., 5 (1965), 75–78.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(860) PDF downloads(63) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog