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1. Introduction

In 1938, Langmuir [1] reported his observation of windrows of seaweeds in the Sargasso Sea. When
a wind blows over a water surface steadily, small objects, such as seaweeds or bubbles, floating on the
water will align with the wind direction. This is called Langmuir circulation. Since its discovery, this
fascinating phenomenon has sparked a lot of research, both experimental and theoretical. In 1976, Craik
and Leibovich [2] derived the CL equation as a theoretical model for Langmuir circulation.

According to the Craik-Leibovich theory, Langmuir circulation arises due to the interaction between
the flow and the fast oscillating fluid surface. The corresponding averaged system in a 3-dimensional
domain with fixed boundaries is the CL equation:{

∂v
∂ t +(v,∇)v+ curl v×Vs =−∇p,
(v+Vs) ·n = 0,

(1.1)

where Vs is obtained by averaging the oscillating surface and is referred to as the Stokes drift, while n
represents the outer normal vector of the boundary.
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The Hamiltonian formulation of the classical CL equation was studied in the works of Holm [3]
and Vladimirov [4]. In the present paper, we will discuss the Hamiltonian structure of the CL
equation from a geometric point of view based on [5]. It turns out that, on the dual space of a
certain Lie algebra central extension, the CL equation can be rewritten as a Hamiltonian equation
corresponding to the kinetic energy. Then, one can generalize the CL equation to any Riemannian
manifold with boundaries.

The equation (1.1) was first derived by Craik and Leibovich using the averaging method. Later,
Vladimirov and his coauthors [4] developed a multiscale averaging method to study Langmuir circulation.
In [5], the author carried out a general averaging theory on a principal bundle related to incompressible
free boundary hydrodynamics problems to obtain the CL equation. This perturbation theory also clarifies
the origin of the Stokes drift.

Central extension structures also appear in other mathematical equations. We would like to
mention the superconductivity equation and the β−plane equation. For details of these examples,
please refer to Section 2.

The rest of the paper is organized as follows. Some preliminaries about the Euler equation and central
extensions of Lie algebras are given in Section 2. In Section 3, we first generalize the CL equation
to any Riemannian manifold with boundaries. Then, we prove the central extension structure of the
CL equation along with its Hamiltonian structure, and we obtain a broad class of invariant functionals.
The averaging theory for Langmuir circulation which explains the appearance of the central extension
structure is presented in Section 4. Lastly, Section 5 discusses the stability of two-dimensional steady
flows of the Craik-Leibovich equation.

2. Preliminaries: The Euler equation and central extension

In his seminal paper [6], Arnold studied the geodesics on Lie groups with one-sided invariant
Riemannian metric. He showed that the geodesic equation can be reduced to the Euler equation on the
dual space of Lie algebra.

More specifically, consider a Lie group G which can be finite or infinite dimensional. Let g be its Lie
algebra with g∗ being the dual of g. The geodesic equation can be formulated as a Hamiltonian equation
on T ∗G with a kinetic Hamiltonian. Use the inertia operator K : g→ g∗, and one can write the kinetic
Hamiltonian as a function on g∗: H(µ) =−1

2〈K
−1µ,µ〉 for µ ∈ g∗. The corresponding Hamiltonian

equation on g∗ is given by
dµ

dt
=−ad∗K−1µ

µ. (2.1)

Definition 2.1. Equation (2.1) is called the Euler equation.

One can also write the kinetic energy E(v) = 1
2〈v,Kv〉 on the Lie algebra g. Then, by the right (or left)

translation, one obtains a right (or left)-invariant metric on the Lie group G. Arnold proved in [6] that
for the volume-preserving diffeomorphism group equipped with the right-invariant L2-metric, equation
(2.1) is the incompressible Euler equation in hydrodynamics.

Let h be a Lie algebra and H be a vector space. One can define a bilinear, antisymmetric map:
ω̂ : h× h→ H. If it satisfies the identity

ω̂([u,v],w)+ ω̂([v,w],u)+ ω̂([w,u],v) = 0, ∀u, v, w ∈ h,
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then ω̂ is a Lie algebra 2-cocycle. One can use the 2-cocycle to define a new bracket: for u, v ∈ h and
a, b ∈ H,

[(u,a),(v,b)]∧ = ([u,v], ω̂(u,v)).

Definition 2.2. A new Lie algebra ĥ= h⊕H with the Lie bracket [·, ·]∧ is called a central extension of
h by H.

Example 2.1. Consider a 3-dimensional compact manifold M, dvol is a volume form on it, and B is a
divergence-free vector field. It is known that the Lie algebra of the volume-preserving diffeomorphism
group Diffdvol(M) is formed by all the divergence-free vector fields [7]. We denote the Lie algebra by
Xdvol(M). If M has boundaries, then the elements in Xdvol(M) should be tangent to the boundaries.
One can define a 2-cocycle ω̂B by

ω̂B(v,w) =
∫

M
(iviwiB dvol) dvol for v, w ∈Xdvol(M).

Let X̂dvol(M) be the central extension of Xdvol(M) through the 2-cocycle ω̂B(v,w), and let X̂dvol(M)

be its dual space. Then, the Euler equation on X̂dvol(M) coincides with the 3-dimensional superconduc-
tivity equation [8–10]

∂u
∂ t

+∇uu+u×B =−∇p, ∇ ·u = 0. (2.2)

Example 2.2. Another interesting equation appears in the study of rotating 2D fluids. Let u be
the velocity field, and in the 2D case, its vorticity ω is a function. The stream function φ satisfies
u = (∂yφ ,−∂xφ). Then, the motion of fluids is governed by the β -plane equation:

∂tω =−{φ ,ω}−β∂xφ , (2.3)

where β ∈ R, and the last term in the equation is the effect of the Coriolis force.
All the symplectic vector fields on a 2-dimensional manifold D form a Lie algebra Xsymp(D).

Zeitlin [11] considered a certain central extension X̂symp(D), whose dual is X̂ ∗
symp(D), and demonstrated

that equation (2.3) is the Euler equation on X̂ ∗
symp(D).

3. The central extension and Hamiltonian structure related to the Craik-Leibovich theory of
Langmuir circulation

3.1. A special central extension

In this section, we will define a central extension related to the geometric structure of Langmuir circulation.

Definition 3.1. On a Lie algebra g, we first define the shifted 2-cocycle ω̂Vs : g× g→ R for a fixed
vector Vs ∈ g by

ω̂Vs(u,v) =−〈ad∗u K(Vs),v〉 , (3.1)

where u, v ∈ g, and K is a map from g to g∗.

Remark 3.1. Because 〈ad∗u K(Vs),v〉=−〈K(Vs), [u,v]〉, the shifted 2-cocycle ω̂Vs is a 2-coboundary.

By means of the shifted 2-cocycle ω̂Vs , one can get a new Lie algebra ĝVs , which is the central
extension of g by R. We derive the Euler equation on its dual ĝ∗Vs

.
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Proposition 3.1. The Euler equation on ĝ∗Vs
is

d
dt

µ =−ad∗K−1µ
{µ−aK(Vs)}. (3.2)

Proof. Since〈
ad∗(X ,b)(µ,a),(Y,c)

〉
=〈(µ,a),([X ,Y ], ω̂Vs(X ,Y ))〉= 〈µ, [X ,Y ]〉+a ω̂Vs(X ,Y )

=〈ad∗X µ,Y 〉−〈a ad∗X K(Vs),Y 〉= 〈ad∗X µ−a ad∗X K(Vs),Y 〉 ,

take X = K−1µ to get the Euler equation on ĝ∗Vs

d
dt

µ =−ad∗K−1µ
{µ−aK(Vs)}.

Remark 3.2. As mentioned in Section 2, the Euler equation is Hamiltonian, and the corresponding
Hamiltonian function is H(µ) =−1

2〈K
−1µ, µ〉.

