Research article

Blow-up analysis of a nonlinear pseudo-parabolic equation with memory term

  • Received: 13 December 2019 Accepted: 08 March 2020 Published: 02 April 2020
  • MSC : 35B44, 35D40, 35K61, 35K70

  • This paper deals with the blow-up phenomena for a nonlinear pseudo-parabolic equation with a memory term $u_{t}-\triangle{u}-\triangle{u}_{t}+\int_{0}^{t}g(t-\tau)\triangle{u}(\tau)d\tau = |{u}|^{p}{u}$ in a bounded domain, with the initial and Dirichlet boundary conditions. We first obtain the finite time blow-up results for the solutions with initial data at non-positive energy level as well as arbitrary positive energy level, and give some upper bounds for the blow-up time $T^{*}$ depending on the sign and size of initial energy $E(0)$. In addition, a lower bound for the life span $T^{*}$ is derived by means of a differential inequality technique if blow-up does occur.

    Citation: Huafei Di, Yadong Shang, Jiali Yu. Blow-up analysis of a nonlinear pseudo-parabolic equation with memory term[J]. AIMS Mathematics, 2020, 5(4): 3408-3422. doi: 10.3934/math.2020220

    Related Papers:

  • This paper deals with the blow-up phenomena for a nonlinear pseudo-parabolic equation with a memory term $u_{t}-\triangle{u}-\triangle{u}_{t}+\int_{0}^{t}g(t-\tau)\triangle{u}(\tau)d\tau = |{u}|^{p}{u}$ in a bounded domain, with the initial and Dirichlet boundary conditions. We first obtain the finite time blow-up results for the solutions with initial data at non-positive energy level as well as arbitrary positive energy level, and give some upper bounds for the blow-up time $T^{*}$ depending on the sign and size of initial energy $E(0)$. In addition, a lower bound for the life span $T^{*}$ is derived by means of a differential inequality technique if blow-up does occur.


    加载中


    [1] A. B. Al'shin, M. O. Korpusov, A. G. Siveshnikov, Blow up in nonlinear Sobolev type equations, De Gruyter Series in Nonlinear Aanlysis and Applicationss, Walter de Gruyter, 2011.
    [2] A. Y. Kolesov, E. F. Mishchenko, N. K. Rozov, Asymptotic methods of investigation of periodic solutions of nonlinear hyperbolic equations, Trudy Matematicheskogo Instituta im. V. A. Steklova RAN, 222 (1998), 3-191.
    [3] B. K. Shivamoggi, A symmetric regularized long wave equation for shallow water waves, Phys. Fluids, 29 (1986), 890-891. doi: 10.1063/1.865895
    [4] P. Rosenau, Evolution and breaking of the ion-acoustic waves, Phys. Fluids, 31 (1988), 1317-1319. doi: 10.1063/1.866723
    [5] E. S. Dzektser, Generalization of the equations of motion of ground waters with free surface, Dokl. Akad. Nauk. SSSR., 202 (1972), 1031-1033.
    [6] M. O. Korpusov, A. G. Sveshnikov, Three-dimensional nonlinear evolution equations of pseudoparabolic type in problems of mathematicial physics, Comp. Math. Math. Phys., 43 (2003), 1765-1797.
    [7] R. E. Showalter, Existence and representation theorem for a semilinear Sobolev equation in Banach space, SIAM. J. Math. Anal., 3 (1972), 527-543. doi: 10.1137/0503051
    [8] R. Z. Xu, J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264 (2013), 2732-2763. doi: 10.1016/j.jfa.2013.03.010
    [9] P. Luo, Blow-up phenomena for a pseudo-parabolic equation, Math. Method. Appl. Sci., 38 (2015), 2636-2641. doi: 10.1002/mma.3253
    [10] H. F. Di, Y. D. Shang, X. M. Peng, Blow-up phenomena for a pseudo-parabolic equation with variable exponents, Appl. Math. Lett., 64 (2017), 67-73. doi: 10.1016/j.aml.2016.08.013
    [11] Y. Liu, W. S. Jiang, F. L. Huang, Asymptotic behaviour of solutions to some pseudo-parabolic equations, Appl. Math. Lett., 25 (2012), 111-114. doi: 10.1016/j.aml.2011.07.012
    [12] Z. Dong, J. Zhou, Blow-up of solutions to a parabolic system with nonlocal source, Appl. Anal., 97 (2018), 825-841. doi: 10.1080/00036811.2017.1292351
    [13] M. Marras, S. Vernier-Piro, G. Viglialoro, Blow-up phenomena for nonlinear pseudo-parabolic equations with gradient term, Discrete Cont. Dyn-B., 22 (2017), 2291-2300.
    [14] G. Gripenberg, Global existence of solutions of volterra integro-differential equations of parabolic type, J. Differ. Equations, 102 (1993), 382-390. doi: 10.1006/jdeq.1993.1035
    [15] H. M. Yin, Weak and classical solutions of some nonlinear volterra intergro-differential equations, Commun. Part. Diff. Eq., 17 (1992), 1369-1385. doi: 10.1080/03605309208820889
    [16] S. A. Messaoudi, Blow-up of solutions of a semilinear heat equation with a visco-elastic term, Nonlinear Elliptic and Parabolic Problems, Birkhauser Basel, 2005.
    [17] Y. D. Shang, B. L. Guo, On the problem of the existence of global solutions for a class of nonlinear convolutional integro-differential equations of pseudoparabolic type, Acta Math. Appl. Sin., 26 (2003), 511-524.
    [18] Y. D. Shang, B. L. Guo, Initial-boundary value problems and initial value problems for nonlinear pseudoparabolic integro-differential equations, Math. Appl., 15 (2002), 40-45.
    [19] M. Ptashnyk, Degenerate quasilinear pseudoparabolic equations with memory terms and variational inequalities, Nonlinear Analysis: Theory, Methods & Applications, 66 (2007), 2653-2675.
    [20] R. W. Carroll, R. E. Showalter, Singular and degenerate Cauchy problems, Academic Press, 1976.
    [21] H. F. Di, Y. D. Shang, Global existence and nonexistence of solutions for the nonlinear pseudoparabolic equation with amemory term, Math. Method. Appl. Sci., 38 (2015), 3923-3936. doi: 10.1002/mma.3327
    [22] F. L. Sun, L. S. Liu, Y. H. Wu, Global existence and finite time blow-up of solutions for the semilinear pseudo-parabolic equation with a memory term, Appl Anal., 98 (2019), 735-755. doi: 10.1080/00036811.2017.1400536
    [23] H. A. Levine, Some nonexistence and instability theorems for solutions of formally parabolic equation of the form Put=-Au + F(u), Arch. Ration. Mech. An., 51 (1973), 371-386.
    [24] H. F. Di, Y. D. Shang, X. X. Zheng, Global well-posedness for a fourth order pseudo-parabolic equation with memory and source terms, Discrete Cont. Dyn-B., 21 (2017), 781-801.
    [25] R. Z. Xu, L. Wei, Y. Niu, Global well-posedness of coupled parabolic systems, Sci. China Math., 62 (2020), 321-356.
    [26] M. R. Li, L. Y. Tsai, Existence and nonexistence of global solutions of some system of semilinear wave equations, Nonlinear Analysis: Theory, Methods & Applications, 54 (2003), 1397-1415.
    [27] J. L. Lions, Quelques méthodes de résolutions des probléms aux limites non linéaires, Paris: Dunod, 1969.
    [28] M. Escobedo, M. A. Herrero, A semilinear parabolic system in bounded domain, Ann. Mat. Pur. Appl., 165 (1993), 315-336. doi: 10.1007/BF01765854
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6051) PDF downloads(401) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog