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1. Introduction

Let M be a n-dimensional closed manifold. We denote by ω the canonical symplectic structure
on the cotangent bundle T ∗M, which is given by ω = −dθ with the Liouville one-form θ = pdq.
Given H ∈ C∞([0, 1] × T ∗M), the Hamiltonian vector field XH is determined by dH = −ω(XH, ·). The
flow of XH is denoted by φt

H and its time-one map by φH := φ1
H. Denote by Hamc(M, ω) the set

of all Hamiltonian diffeomorphisms with compact support. Clearly, for any asymptotically constant
Hamiltonian H we have φH ∈ Hamc(M, ω). Fix a ground field F, e.g., Z2, R, or Q. The singular
homology of a topological space X with coefficients in F is denoted by H∗(X). The F-cuplength cl(M)
of M is by definition the maximal integer k such that there exist homology classes u1, . . . , uk−1 in the
homology H∗(M) as a ring (with the intersection product) with deg(ui) < dim(M) such that

u1 ∩ · · · ∩ uk−1 , 0,

where ∩ denotes the intersection product.
The goal of this note is to use spectral invariants from Floer theory to reprove the cuplength estimate:

Theorem 1. Let OM denote the zero section of T ∗M. Then we have

♯
(
φ(OM) ∩ OM

)
≥ cl(M), ∀φ ∈ Hamc(M, ω).

The above estimate is a special case of the Arnold conjectures [1]. This case has already been
solved by different approaches, for instance, by Chaperon [2] for the cotangent bundle of torus using
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variational methods given by Conley and Zehnder [4], and for general cotangent bundles by Hofer [10]
applying Lyusternik-Shnirelman category theory, and Laudenbach and Sikorav [13] employing a finite
dimensional method of “broken extremals”, etc. All available proofs listed above were given by finite
dimensional homological methods essentially. The method of our proof of Theorem 1 is making
good use of the properties of Lagrangian spectral invariants [16, 17] from Floer theory which, roughly
speaking, is a version of infinite dimensional Morse theory.

Remark 1. By a modification of the method used here, one can prove a slightly general case of Arnold’s
conjecures: If L is a closed Lagrangian submanifold of a smooth tame symplectic manifold (P, ω)
satisfying π2(M, L) = 0, then for any φ ∈ Hamc(P, ω), L ∩ φ(L) has at least cl(L) points. This case was
independently proved by Floer [7] and Hofer [11]. It seems to the author that the spectral method from
Floer theory fits in the degenerate Arnold conjecture very well. For the case that L is a closed monotone
Lagrangian submanifold of of a smooth tame symplectic manifold P, we refer to [9] for partial results
about the Arnold conjecture on Lagrangian intersections in degenerate (non-transversal) sense. Maybe
other methods (eg Hofer’s) could also be modified to deal with this case, but we are not aware of any
reference about it at the time of writing. As far as the author knows the degenerate Arnold’s conjecture
in the monotone case is not understood quite well, and even for a weaker problem, ie estimating the
number of intersections of a closed Lagrangian submanifold with itself under Hamiltonian flows without
the nondegenerate assumption. We believe that the spectral method from Floer theory would provide
further potential value for attacking these kinds of problems.

2. Spectral invariants

2.1. The minmax critical values

Let X be a closed n-dimensional manifold X and let f ∈ C∞(X). For any µ ∈ R we put

Xµ := {x ∈ X| f (x) < µ}.

To a non-zero singular homology class α ∈ H∗(X), we associate a numerical invariant by

cLS (α, f ) = inf{µ ∈ R|α ∈ Im(iµ∗)},

where iµ∗ : H∗(Xµ) → H∗(X) is the map induced by the natural inclusion iµ : Xµ → X. This number is
a critical value of f . The function cLS : H∗(X) \ {0} × C∞(X) is often called a minmax critical value
selector. The following proposition summarizing the properties of the resulting function, which can be
easily extracted from the classical Ljusternik–Schnirelman theory, see, e.g., [3, 5, 8, 12, 19].

Proposition 2. The minmax critical value selector cLS satisfies the following properties.

(1) cLS (α, f ) is a critical value of f , and cLS (kα, f ) = cLS (α, f ) for any nonzero k ∈ F.
(2) cLS (α, f ) is Lipschitz in f with respect to the C0-topology.
(3) Let [pt] and [X] denote the class of a point and the fundamental class respectively. Then

cLS ([pt], f ) = min f ≤ cLS (α, f ) ≤ max f = cLS ([X], f ).

(4) cLS (α ∩ β, f ) ≤ cLS (α, f ) for any β ∈ H∗(X) with α ∩ β , 0.
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(5) If β , k[X] for some k ∈ F and cLS (α ∩ β, f ) = cLS (α, f ), then the set Σ = {x ∈ Crit( f )| f (x) =
cLS (α, f )} is homologically non-trivial.

Here a subset S of a topological space X is called homologically non-trivial in X if for every open
neighborhood U of S the map i∗ : Hk(U)→ Hk(X) induced by the inclusion i : U ↪→ X is non-trivial.

2.2. The Lagrangian spectral invariants

In this subsection we briefly recall the construction of Lagrangian spectral invariants for Hamiltonian
diffeomorphism mainly following Oh [16, 17], see also [15, 18]. DenoteHac the set of Hamiltonians
H ∈ C∞([0, 1] × T ∗M) which are asymptotically constant at infinity.

For H ∈ Hac, the action functional is defined as

AH(γ) =
∫ 1

0
H(t, γ(t))dt −

∫
γ∗θ

on the space of paths in T ∗M

P =
{
γ : [0, 1]→ T ∗M

∣∣∣γ(0), γ(1) ∈ OM
}
.

Set L = φ1
H(OM). We define the Lagrangian action spectrum of H on T ∗M by

Spec(L,H) =
{
AH(γ)

∣∣∣γ ∈ Crit(AH)
}
.

This is a compact subset of R of measure zero, see for instance [16].
Given a generic H ∈ Hac, the intersection φ1

H(OM) ∩ OM is transverse and hence Crit(AH) is finite.
There is an integer-valued index, called the Maslov-Viterbo index, µMV : Crit(AH) → Z which is
normalized so that if H : T ∗M → R is a lift of a Morse function f then µMV coincides with the Morse
index of f .

Denote by CF<a
k (L,H), where a ∈ (−∞,∞] is not in Spec(L,H), the vector space of formal sums∑

xi∈P

σixi,

where σi ∈ F, µMV(xi) = k and AH(xi) < a. The graded F-vector space CF<a
k (L,H) has the Floer

differential counting the anti-gradient trajectories of the action functional in the standard way whenever
a time-dependent almost complex structure compatible with ω is fixed and the regularity requirements
are satisfied, see for instance [6, 16]. As a consequence, we have a filtration of the total Lagrangian
Floer complex CF∗(L,H) := CF(−∞,∞)

∗ (L,H). Since the resulting homology, the filtered Lagrangian
Floer homology of H, does not depend on H ∈ Hac (due to continuation isomorphisms), one can extend
this construction to all asymptotically constant Hamiltonians. Let H ∈ Hac be an arbitrary Hamiltonian
and let a be outside of Spec(L,H). We define

HF<a
∗ (L,H) = HF<a

∗ (L, H̃),

where H̃ is a C2-small perturbation of H so that φ1
H̃

(OM) ∩ OM is transverse. It is not hard to see that

HF<a
∗ (L, H̃) is independent of H̃ provided that H̃ is sufficiently close to H.
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We denote by ia
∗ : HF<a

∗ (L,H)→ HF∗(L,H) the induced inclusion maps. It is well known that for
H f = π

∗ f where π : T ∗M → M is the projection map and f is a Morse function on M, HF∗(L,H f ) is
canonically isomorphic to the singular homology H∗(M), and hence H∗(M) � HF(L,H) for all H ∈ Hac.
Using this identification, for α ∈ H∗(M) and H ∈ Hac we define

ℓ(α,H) = inf
{
a ∈ R \ Spec(L,H)|α ∈ Im(ia

∗)
}
.

By convention, we have ℓ(0,H) = −∞.

