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Abstract: This paper deals with the blow-up phenomena for a nonlinear pseudo-parabolic equation
with a memory term ut − 4u − 4ut +

∫ t

0
g(t − τ)4u(τ)dτ = |u|pu in a bounded domain, with the initial

and Dirichlet boundary conditions. We first obtain the finite time blow-up results for the solutions with
initial data at non-positive energy level as well as arbitrary positive energy level, and give some upper
bounds for the blow-up time T ∗ depending on the sign and size of initial energy E(0). In addition, a
lower bound for the life span T ∗ is derived by means of a differential inequality technique if blow-up
does occur.
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1. Introduction

Studied here is an initial boundary value problem for the nonlinear pseudo-parabolic equation with
memory term

ut − 4u − 4ut +

∫ t

0
g(t − τ)4u(τ)dτ = |u|pu, x ∈ Ω, t > 0, (1.1)

u(x, 0) = u0(x), x ∈ Ω, (1.2)

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0, (1.3)

where the exponent p > 0, and Ω with smooth boundary ∂Ω is a bounded domain in Rn (n ≥ 1).
The relaxation function g represents the kernel of memory term, satisfying certain conditions to be
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specified later. The reason why this type of equations is so attractive is that it has extensive physical
background, which appears in the study of heat conduction and viscous flow in materials with memory,
electric signals in telegraph line with nonlinear damping [1], vibration of nonlinear viscoelastic rod [2],
bidirectional nonlinear shallow water waves [3], and the velocity evolution of ion-acoustic waves in a
collision less plasma [4] and so on.

The Eq. (1.1) describes many important and famous mathematical models which have extensive
theoretical connotation. For example, in the absence of the memory term (i.e., g ≡ 0), the Eq. (1.1)
becomes a semilinear pseudo-parabolic equation

ut − 4u − 4ut = f (u). (1.4)

As is known to all, the nonlinear pseudo-parabolic equations appear in the dynamics of the
thermodynamics, hydrodynamics and filtration theory, etc (see [1, 5, 6]). There is a lot of literature on
the study of such kinds of semilinear pseudo-parabolic equation, such as the existence and uniqueness
of certain solutions in [1, 7, 8], blow-up results in [8–10], asymptotic behavior in [8, 11] and so on.
In [8], Xu etc. derived the finite time blow-up results in H1

0(Ω)-norm. Luo [9] derived the upper
bound and lower bound for the blow-up time under some relative assumptions. In recent years, the
qualitative properties of parabolic and pseudo-parabolic equations (systems) with nonlinear gradient
terms have been attracting some authors’ attention and many interesting results have also been
obtained. For example, Dong and Zhou [12] considered a class of parabolic system with different
gradient coefficients and coupled nonlocal sources, of which the global existence and a series of finite
time blow-up results were discussed by using comparison principle and asymptotic analysis methods.
In [13], Marras etc. gave some estimates about the upper and lower bounds of blow-up time for the
pseudo-parabolic equation (system) with nonlinear gradient terms under suitable conditions. More
results on these types of equations (systems) can be seen in [1, 12, 13, 27] and the references therein.

In [14], Gripenberg investigated the initial boundary value problem for a volterra integro-differential
parabolic equation

ut =

∫ t

0
k(t − s)σ(ux(x, s))xds + f (x, t). (1.5)

He obtained the global existence of a strong solution under certain conditions.
In the absence of dispersion term 4ut, the model (1.1) is reduced to the following nonlinear parabolic

equation

ut − 4u =

∫ t

0
b(t − τ)4u(τ)dτ + f (u). (1.6)

Yin [15] discussed the initial boundary value problem of Eq. (1.6) and obtained the global existence of
a classical solution under a one-sided growth condition. In [16], Messaoudi replaced the memory term
b(t − τ) by −g(t − τ) in Eq. (1.6). He proved the finite time blow-up of the solutions with negative and
vanishing initial energy.

As far as we know, there are few results of viscoelastic pseudo-parabolic equations. In [17, 18],
Shang and Guo studied the initial boundary value problem and initial value problem for a class of
integro-differential equations of pseudo-parabolic type. They proved the global existence, uniqueness,
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asymptotic behavior of solutions for the problem, and gave the sufficient conditions for the
nonexistence of global solutions in one dimension case. Ptashnyk [19] studied the initial boundary
value problem of degenerate viscoelastic quasilinear pseudo-parabolic equations. For the initial value
problem of a class of degenerate viscoelastic pseudo-parabolic equations, Carroll and Showalter [20]
represented some background in physics and applied sciences, and introduced a number of computing
techniques for the study of the pseudo-parabolic equations with different types of memory terms. Di
and Shang [21] considered the initial boundary value problem of Eq. (1.1). They obtained the global
existence and finite time blow-up of the solutions with the low initial energy E(0) < dk by using the
potential well method. Later, the results of [21] were improved by Sun, Liu and Wu [22], to certain
solutions with the low initial energy J(u0) < d∞. Here, the functionals E(t), J(u(t)) and dk denote the
total energy, potential energy and potential well depth associated with problem (1.1)–(1.3),
respectively. About the application of the potential well theory to the study of evolution equations, we
also refer the reader to see [21–25] and references therein.

In this paper, we further extend and improve the blow-up results obtained in [21, 22], the idea of
which are based on the lemmas of Li and Tsai [26] (up to a appropriate modification). It is worth
mentioning that the method of this paper is not directly related to the potential well theory, we shall
discuss the blow-up phenomena of the solutions for problem (1.1)–(1.3) under the initial energy

E(0) < 0, 0 ≤ E(0) < η

p E1 and η

p E1 ≤ E(0) <
‖u0‖

2
H1

γ
, respectively. Moreover, we also establish the

corresponding upper bounds for blow-up time T ∗ at the three different initial energy levels, which
depend on the sign and size of initial energy E(0). Finally, a lower bound of blow-up time T ∗ is
obtained by applying a differential inequality technique, if blow-up occurs to the initial boundary
problem (1.1)–(1.3).

The outline of this paper is as follows: In Section 2, we introduce some notations, functionals and
important lemmas to be used throughout this article. Section 3 is devoted to study the finite time blow-
up results for the solutions with initial data at non-positive energy level as well as arbitrary positive
energy level, and give some upper bounds for blow-up time T ∗ depending on the sign and size of initial
energy E(0). In Section 4, a lower bound for the life span T ∗ is derived by means of a differential
inequality technique if blow-up does occur.

2. Preliminaries

Our attention of this section is to give some notations, functionals and important lemmas in order
to state the main results of this paper.

Throughout the whole paper, the following abbreviations are used for precise statement:

Lp(Ω) = Lp, ‖u‖Lp(Ω) = ‖u‖p =
( ∫

Ω

|u|pdx
) 1

p ,

H1
0(Ω) = W1,2

0 (Ω) = H1
0 , ‖u‖H1

0 (Ω) = ‖u‖H1
0

=
( ∫

Ω

|u|2 + |∇u|2dx
) 1

2 .

And (u, v) =
∫

Ω
uvdx for L2-inner product will also denotes the notation of duality paring between dual

spaces. The Sobolev space H1
0(Ω) will be defined with the inner product 〈u, v〉 =

∫
Ω

uvdx+
∫

Ω
∇u·∇vdx.
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The following conditions are the essential hypotheses to obtain the main results of this paper.
(i) 0 < p < ∞ if n = 1, 2 and 0 < p ≤ 4

n−2 if n ≥ 3.
(ii) The relaxation function g: [0,∞)→ (0,∞) is a C1 function satisfying

g′(t) ≤ 0, 0 < l = 1 −
∫ ∞

0
g(τ)dτ ≤ 1 −

∫ t

0
g(τ)dτ = k(t), (2.1)

and ∫ ∞

0
g(τ)dτ <

2δ
1 + 2δ

, (2.2)

where 0 < δ ≤ p
2 .