3.2. Hamiltonian structure and the generalized CL equation

Let M be an n-dimensional Riemannian manifold with boundary ∂M. The group Diffdvol(M) is the
group of all volume-preserving diffeomorphisms on M. Its Lie algebra Xdvol(M) consists of all the
divergence-free vector fields on M that are tangent to the boundary ∂M. The dual space X ∗

dvol(M) of the
Lie algebra is the space of 1-forms on M modulo the exact 1-forms. We now introduce the generalized
CL equation.

Theorem 3.1. ( [5]) The generalized CL equation on the space X ∗
dvol(M) is

d
dt

[u] =−Lv+Vs [u], (3.3)

where v+Vs ∈Xdvol(M), and [u] = [vb] ∈X ∗
dvol(M).

Proof. Let u = vb, and the equation (3.3) becomes

d
dt

u =−Lv+Vs u+d f .

From the identities
Lv(vb) = (∇vv)b +

1
2

d〈v, v〉

and
∗(curl v∧Vs) = iVsicurl vµ = iVsdvb = LVsu,

we obtain an equation which can be seen as the generalization of the CL equation on M,

vt +∇vv+∇p =Vs× curl v. (3.4)

Also, the condition v+Vs ∈Xdvol(M) gives us the boundary condition. In dimension 3, the equation
(3.4) is the classical CL equation.
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Remark 3.3. Note that velocity fields v and Vs do not have to be elements of Xdvol(M), but their sum
v+VS is an element of Xdvol(M), which is the boundary condition.

We show that the CL equation (3.3) is also Hamiltonian on the dual space X ∗
dvol(M).

Corollary 3.1. Consider the function H(u) =−1
2([u+V b

s ], K−1[u+V b
s ]) defined on X ∗

dvol(M). The
Hamiltonian equation for this function is the CL equation (3.3).

Proof. The Hamiltonian equation on X ∗
dvol(M) is

d
ds

[u] =−L δH
δ [u]

[u].

For the Hamiltonian function H = −1
2([u +V b

s ], K−1[u +V b
s ]), the functional derivative is δH

δ [u] =

K−1[u+V b
s ]) = v+Vs. Therefore, we obtain equation (3.3).

Now, set [u]′ = [u+V b
s ], and equation (3.3) becomes

d
dt

[u]′ =−LK−1[u]′ {[u]′− [V b
s ]}. (3.5)

Consider a 2-cocycle ω̂Vs on Xdvol(M) defined by

ω̂Vs(u,v) =−
〈
Lu V b

s ,v
〉
.

Then, using it, one can define a Lie algebra X̂dvol(M), which is a central extension of Xdvol(M) by R.

Theorem 3.2. ( [5]) Equation (3.5) is the Euler equation on X̂ ∗
dvol(M).

Proof. Let a = 1 in equation (3.2), and we obtain equation (3.5).

Remark 3.4. One can also express the 2-cocycle ω̂Vs as the integral of a 2-form dV b
s on M. Indeed,∫

M
−dV b

s (u,v) dvol =−
∫

M
〈iudV b

s ,v〉 dvol

=−
∫

M
〈LuV b

s ,v〉 dvol +
∫

M
〈diuV b

s ,v〉 dvol =−
〈
Lu V b

s ,v
〉
= ω̂Vs(u,v),

where the equation
∫

M〈diuV b
s ,v〉 dvol = 0 holds since v ∈Xdvol(M).

Next, we present the first integrals of the CL equation. The following corollary follows immediately
from the fact that the action of the group Diffdvol(M) can be viewed as a change of variables that
preserves dvol on M.

Corollary 3.2. (1) For a (2k + 1)-dimensional manifold M, the first integral of Equation (3.3) is
I([u]) =

∫
M u∧ (du)k.

(2) For a 2k-dimensional manifold M and an arbitrary function h, the first integral of Equation (3.3)
is

Ih([u]) =
∫

M
h
(
(du)k

dvol

)
dvol.
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Remark 3.5. Note that in dimension 3 (i.e., k = 1), the integral I([u]) =
∫

M u∧du is the Eulerian mean
helicity discussed in [3].

Remark 3.6. The moment [u] = [vb] is transferred by the flow corresponding to the velocity field v+Vs
(Kelvin’s theorem for the CL equation). For the CL equation, we provide two equivalent definitions of
isovorticed fields, corresponding to equation (3.3) and (3.5), respectively.

Definition 3.2. For equation (3.3), two vector fields u1 and u2 are isovorticed if curl u1 can be
transferred to curl u2 by a volume-preserving diffeomorphism, and they satisfy the same boundary
condition: (u1 +Vs) ·n = (u2 +Vs) ·n = 0.

Definition 3.2′. For equation (3.5), two vector fields u1, u2 ∈Xdvol(M) are isovorticed if curl (u1−Vs)
can be transferred to curl (u2−Vs) by a volume-preserving diffeomorphism.

4. Averaging theory for Langmuir circulation

The central extension structure of the CL equation arises from the process of averaging. Specifically,
let M→ H be a circle bundle with the base H being a Lie group. Consider a Hamiltonian function
H (x,y) for (x,y) ∈ T ∗x M. After averaging with respect to the circle action S1, we obtain the averaged
system on the reduced manifold, which is T ∗H equipped with a reduced symplectic form ωσ . The
averaged system is Hamiltonian. We denote the averaged Hamiltonian function by H̄ (x̄, ȳ) for (x̄, ȳ) ∈
T ∗x̄ H. The reduced symplectic form ωσ is

ωσ = ω0−σ π
∗
H dā,

where ω0 = dx̄∧dȳ, and π∗H is the pullback of the projection πH : T ∗H→ H. Here, σ ∈ R is a value of
the momentum map of the circle action. The 1-form ā is the averaged connection 1-form on H (see
Theorem 6.7 in [12] for more details).

Furthermore, if the original Hamiltonian H (x,y) is H-invariant, then we can perform another
reduction on the cotangent bundle (T ∗H,ωσ ) (“the reduction by stages”). Let h∗ be the dual of the
Lie algebra h of H, and then this reduction gives us a certain Poisson structure on h∗, given by (see
Theorem 7.2.1 in [13])

{ f ,g}σ (m) =−
〈

m,

[
δ f
δm

,
δg
δm

]〉
− cσ (e)

(
δ f
δm

,
δg
δm

)
(4.1)

for m ∈ h∗, where f and g are smooth functions on h∗. The 2-form cσ on H satisfies ωσ = π∗Hcσ , and
cσ (e) represents taking the value at the identity element e ∈ H.

For a nonzero value σ of the momentum map of the circle action, we can define a 2-cocycle
c : h× h→ R by c := 1

σ
cσ (e). By means of c, we obtain the central extension ĥ of the Lie algebra h.

The Poisson bracket (4.1) can be regarded as the natural Poisson bracket on the dual of ĥ.
This explains the origin of the central extension structure that appears in the Hamiltonian formulation

of the CL equation.
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5. Stability of 2-dimensional steady flows of the Craik-Leibovich equation

5.1. Steady Craik-Leibovich flows

The vorticity equation of the incompressible CL flow corresponding to equation (3.5) is

∂ω

∂ t
+{v, ω− curl Vs}= 0, (5.1)

where ω = curl v is the vorticity. Note that the velocity field v is divergence-free, and (v−Vs) satisfies
the CL equation (1.1). Therefore, the steady solution of equation (5.1) is given by

{v,curl (v−Vs)}= 0. (5.2)

Let us consider the following variational problem:

Problem 1. Suppose that the central extension group D̂iffdvol(M), which corresponds to the central
extension of the Lie algebra Xdvol(M) described in Section 3.2, exists. Given a vector field u0 ∈
Xdvol(M), we aim to find the critical points of the kinetic function K(u) = 1

2 〈u,u〉 on the set S = {u ∈
Xdvol(M) | (u,1) = Adg(u0,1), g ∈ D̂iffdvol(M)}, where Ad is the group adjoint action.

It turns out that the steady CL flows are the critical points of this variational problem.

Theorem 5.1. The steady CL flows that satisfy equation (5.2) coincide with the critical points of
variational problem 1.

Proof. Let (u,b) ∈Xdvol(M)⊕R. The variation δ (v,a) of a field (v,a) under the adjoint action of (u,b)
is given by

δ (v,a) = [(u,b), (v,a)]∧ = ([u, v],−〈Vs, [u, v]〉).
Suppose v ∈Xdvol(M) is a critical point of Problem 1. Then, the first variation of E taken at v should
be 0, so we have

0 = δE =〈(v,1),δ (v,1)〉= 〈(v,1),({v, u},−〈Vs, [u, v]〉)
=〈(v,1),{v, u}〉−〈Vs,curl(u× v)〉= 〈u,v× curl u〉−〈curl Vs,u× v〉
=〈u,v× curl v〉−〈u,v× curl Vs〉= 〈u,v× curl (v−Vs)〉 .

So, we have {v,curl (v−Vs)}= 0.

5.2. Stability theorem for equilibrium points on central extensions of Lie algebras

Let ĝ= g⊕R be a one-dimensional central extension of an arbitrary Lie algebra with 2-cocycle ω̂ .
We introduce the bilinear operation B : g× g→ g defined by

〈[v1,v2],v3〉= 〈B(v3,v1),v2〉, (5.3)

where vi ∈ g, i = 1,2,3. Using this operation B, one can rewrite the Euler equation in its Lie algebra
form [7]:

dv
dt

= B(v,v), (5.4)

where v ∈ g.
Then, we define an operator w : g→ g induced from the 2-cocycle ω̂ by ω̂(u,v) = 〈w(u),v〉 for any

u, v ∈ g.
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Proposition 5.1. On the central extension ĝ, the Euler equation is given by

dv
dt

= B(v,v)+a w(v). (5.5)

Thus, the equilibrium point (ve,ae) ∈ ĝ satisfies

B(ve,ve)+ae w(ve) = 0. (5.6)

Proof. We can compute the bilinear operation B̂ : ĝ× ĝ→ ĝ of the central extension ĝ as follows:〈
B̂((v3,a3),(v1,a1)),(v2,a2)

〉
=〈[(v1,a1),(v2,a2)],(v3,a3)〉= 〈([v1,v2], ω̂(v1,v2)),(v3,a3)〉
=〈[v1,v2],v3〉+a3ω̂(v1,v2) = 〈B(v3,v1)+a3w(v1),v2〉 ,

where (vi,ai) ∈ ĝ, i = 1,2,3. So, the Euler equation on ĝ takes the form

d(v,a)
dt

= B̂((v,a),(v,a))

and becomes equation (5.5). (For brevity, here we omit the second equation da
dt = 0.)

The Lie algebra ĝ is foliated by the coadjoint orbits. Next, we prove a stability theorem for the
equilibrium points on ĝ.

Theorem 5.2. Assume that the equilibrium point (ve,ae) ∈ ĝ is a regular point of the coadjoint foliation.
Consider a test quadratic form T |(ve,ae):

T |(ve,ae) (ξ ) = 〈B(ve,ζ )+ae w(ζ ), B(ve,ζ )+ae w(ζ )〉+ 〈[ζ ,ve], B(ve,ζ )+ae w(ζ )〉, (5.7)

where ξ = B(ve,ζ)+ae w(ζ) ∈ g. If for all nonzero ξ ∈ g we have T |(ve,ae) (ξ)> 0 or T |(ve,ae) (ξ)< 0 ,
then the equilibrium solution (ve,ae)∈ ĝ of equation (5.5) is Lyapunov stable.

Proof. To prove this, we use the second variation of the kinetic function K(u) = 1
2〈u, u〉 on the leaf of

this coadjoint foliation of ĝ. As shown by Arnold (see, e.g., [7]), the second variation is given by

2δ
2K |(ve,ae) (ξ ) = 〈B̂(ve,ζ ), B̂(ve,ζ )〉+ 〈[ζ ,ve], B̂(ve,ζ )〉, (5.8)

where ξ = B̂(ve,ζ ) ∈ g. Note that the quadratic form δ 2K does not depend on the choice of ζ but only
on ξ = B̂(ve,ζ ).

Thanks to the computation in Proposition 5.1, we have B̂(ve,ζ ) = B(ve,ζ )+ae w(ζ ). Substituting
this into (5.8), we obtain the test quadratic form (5.7). The Lyapunov stability of the equilibrium point
(ve,ae) then follows from a revised Lagrange’s theorem in chapter §II.3 of [7].

5.3. An a priori estimate for 2-dimensional steady flows of the CL equation

Let D be a 2-dimensional domain with boundary, and dA is an area form. The velocity field
ve = ∇⊥ψe is a stationary solution of equation (5.1), and ψ∗e stands for the stream function of the shifted
velocity field ve−Vs.

We can now prove the following theorem, which provides an a priori estimate for 2-dimensional
steady flows of the CL equation:
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Theorem 5.3. Consider a 2-dimensional domain D with an area form dA. Assume that (i) ψe = F(∆ψ∗e )
for some function F, and (ii) there exist two constants c1 and c2 such that

0 < c1 ≤
∇ψe

∇∆ψ∗e
≤ c2 < ∞. (5.9)

Let ψ(x,y, t) = ψe + h(x,y, t) be the stream function corresponding to a different solution of the CL
equation such that

∮
∂D ∇⊥ψ ·dl =

∮
∂D ∇⊥ψe ·dl. Then, for the perturbation h = h(x,y, t), we have the

following inequality:
‖∇h‖2

2 + c1‖∆h‖2
2 ≤ ‖∇h0‖2

2 + c2‖∆h0‖2
2, (5.10)

where h0 = h(x,y,0), and ‖·‖2
2 denotes the square of the L2−norm, which is given by ‖u‖2

2 =
!

D(u,u) dA
for a vector field u and ‖ f‖2

2 =
!

D f 2 dA for a function f .

Proof. By the assumption of Theorem 5.3, we have ψe = F(∆ψ∗e ). Let the function P be the primitive
of F , i.e., P′ = F . Then, P′′(∆ψ∗e ) =

∇ψe
∇∆ψ∗e

. Again by the assumption, we have c1 ≤ P′′(ω)≤ c2, which
gives

c1
η2

2
≤ P(ω +η)−P(ω)−P′(ω)η ≤ c2

η2

2
.

This implies

‖∇h‖2
2 +2

"
D
(P(∆ψ

∗
e +∆h)−P(∆ψ

∗
e )−P′(∆ψ

∗
e )∆h) dA≥ ‖∇h‖2

2 + c1‖∆h‖2
2, (5.11)

‖∇h0‖2
2 +2

"
D
(P(∆ψ

∗
e +∆h0)−P(∆ψ

∗
e )−P′(∆ψ

∗
e )∆h0) dA≤ ‖∇h0‖2

2 + c2‖∆h0‖2
2. (5.12)

Introduce a functional

C(h) =
‖∇h‖2

2
2

+

"
D

(
P(∆ψ

∗
e +∆h)−P(∆ψ

∗
e )−P′(∆ψ

∗
e )∆h

)
dA.

Then, the left-hand sides of (5.11) and (5.12) are 2C(h(t)) and 2C(h(0)), respectively. Therefore, if we
could prove

C(h(t)) =C(h(0)), (5.13)

then the theorem will follow immediately from (5.11), (5.12) and (5.13).
To prove equation (5.13), we construct the following invariant functional according to the conserva-

tion of kinetic energy and vorticity:

Γ(ψ) =
‖∇ψ‖2

2
2

+

"
D

P(∆ψ
∗) dA,

where ∇⊥ψ∗+Vs = ∇⊥ψ . The first variation of Γ at the equilibrium solution ψe is

δ Γ |ψe (h) =
"

D
((∇h, ∇ψe)+P′(∆ψ

∗
e )∆h) dA

=

"
D
(−ψe∆h+P′(∆ψ

∗
e )∆h) dA+

∮
∂D

ψe
∂h
∂n

dl.
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Since P′(∆ψ∗e ) = F(∆ψ∗e ) = ψe, and
∮

∂D ψe
∂h
∂n dl = 0, we obtain δ Γ |ψe (h) = 0.

For another functional Γ̃(h) := Γ(ψe +h)−Γ(ψe), we have

Γ̃(h(t)) = Γ̃(h(0))

and
Γ̃(h) = δ Γ |ψe (h)+C(h),

and these two equalities imply (5.13). This completes the proof of the theorem.

Remark 5.1. Consider the leaf of the coadjoint foliation of X̂dvol(D) which contains the equilibrium
point (ve,1). Then, (v,1) ∈ X̂dvol(D) is on this leaf if and only if v is isovorticed to the equilibrium
field ve in the sense of Definition 3.2′. The second variation of K(v) = 1

2

!
D(v,v) dA on the leaf is

δ
2K |ve (ξ ) =

1
2

"
D

(
(ξ , ξ )+

∇ψe

∇∆ψ∗e
(curl ξ )2

)
dA, (5.14)

where ξ stands for a variation field at ve.
Next, we prove equation (5.14). According to equation (5.8), we have

2δ
2K |ve (ξ ) =

"
D
((ξ , ξ )+(ξ , [ζ ,ve])) dA, (5.15)

where ξ = B(ve,ζ )+w(ζ ) = B(ve−Vs,ζ ). The last term of this equation is"
D
(ξ , [ζ ,ve]) dA =

"
D
(ξ ,curl (ζ × ve)) dA =

"
D
(curl ξ ,(ζ × ve)) dA. (5.16)

Since ve = ∇⊥ ψe, and ve−Vs = ∇⊥ ψ∗e , one gets

curl ξ = Lζ ∆ψ
∗
e = (ζ ,∇∆ψ

∗
e ),

ζ × ve = ζ × (∇⊥ ψe) = (ζ ,∇ψe).

Thus,

ζ × ve =
∇ψe

∇∆ψ∗e
curl ξ . (5.17)

By equation (5.15), (5.16) and (5.17), we prove the required equation (5.14).
It is evident from the expression of (5.14) that the assumption (ii) in Theorem 5.3 guarantees that the

second variation δ 2K is positive definite.

In the following, we give two examples of stable steady CL flows.

Example 5.1. Let D = {(x,y)| 0 ≤ y ≤ 1} be the domain, and let us = (us(y),0) be the Stokes drift
velocity. A shear flow in this domain has velocity ue = (u(y),0). It is easy to verify that this is a
stationary flow. Assume that ue = ∇⊥ψe, ue−us = ∇⊥ψ∗e , and we have

∇ψe

∇∆ψ∗e
=

u
(u−us)′′

.

Hence, this shear flow is stable if there exist two constants c1 and c2 such that 0 < c1 ≤ ∇ψe
∇∆ψ∗e

≤ c2 < ∞.
This implies u(y)−us(y) has no inflection point.
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Example 5.2. Let A = {1≤ r ≤ 2} be the domain, where r =
√

x2 + y2. Consider a velocity field ue
and a drift velocity field us. If there are two functions f and g such that the stream functions ψe and ψ∗e
of ue and ue−us satisfy ψe = f (r) and ψ∗e = g(r), then the flow is steady, and we have

∇ψe

∇∆ψ∗e
=

f ′

(g′′+g′/r)′
.

By Theorem 5.3, this flow is stable if f ′
(g′′+g′/r)′ is positive defined.
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