Proposition 3. The Lagrangian spectral invariant ℓ : H∗(M) \ {0} × Hac → R has the following
properties:

(a) ℓ(α,H) ∈ Spec(L,H), in particular it is a finite number.
(b) ℓ is Lipschitz in H in the C0-topology.
(c) ℓ([M],H) = −ℓ([pt],H) with H(t,H) = −H(−t,H).
(d) ℓ([pt],H) ≤ ℓ(α,H) ≤ ℓ([M],H) for all α ∈ H∗(M) \ {0}.
(e) ℓ(α,H) = ℓ(α,K), when φH = φK in the universal covering of the group of Hamiltonian

diffeomorphisms, and H,K are normalized.
(f) ℓ(α ∩ β,H♯K) ≤ ℓ(α,H) + ℓ(β,K), where (H♯K)(t, x) = H(t, x) + K(t, (φt

H)−1(x)).
(g) If φH(OM) = φK(OM), then there exists C ∈ R such that ℓ(α,H) = ℓ(α,K)+C for all α ∈ H∗(M)\{0}.
(h) Let f : M → R be a smooth function, and let H f : T ∗M → R denote a compactly supported

autonomous Hamiltonian so that H f = f ◦ π on a ball bundle T ∗RM := {(q, p) ∈ T ∗M||p| ≤ R}
containing L f := {(q, ∂q f (q)) ∈ T ∗M|q ∈ M}, and H f = 0 outside T ∗R+1M in M, where | · | is
the norm induced by a metric ρ on M, and π : T ∗M → M is the natural projection map. Then
ℓ(α,H f ) = cLS (α, f ) for all α ∈ H∗(M) \ {0}.

3. The proof of the main theorem

Our main theorem follows immediately from the following lemma.

Lemma 4. Let H ∈ Hac and α, β ∈ H∗(M) \ {0} with deg(α) < n. If the intersections of OM and φH(OM)
are isolated, then

ℓ(α ∩ β,H) < ℓ(β,H).

Proof. Since the intersections of OM and φH(OM) are isolated, we can pick a small open neighborhood
U of OM ∩ φH(OM) in M so that Hk(U) = 0 for all k > 0. Let f : M → R be a C2-small function such
that f = 0 on U and f < 0 on M \ U, and let H f be the lift of f to the cotangent bundle T ∗M as in
Proposition 3(h). We claim that for any α ∈ H<n(M), it holds that

ℓ(α,H f ) < 0. (3.1)

For this end, we first prove that cLS (α, f ) < 0 for all α ∈ H<n(M). In fact, if there exists a homology
class αl ∈ H<n(M) such that cLS (αl, f ) = 0, then we have cLS (αl ∩ [M], f ) = cLS (αl, f ) = 0. It follows
from Proposition 2(3) that cLS ([M], f ) = maxM f = 0. So we have cLS (αl ∩ [M], f ) = cLS ([M], f )
with αl ∈ H<n(M) \ {0}. Then by Proposition 2(5) the zero level set U of f is homologically non-
trivial – a contradiction. Therefore, for any α ∈ H<n(M), we have cLS (α, f ) < 0. This, together with
Proposition 3(h), yields ℓ(α,H f ) < 0.
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Next we show that for sufficiently small ε > 0

ℓ(α ∩ β,H) = ℓ(α ∩ β, εH f ♯H). (3.2)

Observe that φt
H f

(q, p) = (q, p+t∂q f (a)) ∈ T ∗M for t ∈ [0, 1] and (q, p) ∈ T ∗RM. Set LH
R = φ

1
H(OM)∩T ∗RM.

Then we have
φεH f (L

H
R ) = {(q, p + εd f (q))|(q, p) ∈ LH

R }.

Since LH
R ∩ π

−1(OM \ U) is compact and has no intersections with OM, we deduce that for small
enough ε > 0, φεH f (L

H
R ) ∩ π−1(OM \ U) has no intersections with OM as well. For (q, p) ∈ T ∗M with

R ≤ ∥(q, p)∥ ≤ R + 1 we have

dg
(
φεH f (q, p), (q, p)

)
≤

∥∥∥∥∥ ∫ 1

0

d
dt
φt
εH f

(q, p)dt
∥∥∥∥∥ ≤ ε sup

R≤∥(q,p)∥≤R+1
∥XH f ∥,

where dg is the distance function induced by some Riemannian metric g on M. Therefore, for sufficiently
small ε > 0, φεH f (T

∗
R+1M \ T ∗RM) does not intersect OM. Note that the Hamiltonian diffeomorphism φεH f

is supported in T ∗R+1M, we conclude that φεH fφH(OM)∩π−1(OM \U) does not intersect OM provided that
ε > 0 is sufficiently small. On the other hand, we have that φεH fφH(OM) ∩ π−1(U) = φH(OM) ∩ π−1(U)
because f = 0 on U. So if ε > 0 is sufficiently small then the Lagrangians φεH fφH(OM) and φH(OM)
have the same intersections with OM. A direct calculation shows that for every such intersection point,
the two action values corresponding to εH f ♯H and H are the same. Indeed, there is a one-to-one
correspondence between the set φH(OM)∩OM and the set P(H) := {x ∈ P|ẋ = XH(x(t))} of Hamiltonian
chords by sending q ∈ φH(OM) ∩ OM to x = φt

H(φ−1
H (q)). So we get a bijective map defined by

Υ : Crit(AH) −→ Crit(AεH f ♯H), x(t) 7−→ φt
εH f

(x(t)).

Notice that the Hamiltonian flow has the following property

(φεH f )
∗θ − θ = dFt,

where the function F : [0, 1] × T ∗M → R is given by Ft =
∫ t

0
(θ(XεH f ) − εH f ) ◦ φs

εH f
ds, see for

instance [14, Proposition 9.3.1]. As a consequence, for any x ∈ P(H) we have

d
dt

Ft(x(t)) = dFt(ẋ(t)) +
(
θ(XεH f ) − εH f

)
◦ φt
εH f

(
x(t)
)
.

which implies

(φεH f )
∗θ
(
ẋ(t)
)
= θ
(
ẋ(t)
)
+

d
dt

Ft(x(t)) −
(
θ(XεH f ) − εH f

)
◦ φt
εH f

(
x(t)
)
.

Then we compute

AεH f ♯H
(
Υ(x(t))

)
=

∫ 1

0
εH f (φt

εH f
(x(t)))dt +

∫ 1

0
Ht ◦ (φt

εH f
)−1(φt

εH f
(x(t)))dt

−

∫ 1

0
θ
( d
dt
φεH f

(
x(t)
))

dt
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=

∫ 1

0
εH f (φt

εH f
(x(t)))dt +

∫ 1

0
Ht
(
x(t)
)
dt −
∫ 1

0
(φεH f )

∗θ
(
ẋ(t)
)
dt

−

∫ 1

0
θ
(
XεH f (φεH f (x(t)))

)
dt

= AH
(
x(t)
)
+

∫ 1

0
εH f (φt

εH f
(x(t))) −

d
dt

Ft
(
x(t)
)
dt

+

∫ 1

0

(
θ(XεH f ) − εH f

)
◦ φt
εH f

(
x(t)
)
dt − θ

(
XεH f (φεH f (x(t)))

)
dt

= AH
(
x(t)
)
+ F1(x(1)) − F0(x(0))

= AH
(
x(t)
)
, (3.3)

where in the last equality we have used the fact that the value of an autonomous Hamiltonian H f is
constant along its Hamiltonian flow, and f = 0 on U which contains x(1). Therefore, the action spectra
Spec(L, εH f ♯H) and Spec(L,H) are the same. Now fix a sufficiently small ε > 0 and consider the family
of Lagrangians φsεH fφH(OL) with s ∈ [0, 1]. As before, the action spectra Spec(L, sεH f ♯H), s ∈ [0, 1]
are all the same. Since the action spectrum is a closed nowhere dense subset of R, it follows from
Proposition 3(b) that ℓ(α ∩ β, sεH f ♯H) do not depend on s. So we have ℓ(α ∩ β,H) = ℓ(α ∩ β, εH f ♯H).

Combining (3.1) and (3.2), it follows from Proposition 3(f) that

ℓ(α ∩ β,H) = ℓ(α ∩ β, εH f ♯H) ≤ ℓ(α, εH f ) + ℓ(β,H) < ℓ(β,H).

This completes the proof of the lemma. □

The proof of Theorem 1. Without loss of generality we may assume that the intersections of OM and
φH(OM) are isolated, otherwise, nothing needs to prove. Set cl(M) = k + 1. By definition there exist
ui ∈ H<n(M), i = 1 . . . , k such that u1 ∩ · · · ∩ uk = [pt]. We put

[M] = α0, α1, . . . , αk ∈ H∗(M), αi = uk−i+1 ∩ αi−1.

For any φ ∈ Hamc(M, ω), there exists a Hamiltonian H ∈ Hac such that φ = φ1
H. It follows from

Lemma 4 and Proposition 3(a) that there exist k + 1 elements xi ∈ Crit(AH) such that

ℓ(αk,H) = AH(xk) < ℓ(αk−1,H) = AH(xk−1) < · · · < ℓ(α0,H) = AH(x0).

Hence, all xi, i = 0, . . . , k are different. The one-to-one correspondence between the intersection points
of OM and φ1

H(OM) and the critical points ofAH concludes the desired result.
□
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