Research article Special Issues

On the Hamiltonian and geometric structure of Langmuir circulation

  • Received: 30 December 2022 Revised: 27 February 2023 Accepted: 08 March 2023 Published: 16 March 2023
  • 76M60, 76E30, 37K30, 37K45, 37K65

  • The Craik-Leibovich equation (CL) serves as the theoretical model for Langmuir circulation. We show that the CL equation can be reduced to the dual space of a certain Lie algebra central extension. On this space, the CL equation can be rewritten as a Hamiltonian equation corresponding to the kinetic energy. Additionally, we provide an explanation of the appearance of this central extension structure through an averaging theory for Langmuir circulation. Lastly, we prove a stability theorem for two-dimensional steady flows of the CL equation. The paper also contains two examples of stable steady CL flows.

    Citation: Cheng Yang. On the Hamiltonian and geometric structure of Langmuir circulation[J]. Communications in Analysis and Mechanics, 2023, 15(2): 58-69. doi: 10.3934/cam.2023004

    Related Papers:

  • The Craik-Leibovich equation (CL) serves as the theoretical model for Langmuir circulation. We show that the CL equation can be reduced to the dual space of a certain Lie algebra central extension. On this space, the CL equation can be rewritten as a Hamiltonian equation corresponding to the kinetic energy. Additionally, we provide an explanation of the appearance of this central extension structure through an averaging theory for Langmuir circulation. Lastly, we prove a stability theorem for two-dimensional steady flows of the CL equation. The paper also contains two examples of stable steady CL flows.



    加载中


    [1] I. Langmuir, Surface Motion of Water Induced by Wind, Science, 87 (1938), 119–123. https://doi.org/10.1126/science.87.2250.119 doi: 10.1126/science.87.2250.119
    [2] D. D. Craik, S. Leibovich, A rational model for Langmuir circulations, J. Fluid. Mech., 73 (1976), 401–426. https://doi.org/10.1017/s0022112076001420 doi: 10.1017/s0022112076001420
    [3] D. D. Holm, The Ideal Craik-Leibovich Equations, Physica D, 98 (1996), 415–441. https://doi.org/10.1016/0167-2789(96)00105-4 doi: 10.1016/0167-2789(96)00105-4
    [4] V. A. Vladimirov, M. R. E. Proctor, D. W. Hughes, Vortex dynamics of oscillating flows, Arnold Math J., 1 (2015), 113–126. https://doi.org/10.1007/s40598-015-0010-x doi: 10.1007/s40598-015-0010-x
    [5] C. Yang, Multiscale method, Central extensions and a generalized Craik-Leibovich equation, J. Geom. Phys., 116 (2017), 228–243. https://doi.org/10.1016/j.geomphys.2017.02.004 doi: 10.1016/j.geomphys.2017.02.004
    [6] V. I. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des uides parfaits, Ann. Inst. Fourier., 16 (1966), 319–361. https://doi.org/10.5802/aif.233 doi: 10.5802/aif.233
    [7] V. I. Arnold, B. A. Khesin, Topological methods in hydrodynamics, Springer-Verlag, New York, 1998. https://doi.org/10.1007/b97593
    [8] B. A. Khesin, Yu. V. Chekanov, Invariants of the Euler equations for ideal or barotropic hydrodynamics and superconductivity in D dimensions, Physica D, 40 (1989), 119–131. https://doi.org/10.1016/0167-2789(89)90030-4 doi: 10.1016/0167-2789(89)90030-4
    [9] C. Roger, Extensions centrales d'algèbres et de groupes de Lie de dimension infinie, algèbre de Virasoro et généralisations, Rep. Math. Phys., 35 (1995), 225–266. https://doi.org/10.1016/0034-4877(96)89288-3 doi: 10.1016/0034-4877(96)89288-3
    [10] C. Vizman, Geodesics on extensions of Lie groups and stability: the superconductivity equation, Phys. Lett. A, 284 (2001), 23–30. https://doi.org/10.1016/s0375-9601(01)00279-1 doi: 10.1016/s0375-9601(01)00279-1
    [11] V. Zeitlin, Vorticity and waves: geometry of phase-space and the problem of normal variables, Physics. Letters. A., 164 (1992), 177–183. https://doi.org/10.1016/0375-9601(92)90699-m doi: 10.1016/0375-9601(92)90699-m
    [12] C. Yang, B. Khesin, Averaging, symplectic reduction, and central extensions, Nonlinearity, 33 (2020), 1342–1365. https://doi.org/10.1088/1361-6544/ab5cdf doi: 10.1088/1361-6544/ab5cdf
    [13] J. E. Marsden, G. Misiolek, J. Ortega, M. Perlmutter, T. S. Ratiu, Hamiltonian Reduction by Stages, Springer-Verlag, New York, 2007. https://doi.org/10.1007/978-3-540-72470-4
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1292) PDF downloads(113) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog