Research article

A short proof of cuplength estimates on Lagrangian intersections

  • Received: 08 December 2022 Revised: 23 February 2023 Accepted: 07 March 2023 Published: 09 March 2023
  • 53D40, 58F05, 58E05

  • In this note we give a short proof of Arnold's conjecture for the zero section of a cotangent bundle of a closed manifold. The proof is based on some basic properties of Lagrangian spectral invariants from Floer theory.

    Citation: Wenmin Gong. A short proof of cuplength estimates on Lagrangian intersections[J]. Communications in Analysis and Mechanics, 2023, 15(2): 50-57. doi: 10.3934/cam.2023003

    Related Papers:

  • In this note we give a short proof of Arnold's conjecture for the zero section of a cotangent bundle of a closed manifold. The proof is based on some basic properties of Lagrangian spectral invariants from Floer theory.



    加载中


    [1] V.I. Arnold, Sur une propriété topologique des applications canoniques de la mécanique classique, C. R. Acad. Sci. Paris, 261 (1965), 3719–3722.
    [2] M. Chaperon, Quelques questions de géométrie symplectique, Séminaire Bourbaki, Astérisque, 1982/83 (1983), 231–249.
    [3] K.C. Chang, Infinite Dimensional Morse Theory and Multiple Solution Problem, Progress in Nonlinear Differential Equations and their Applications, volume 6, Birkhäuser, Boston, MA, 1993. https://doi.org/10.1007/978-1-4612-0385-8
    [4] C.C. Conley, E. Zehnder, The Birkhoff-Lewis fixed point theorem and a conjecture of V. I. Arnold, Invent. Math., 73 (1983), 33–49. https://doi.org/10.1007/BF01393824 doi: 10.1007/BF01393824
    [5] O. Cornea, G. Lupton, J. Oprea, D. Tanré, Lusternik-Schnirelmann category, volume 103 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2003. https://doi.org/10.1007/978-1-4612-0385-8
    [6] A. Floer, Morse theory for Lagrangian intersections, J. Differential Geom., 28 (1988), 513–547. https://doi.org/10.4310/jdg/1214442477 doi: 10.4310/jdg/1214442477
    [7] A. Floer, Cuplength estimates on Lagrangian intersections, Comm. Pure Appl. Math., 42 (1989), 335–356. https://doi.org/10.1002/cpa.3160420402 doi: 10.1002/cpa.3160420402
    [8] V. L. Ginzburg, B.Z. Gürel, Action and index spectra and periodic orbits in Hamiltonian dynamics, Geom. Topol., 13 (2009), 2745–2805. https://doi.org/10.2140/gt.2009.13.2745 doi: 10.2140/gt.2009.13.2745
    [9] W. Gong, Lagrangian Ljusternik–Schnirelman theory and Lagrangian intersections, preprint, arXiv: 2111.15442.
    [10] H. Hofer, Lagrangian Embeddings and Critical Point Theory, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2 (1985), 407–462. https://doi.org/10.1016/S0294-1449(16)30394-8 doi: 10.1016/S0294-1449(16)30394-8
    [11] H. Hofer, Lusternik-Schnirelman-theory for Lagrangian intersections, Ann. Inst. H. Poincaré Anal. Non Linéaire, 5 (1988), 465–499. https://doi.org/10.1016/S0294-1449(16)30339-0 doi: 10.1016/S0294-1449(16)30339-0
    [12] H. Hofer, E. Zehnder, Symplectic invariants and Hamiltonian dynamics, Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Verlag, Basel, 1994. https://doi.org/10.1007/978-3-0348-8540-9
    [13] F. Laudenbach, J.C. Sikorav, Persistance d'intersection avec la section nulle au cours d'une isotopie hamiltonienne dans un fibré cotangent, Invent. Math., 82 (1985), 349–357. https://doi.org/10.1007/BF01388807 doi: 10.1007/BF01388807
    [14] D. McDuff, D. Salamon, Introduction to symplectic topology, 3$^nd$ edition, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998. https://doi.org/10.1093/oso/9780198794899.001.0001
    [15] A. Monzner, N. Vichery, F. Zapolsky, Partial quasi-morphisms and quasi-states on cotangent bundles, and symplectic homogenization, J. Mod. Dyn., 6 (2012), 205–249. https://doi.org/10.3934/jmd.2012.6.205 doi: 10.3934/jmd.2012.6.205
    [16] Y.G. Oh, Symplectic topology as the geometry of action functional, I. Relative Floer theory on the cotangent bundle, J. Differential Geom., 46 (1997), 499–577. https://doi.org/10.4310/jdg/1214459976 doi: 10.4310/jdg/1214459976
    [17] Y.G. Oh, Symplectic topology as the geometry of action functional. II. Pants product and cohomological invariants. Comm. Anal. Geom., 7 (1999), 1–55. https://dx.doi.org/10.4310/CAG.1999.v7.n1.a1
    [18] Y.G. Oh, Geometry of generating functions and Lagrangian spectral invariants, preprint, arXiv: 1206.4788.
    [19] C. Viterbo, Some remarks on Massey products, tied cohomology classes, and the Lusternik-Shnirelman category, Duke Math. J., 86 (1997), 547–564. https://doi.org/10.1215/S0012-7094-97-08617-8 doi: 10.1215/S0012-7094-97-08617-8
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1095) PDF downloads(124) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog