This paper presents Calderón-Zygmund estimates for the weak solutions of a class of nonuniformly elliptic equations in $ \mathbb{R}^n $, which are obtained through the use of the iteration-covering method. More precisely, a global Calderón-Zygmund type result
$ \begin{equation*} |f|^{p_1}+a(x)|f|^{p_2}\in L^s(\mathbb{R}^n) \Rightarrow |Du|^{p_1}+a(x)|Du|^{p_2}\in L^s(\mathbb{R}^n)\quad {\rm for \; any} \; s>1 \end{equation*} $
is established for the weak solutions of
$ \begin{equation*} -{\rm div}A(x, Du) = -{\rm div}F(x, f) \quad {\rm in} \; \mathbb{R}^n, \end{equation*} $
which are modeled on
$ \begin{equation*} -{\rm div}(|Du|^{p_1-2}Du+a(x)|Du|^{p_2-2}Du) = -{\rm div}(|f|^{p_1-2}f+a(x)|f|^{p_2-2}f), \end{equation*} $
where $ 0\leq a(\cdot)\in C^{0, \alpha}(\mathbb{R}^n), \; \alpha\in (0, 1] $ and $ 1 < p_1 < p_2 < p_1+\frac{\alpha p_1}{n} $.
Citation: Bei-Lei Zhang, Bin Ge. Gradient estimates for the double phase problems in the whole space[J]. Electronic Research Archive, 2023, 31(12): 7349-7364. doi: 10.3934/era.2023372
This paper presents Calderón-Zygmund estimates for the weak solutions of a class of nonuniformly elliptic equations in $ \mathbb{R}^n $, which are obtained through the use of the iteration-covering method. More precisely, a global Calderón-Zygmund type result
$ \begin{equation*} |f|^{p_1}+a(x)|f|^{p_2}\in L^s(\mathbb{R}^n) \Rightarrow |Du|^{p_1}+a(x)|Du|^{p_2}\in L^s(\mathbb{R}^n)\quad {\rm for \; any} \; s>1 \end{equation*} $
is established for the weak solutions of
$ \begin{equation*} -{\rm div}A(x, Du) = -{\rm div}F(x, f) \quad {\rm in} \; \mathbb{R}^n, \end{equation*} $
which are modeled on
$ \begin{equation*} -{\rm div}(|Du|^{p_1-2}Du+a(x)|Du|^{p_2-2}Du) = -{\rm div}(|f|^{p_1-2}f+a(x)|f|^{p_2-2}f), \end{equation*} $
where $ 0\leq a(\cdot)\in C^{0, \alpha}(\mathbb{R}^n), \; \alpha\in (0, 1] $ and $ 1 < p_1 < p_2 < p_1+\frac{\alpha p_1}{n} $.
[1] | V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR Izv., 29 (1987), 33–66. https://doi.org/10.1070/IM1987v029n01ABEH000958 doi: 10.1070/IM1987v029n01ABEH000958 |
[2] | V. V. Jikov, S. M. Kozlov, O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer Berlin, Heidelberg, 1994. https://doi.org/10.1007/978-3-642-84659-5 |
[3] | P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions, Arch. Ration. Mech. Anal., 105 (1989), 267–284. https://doi.org/10.1007/BF00251503 doi: 10.1007/BF00251503 |
[4] | M. Colombo, G. Mingione, Bounded minimisers of double phase variational integrals, Arch. Ration. Mech. Anal., 218 (2015), 219–273. https://doi.org/10.1007/s00205-015-0859-9 doi: 10.1007/s00205-015-0859-9 |
[5] | M. Colombo, G. Mingione, Calderón-Zygmund estimates and nonuniformly elliptic operators, J. Funct. Anal., 270 (2016), 1416–1478. https://doi.org/10.1016/j.jfa.2015.06.022 doi: 10.1016/j.jfa.2015.06.022 |
[6] | M. Colombo, G. Mingione, Regularity for double phase variational problems, Arch. Ration. Mech. Anal., 215 (2015), 443–496. https://doi.org/10.1007/s00205-014-0785-2 doi: 10.1007/s00205-014-0785-2 |
[7] | P. Baroni, M. Colombo, G. Mingione, Non-autonomous functionals, borderline cases and related function classes, St. Petersburg Math. J., 27 (2016), 347–379. https://doi.org/10.1090/SPMJ/1392 doi: 10.1090/SPMJ/1392 |
[8] | T. Iwaniec, Projections onto gradient fields and $L^p$-estimates for degenerate elliptic equations, Stud. Math., 75 (1983), 293–312. https://doi.org/10.4064/sm-75-3-293-312 doi: 10.4064/sm-75-3-293-312 |
[9] | E. DiBenedetto, J. Manfredi, On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems, Am. J. Math., 115 (1993), 1107–1134. https://doi.org/10.2307/2375066 doi: 10.2307/2375066 |
