ERA, 31(12): 7337-7348.

B\ Electroni DOT: 10.3934/era. 2023371
Atnig lectronic Received: 23 July 2023

@ Research Archive Revised: 15 October 2023

Accepted: 07 November 2023
http://www.aimspress.com/journal/era Published: 14 November 2023

Research article

A nonlinear delay integral equation related to infectious diseases

Munirah Aali Alotaibi' and Bessem Samet>*

! Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman
University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

2 Department of Mathematics, College of Science, King Saud University, P.O. Box 2455,
Riyadh 11451, Saudi Arabia

* Correspondence: Email: bsamet@ksu.edu.sa.
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1. Introduction

We are concerned with the study of the integral equation

u(s) = (fc 1 (t, u(t)) dt) (fg (¢, v(t))dt)~~-(fs L(t, U(t))dt), s €R, (L.1)
S—H1 S—H2 S=Hm

where m is a positive integer and u; > 0,7 = 1,2,--- ,m, are constants. Namely, we study the well-
posedness of (1.1), the upper and lower solutions and the data dependence of solutions w.r.t. small
perturbations of the functions ¢;, j = 1,2,--- ,m.

In the particular case m = 1, (1.1) reduces to
u(s) = f u(t,u(t)de, € R. (1.2)
S—H1

The above equation has been used as a model of the propagation of some infectious diseases with a
rate of contact that depends on seasons, see e.g., [1,2]. Due to the importance of (1.2) in Biosciences,
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several mathematical studies of this equation have been done. Namely, different numerical methods
for solving integral equations of the form (1.2) have been developed (see e.g., [3—6] and the references
therein). Moreover, various results concerning the qualitative behavior of solutions have been obtained.
For instance, in [1], Eq (1.2) has been studied, where ¢; is continuous and periodic in ¢, and satisfies
1(2,0) = 0. Namely, a threshold theorem has been established in the following sense:

(1) If yy > 0 1s small enough, then every nonnegative solution to (1.2) tends to 0 as s — +oo;
(i1) If w, is sufficiently large, then (1.2) admits a positive periodic solution with the same period as ¢;.

In [7], sufficient conditions for the existence of a positive periodic solution to (1.2) have been
obtained using the theory of fixed point index. In [8], the existence of positive almost periodic solutions
to (1.2) has been studied when u; = u (). In [9], the same question has been studied by means of
Hilbert’s projective metric. Using the theory of Picard operators developed by Rus and his collaborators
(see [10-15]), Dobritoiu et al. [16] provided a detailed study of (1.2) concerning the well-posedness,
lower/upper solutions and the data dependence.

The goal of this work is to extend the study made in [16] to the integral equation (1.1). Namely, in
Section 2, the existence/uniqueness of solutions is established making use of PreSi¢ fixed point
theorem [17]. We also provide and iterative process for approximating the solution. Next, some
estimates involving lower/upper solutions to (1.1) are obtained in Section 3. In Section 4, we study
the data dependence of solutions w.r.t. small perturbations of the functions ¢;, j = 1,2,--- ,m.

As we mentioned above, the proof of our well-posedness result makes use of Presi¢ fixed point
theorem. We recall below this result.

Lemma 1.1 (see [17]). Let (V,0) be a metric space. Let " : V" — V, where m is a positive integer.
Assume that

e (V,0) is complete;
o There exists a finite sequence {{;}1", C [0,00) with 0 < 3, {; < 1 such that

6(F(V09 Vi, Vm_l), F(Vb Vo, Vm)) < 415(‘)0’ Vl) + §25(V1, v2) oot §m6(Vm_1, Vm)

for every {vj};f’zo c V.

Then, the equation
v=I(,v,:---,v), veV

has a unique solution v* € V. Moreover, for any {V.i}Tz_ol C V, the sequence
Viet =T Wjomet, o5 vy), j2m—1
converges to v*.

2. Well-posedness

Assume that the conditions below hold:

(i) ;e CRxLY), j=1,2,--- ,m,m> 2, where I and J are two closed and bounded intervals of R;
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(ii) forall j=1,2,---,m, there exists L,; > 0 such that
le;(t,w) = ¢j(£,2)| < L;|lw — 2

forallt e Rand w,z € I;

m m m -1
i) 0< Y L, [ ] ||Lk||<(]—[ui]  where [lull = Sup(,yen lut, 2);
i=1

=1 k=lk#j
(iv) there exists a closed subset X of C(R,I) such that I'(X™) C X, where

r(vl,v2,~--,vm)<s>:( f X n(t,vlm)dr)( f S L2<r,vZ<t>>dr)--~( f Lma,vm(t))dr), seR
S—H1 S—p2 S=Hm

(2.1)
for all vi,v,,---,v, € X and C(R,]) is equipped with the norm

IVllo = sup [v(s)l, veCR,I).

seR
We have the following result.
Theorem 2.1. Assume that (1)—@1v) hold. Then,

(I) (1.1) admis a unique solution v* € X;
() for all vo,vy,- -+ ,vm—1 € X, the sequence {v;} C X defined by

vj+1(s)=( f Ll(tavj—m+l(l))dt)( f Lz(t,vj_m+z(t))dt)~-( f Lm(t,vj(t))dt) (2.2)
S—H1 S—H2 S=Hm

forall j > m — 1, converges uniformly to v, that is,
lim |lv; - v']lo = 0.
Jjo+oo

Proof. From (iv), the mapping
r:xX"-X
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is well-defined. Furthermore, for all vy, vi,v2,--- ,v,, € X and s € R, we have

L(vi,va, vz, ,v)(8) = L(vo, vi, va, -+, Vin1)(S)

= (fs L (t, Vl(f))dl) (f‘ L (1, va(1)) df) (fs 13(t, v3(1)) df)"'(fs (2, Vm(f))dl)
s—11 s—i> S—13 S—fim
- (f L (2, vo(1)) df) (f (1, v1(2)) df) (f t3(t, va(2)) dl‘) e (f L2, Vm—l(f))dl)
‘ S—H S—p2 ) S—H3 | S=Hm !
= ( (1, v1(2) — u(t, vo(1) dt) (f 1o(t, va(1)) dt) (f 13(2, v3(1)) dt) e (f (2, V(1)) df)
S=H1 S=H2 S—H3 S=Hm
+ (fs (2(t, v2(0) — 1a(2, vi(2)) df) (fs L1 (2, vo(1)) df) (fs 13(1, v3(1)) df) e (fs (2, Vi (1)) df)
s s—13 S—fim

—/12
[ @) - s dt) ( f LG, vO(t»dr) ( f | Lz(f,Vl(f))df)
—y3 S—H1 S—H2
L4(t, va(1)) dt) ( f S (2, V(1)) a’t)
S—14 S—fm

il
i
{f

+ (@, vi(2)) = (2t Vi1 (1)) dt) ( f (2, vo(2)) dt) ( f L(t,vi(1)) dt)
S=Hm S=H STH2
ot (f Lm—](t, vm—Z(t)) dt) 5
S=Hm-1
which yields
T(vi,va, vz, -, v)(8) = T'(vo, vi, va, - o+ s Vi) ()|
< Lpapn - tlleolllles]] - - - llenllllve = vollo + Lipptipen -« - tinllesllllesl] - - - lemllllva = villeo
+ oo+ Lty - pllerllleall = - = Nem=1 11V = Vi-illoo.

Hence, it holds that

IIF(VO, Vi, V2,° Vm—l)_r(vla V2, V3, ", Vm)”oo < gl”vo_vl”oo'i_{ﬂlvl_V2||c>o+' . '+§mllvm_vm—1”oo, (23)

where
m

ﬂﬂl o [Tl =120 m

k=1,k#j
On the other hand, by (iii), we have

O<i§j< 1.
j=1

Hence, by Lemma 1.1, there exists a unique v* € X such that
v =Tw" v, - ,v"),

that is, v is the unique solution to (1.1) in X, which proves (I). Finally, (II) follows from the
convergence result in Lemma 1.1.
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We now take I = [a,b] and J = [c,d], where a < band 0 < ¢ < d.

Corollary 2.2. Assume that (i)—(iii) hold, and
a<c"| |w bza"| |m. (2.4)
i=1 i=1

Then the statements (I) and (II) of Theorem 2.1 hold true, where X = C(R, I).

Proof. We have just to show that condition (iv) is satisfied. Then, from Theorem 2.1, (I) and (II) follow.
Letvy,va, -, vy, € C(R,I). Forall j =1,2,---,m, one has

0 <c <yt v(t) <d,

which implies that
0<cu; < f Li(t,vi(t) dt < du,;.

—Hj
Then, for all s € R, it holds that

cm

m
i=1

i ST V2 v)(s) < d" [ s
i=1
Taking into consideration (2.4), we obtain
a<T'(vi,va,--,vn)(s) < b,
which shows that I'(vy, vy, -+ ,v,) € C(R,I). Consequently, we have I'(X"") C X, where X = C(R,I).

We provide below an example to illustrate Theorem 2.1.

Example 2.3. Consider the integral equation

N 1 y 1
= In(1 + v(r)) dt ——— In(1 + (1) dt|, seR, 2.5
u(s) (Lmﬂ+1n( u(1)) ﬂl;xﬂ+n2“ 2@di], s (2.5)
where uy, u, > 0 are constants and
1
—. 2.
Hipy < =5 (2.6)

Let X = C(R, [0, 1]). We claim that

(D (2.5) admis a unique solution v* € X;
(II) for all vy, v; € X, the sequence {v;} C X defined by

Co o
Vin(s) = ( f oy (1 +v,(0) a’t) ( f . o +v4(1) dt 2.7)

—H1

for all j > 1, converges uniformly to v*, that is,

lim [jv; — vl = 0.
Jj—o+oo
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Indeed, forall k = 1, 2, let
:Rx[0,1] —= [0,In2]

be the functions defined by

u(t,2) = -In(1 +7°), reR,ze[0,1].

1
@#@+1)

Then (2.5) is a special case of (1.1) with m = 2.
LetI =[0,1]and J = [0,In2]. For all € R and w, z € [, by the mean value theorem, we have

(8, w) — 0 (7, 2)] = In(I +w) —In(1 +2)| < L, |lw -z,

2+1

where L, = 1. Similarly,

Jea(t, W) = 12(t, 2)| = [In(1 +w?) —In(1 + 2%)| < 2lw = 2w + 2| < L, lw - 2,

1
2+ 1)

where L, = 4. Furthermore, by (2.6), we have

2 2
DLy [ ]l = Lyllall + Lyl < 5102 < Guie) ™

=1 k=lk#j
On the other hand, for all v;, v, € X, we have

(In2)> 1In2

5In2 5 < b

(w1, v2)(s) = ( f L) dr) ( f L) dr) < Nerlleallnpez <

—H1 —H2
which shows that I'(X x X) c X. Hence, all the assumptions (i)—(iv) of Theorem 2.1 are satisfied. Then
the claims (I) and (II) follow from Theorem 2.1.

3. Lower/upper solutions

We say that v is a lower solution to (1.1), if

u(s) < (fs 1 (t,u(d)) dt) (fs (¢, v(t))dt)~~-(fS L (t, U(t))dt), s €R.
S—H1 S—H2 S=Hm

u(s) > (fs 1 (t, u(r)) dt) (fs 1 (t, u(t)) dt)---(fs L(t, u(t)) dt), s ER,
S—L1 S—2 S—Hm

then v is called an upper solution to (1.1).

Let us consider (1.1) under conditions (i)—(iv). Then, by Theorem 2.1, (1.1) admits a unique solution
vt e X.

We have the following result.

If v verifies

Electronic Research Archive Volume 31, Issue 12, 7337-7348.



7343

Theorem 3.1. Assume that (1)-(iv) hold. Suppose also that J C [0, +o0) and for all t € R and j =
1,2,---,m, we have
w,zel,w<z = ;(t,w) <(1,2). (3.1

If v € X is a lower solution to (1.1), then

u(s) < v'(s), sER. (3.2)
Proof. LetT : X™ — X be the mapping defined by (2.1). By (3.1) and since J C [0, +o0), if w € X and
Vi,  Vjm1, V), Visl, - - Vi) € X™ are such that v;(s) < w(s) for all s € R, then
F(Vla v2’ ) Vm)(s) S r(vla Y Vj_l, W’ Vj+1, ot Vm)(s), S € R‘

Let v € X be a lower solution to (1.1). Then, for all s € R,

u(s) <T'(v,v, - ,v)(s). 3.3)
Letvg=v,=---=v,1 =vand
vj+1 = F(Vj—m+la e ,Vj), ] =m— 1'
We claim that
u(s) < vj(s), j>2m—1. (3.4)
By (3.1) and (3.3), we have
<TI Vit Ve
u(s) (vo, 1 Vin—1)() (3.5)
= Vm(s)a

which shows that (3.4) holds true for j = m — 1. On the other hand, by (3.1) and (3.5), we have

Vin(8) = Lo, vi, -+, V-2, U)(5)
<T(o, Vi, s V2, Vin)() (3.6)
=T, v2, 5 Vi1, V()
= Vins1(8).