[10] | F. Yao, C. Zhang, S. Zhou, Global regularity estimates for a class of quasilinear elliptic equations in the whole space, Nonlinear Anal., 194 (2020), 111307. https://doi.org/10.1016/j.na.2018.07.004 doi: 10.1016/j.na.2018.07.004 |
[11] | L. Diening, S. Schwarzacher, Global gradient estimates for the $p(x)$-Laplacian, Nonlinear Anal. Theory Methods Appl., 106 (2014), 70–85. https://doi.org/10.1016/J.NA.2014.04.006 doi: 10.1016/J.NA.2014.04.006 |
[12] | C. Zhang, S. Zhou, B. Ge, Gradient estimates for the $p(x)$-Laplacian equation in $\mathbb R^N$, Ann. Pol. Math., 114 (2015), 45–65. https://doi.org/10.4064/ap114-1-4 doi: 10.4064/ap114-1-4 |
[13] | F. Yao, S. Zhou, Global estimates in Orlicz spaces for p-Laplacian systems in $\mathbb R^N$, J. Partial Differ. Equations, 25 (2012), 103–114. https://doi.org/10.4208/jpde.v25.n2.1 doi: 10.4208/jpde.v25.n2.1 |
[14] | S. S. Byun, S. Ryu, P. Shin, Calderón–Zygmund estimates for $\omega$-minimizers of double phase variational problems, Appl. Math. Lett., 86 (2018), 256–263. https://doi.org/10.1016/j.aml.2018.07.009 doi: 10.1016/j.aml.2018.07.009 |
[15] | S. Baasandorj, S. S. Byun, J. Oh, Calderón–Zygmund estimates for generalized double phase problems, J. Funct. Anal., 279 (2020), 108670. https://doi.org/10.1016/j.jfa.2020.108670 doi: 10.1016/j.jfa.2020.108670 |
[16] | S. S. Byun, H. S. Lee, Calderón–Zygmund estimates for elliptic double phase problems with variable exponents, J. Math. Anal. Appl., 501 (2021), 124015. https://doi.org/10.1016/j.jmaa.2020.124015 doi: 10.1016/j.jmaa.2020.124015 |
[17] | P. Shin, Calderón–Zygmund estimates for general elliptic operators with double phase, Nonlinear Anal., 194 (2020), 111409. https://doi.org/10.1016/j.na.2018.12.020 doi: 10.1016/j.na.2018.12.020 |
[18] | P. Baroni, M. Colombo, G. Mingione, Regularity for general functionals with double phase, Calc. Var. Partial Differ. Equations, 57 (2018), 62. https://doi.org/10.1007/s00526-018-1332-z doi: 10.1007/s00526-018-1332-z |
[19] | S. Liang, S. Z. Zheng, On $W^{1, \gamma(\cdot)}$-regularity for nonlinear non-uniformly elliptic equations, Manuscr. Math., 159 (2019), 247–268. https://doi.org/10.1007/s00229-018-1053-9 doi: 10.1007/s00229-018-1053-9 |
[20] | L. Esposito, F. Leonetti, G. Mingione, Sharp regularity for functionals with $(p, q)$ growth, J. Differ. Equations, 204 (2004), 5–55. https://doi.org/10.1016/j.jde.2003.11.007 doi: 10.1016/j.jde.2003.11.007 |
[21] | E. Acerbi, G. Mingione, Gradient estimates for a class of parabolic systems, Duke Math. J., 136 (2007), 285–320. https://doi.org/10.1215/S0012-7094-07-13623-8 doi: 10.1215/S0012-7094-07-13623-8 |
[22] | G. Mingione, The Calderón-Zygmund theory for elliptic problems with measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 6 (2007), 195–261. https://doi.org/10.2422/2036-2145.2007.2.01 doi: 10.2422/2036-2145.2007.2.01 |
[23] | K. Taira, Singular integrals and Feller semigroups with jump phenomena, Rend. Circ. Mat. Palermo Ser. II, 2023. https://doi.org/10.1007/s12215-023-00907-2 |
[24] | N. S. Papageorgiou, C. Vetro, F. Vetro, Robin problems with general potential and double resonance, Appl. Math. Lett., 68 (2017), 122–128. https://doi.org/10.1016/j.aml.2017.01.003 doi: 10.1016/j.aml.2017.01.003 |
[25] | L. Diening, F. Ettwein, Fractional estimates for non-differentiable elliptic systems with general growth, Forum Math., 20 (2008), 523–556. https://doi.org/10.1515/FORUM.2008.027 doi: 10.1515/FORUM.2008.027 |
[26] | J. Malý, W. P. Ziemer, Fine Regularity of Solutions of Elliptic Partial Differential Equations, American Mathematical Society, 1997. |