Then, (3.5) and (3.6) yield
U(s) < Vims1(9),

which shows that (3.4) holds true for j = m. Repeating the same argument, by the induction principle,
we obtain (3.4). Now, taking the limit as j — +oo in (3.4) and using the convergence result provided
by part (II) of Theorem 2.1, we obtain (3.2).

Proceeding as in the proof of Theorem 3.1, we obtain the following result.

Theorem 3.2. Assume that (1)—-(iv) hold. Suppose also that J C [0, +00) and for all t € R and j =
1,2,---,m, (3.1) holds. If v € X is an upper solution to (1.1), then

u(s) > v'(s), s eR.
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We now take I = [a,b] and J = [c,d], wherea < band 0 < ¢ < d. Forall j = 1,2,--- ,m, let
tji, L, 3 € CAR X I,J). Assume that conditions below hold:

(cy) forallall j=1,2,--- ,mandi=1,2,3, there exists L,; > 0 such that

leji(t,w) — (1, 2)| < L, Iw — 2

Lji

forallt e Rand w,z € [;
(cp) foralli =1,2,3, we have

0< ZLL,,k]—[ el < (]—[ ]_1;

Lk#j
(c3) a<c™ l—[u” b= d’"nul,
(c4) for all ] =1,2,---,m, we have
Lip(t,w) < p(t,w) < p(t,w), (J,w) € RXI,
(cs) forall j=1,2,--- ,mandt € R, we have
w,zelLbw<z = pt,w) <plt,2).

Observe that under the above conditions, thanks to Theorem 2.1 and Corollary 2.2, foralli = 1, 2, 3,
the problem

u(s) = (fs 0;(t, u(t)) dt) (fs (8, u(1)) dt)---(fs Lni(2, U(E)) dt), seR (3.7
S—pi s—p2 S=fm

admits a unique solution v} € C(R, ).
The following result holds.

Corollary 3.3. Under conditions (c;)—(cs), it holds that
vi(s) < vi(s) < vs(s), seR.

Proof. We have

vi(s) = (f (1, v]‘(t))dt) (f (1, v’[(t))dt)---(f L (2, v‘l‘(t))dt)
S—p1 S—H2 S=Hm

for all s € R. Due to (c4), we obtain

vT(s)s( f | le(t,vi(t))dt)( f | zzz(t,v’f(t))dt)--~( f ‘ Lmz(t,uj(t))dt),
S—U1 S—2 S=Hm

which shows that v is a lower solution to (3.7) with i = 2. Hence, by Theorem 3.1, we get vj(s) <
v5(s), s € R. Similarly, we have

vs(s) = ( f ti3(t, U5(2)) dt) ( f 123(t, U5(2)) dt)---( f L3 (t, U5(1)) dt)
S—H1 S—H2 S=Hm
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for all s € R. Due to (c4), we obtain

vs(s) > (f Lo (t, v3(2)) df) (f 122 (t, U3(1)) df) R (f Lo (t, U5(1)) df),
S—H] S—p2 S=Hm

which shows that v} is an upper solution to (3.7) with i = 2. Then, by Theorem 3.2, we obtain
vi(s) 2 v5(s), s €R.

4. Data dependence of solutions

We now consider the perturbed problem

u(s) = (fs 1 (t,u(1)) dt) (fs Tz(t,ﬂ(t))dt)---(fs Tm(t,U(t))dt), s €R, 4.1)
S—H] S—H2 S—=Hm

where m > 2 is an integer, i; > 0,i = 1,2,--- ,m,;; € CRxLJ), j=1,2,--- ,m, [ and J are two
closed and bounded intervals of R.
We have the following dependence data result.

Theorem 4.1. Assume that ()—(iv) hold, and let v* € X be the unique solution to (1.1). Suppose that
forall j=1,2,--- ,m, there exits n; > 0 such that

le;(t, w) =;(t,w)] < n; 4.2)

for all (t,w) € Rx L Ifv* € X is a solution to (4.1), then

lv* =7l < &, (4.3)
where L
s [TE p (ZT:_ZI 1, Tz jar Nl T2, el + 70 T lell + 72 | |ﬁ;||)
- 1 =TT s 2y Ly T e Nl ‘
Proof. Let

T@.7. - D)) = ( f 0T dt) ( f S Tz(t,’ﬁ(z))dt).--( f S Tm(t,’ﬁ(t))dz), seR.
S—U1 S—2 S=Hm

For all s € R, we have

V' (s) = T ()| = ID@W", v*, -+ ,u*)(s) = D@, T, -+, o")(s))
<|r@,uv, -, v")s)-T@W",v", -, v)0) 4.4)
+ D@, T, 7)) = T@, T, T)s)l.

On the other hand, by (2.3), we have
IC@*, v, -, v")(s) =T, 0", ,u)(9)| < LV = U"|os 4.5)
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where

m

0<¢= ]ﬂl[u;] L[] <.

k=1,k#j

Furthermore, we have

L@, 7, 7)) =L@, T, , 7)(s)

:( f S Ll(z,z?(r))dt)( f S Lzu,z“ﬁ(t))dr)( f S Ls(t,’a*(t))dr).--( f s Lm<r,5*<r>)dt)
S—H1 S—H2 S—H3 S=Hm
—( f Tl(t,’ﬁ*(t))dt)( f | Tz(t,ff“(t))dt)( f Ts(t,?f“(t))dt)~--( f Tm(t,?f*(t))dt)
S—p1 S—{2 S—H3 S—Hm
:( f | (L7 @) -1, v(1) dt)( f Lz(t,?f*(t))dt)( f Lg(t,?f*(t))dt)---( f Lm(t,'ﬁ*(t))dt)
S—H1 S—p2 S—=p3 S=Hm
+( f S (L(t,U°(1) = 1a(t, V(1)) dt)( f s Tl(t,i*(t))dt)( f S Lg(r,ﬁ*(t))dt)---( f s Lm(tif(t))dt)
S—H2 S—H1 S—H3 S=Hm
+( f S (i3, U (1) =6t v (1)) dt) ( f S E(t,?f*(t))dt) ( f S Tz(t,?f“(t))dt)
S—p3 S—H1 S—p2
( f L4(t,7i*(t))dt)---( f S Lm(t,?f*(t))dt)
S—Hq S=Hm
+...

+ f S (tn (U (1) = tu(t, U7 (1)) df)
U

(fs E(r,?(r))dt) (fs Tz(t,?ﬁ(t))dz)...(fs Tm_l(z,’ﬁ*(t))dt),
S—H| S—H2 S=Hm-1

which implies by (4.2) that

L@, T, -, T)(s) = T@", 7", , 7))
< itz - tlllllesll - - el + 7212 - - ol el - - Nl
+ mspinftn - - el - - Vel + - - + Tptasta - - ol GINEN - - - [Tuc I,

that is, _
|r(-l?<”6*a e ’U*)(S) - l"(’ﬁ*"ﬁ*’ T ’U*)(s)l

m m—1 m j—1 m m—1
< ]i[ui [Z; n [ ] Zrll el + s ]}jz el + 17 ﬂ nrku]. *o
i= j = = =

Jj= k=j+1
Therefore, from (4.4)-(4.6), it follows that

m m—1 m j-1 m m—1
" =Tl < 2" =Tl + | | [Z i [ ] el | ]+ [ e+ | ] nrku],
i=1 =2 k=j+l k=1 k=2 k=1

which yields (4.3).
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5. Conclusions

The nonlinear integral equation (1.1) is investigated. We first studied the well-posedness of the
problem in C(R, I), where I is a closed and bounded subset of R (see Theorem 2.1). Namely, by means
of PreSic fixed point theorem (see Lemma 1.1), we proved that under conditions (i)—(iv), (1.1) admits
a unique solution that can be approximated by the iterative sequence (2.7). We next established some
estimates involving upper and lower solutions to (1.1) (see Theorems 3.1 and 3.2). Finally, we studied
the dependence of the solution to (1.1) with respect to perturbations of the functions ¢, j = 1,2,--- ,m
(see Theorem 4.1).
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