We first start with the following existence and uniqueness of local solution for problem (1.1)–
(1.3), which can be obtained by using Faedo-Galerkin methods and Contraction Mapping Principle as
in [1, 27, 28]. Here, the proof is thus omitted.

Theorem 2.1. Let the conditions (i), (2.1) hold and u0 ∈ H1
0(Ω). Then there exists a unique local

solution u of problem (1.1)–(1.3) such that

u ∈ C([0,T ); H1
0(Ω)), ut ∈ C([0,T ); L2(Ω)) ∩ L2([0,T ); H1

0(Ω)), (2.3)

for some T > 0.

To obtain the results of this paper, we define the energy functional for the solution u of problem
(1.1)–(1.3) in the form

E(t) := E(u(t)) =

∫ t

0
‖ut‖

2
H1dτ +

1
2

(g � ∇u)(t) +
1
2
(
1 −

∫ t

0
g(τ)dτ

)
‖∇u‖22 −

1
p + 2

‖u‖p+2
p+2, (2.4)

where (g � ∇u)(t) =
∫ t

0
g(t − τ)‖∇u(t) − ∇u(τ)‖22dτ. Furthermore, multiplying Eq. (1.1) by ut and

integrating it over Ω, we easily deduce from (i) and (2.1) that

E′(t) =
1
2

(g′ � ∇u)(t) −
1
2

g(t)‖∇u‖22 ≤ 0. (2.5)

Remark 2.1. In view of (2.1), (2.4) and Sobolev inequality, we discover that

E(t) ≥
1
2

(g � ∇u)(t) +
1
2

k(t)‖∇u‖22 −
1

p + 2
‖u‖p+2

p+2

≥
1
2

(g � ∇u)(t) +
1
2

l‖∇u‖22 −
Bp+2

p + 2
‖∇u‖p+2

2

≥
1
2

[
(g � ∇u)(t) + l‖∇u‖22

]
−

Bp+2

(p + 2)l
p+2

2

[
l‖∇u‖22 + (g � ∇u)(t)

] p+2
2

= h
((

l‖∇u‖22 + (g � ∇u)(t)
) 1

2
)
, (2.6)

where the function h(λ) = 1
2λ

2− Bp+2

(p+2)l
p+2

2
λp+2, λ =

(
l‖∇u‖22 + (g � ∇u)(t)

) 1
2
> 0, B is the optimal constant

satisfying the Sobolev embedding inequality ‖u‖p+2 ≤ B‖∇u‖2. A direct computation gives that h(λ) is
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increasing for 0 < λ < λ1, decreasing for λ > λ1 and λ1 =
(

l
B2

) p+2
2p is the absolute maximum point of

h(λ) satisfying

E1 = h(λ1) =
l

p+2
p

2B
2p+4

p

−
Bp+2

(p + 2)l
p+2

2

 l
p+2
2p

B
p+2

p

p+2

=
p

2(p + 2)

(
l

B2

) p+2
p

. (2.7)

Lemma 2.1. Assume that the conditions (i), (2.1) hold and u is a solution of problem (1.1)–(1.3) with
initial data E(0) < E1 and l

1
2 ‖∇u0‖2 > λ1. Then there exists λ2 > λ1 satisfying

l‖∇u‖22 + (g � ∇u)(t) ≥ λ2
2, (2.8)

for t > 0.

Proof. From Remark 2.1, we know that h(λ) is increasing for 0 < λ < λ1, decreasing for λ > λ1 and
h(λ) → −∞ as λ → ∞. By E(0) < E1, we have that there exist λ′2 and λ2 such that λ1 ∈ (λ′2, λ2) and
h(λ′2) = h(λ2) = E(0). To prove (2.8), by contradiction we assume that there exists a time t0 > 0 such
that

l‖∇u(t0)‖22 + (g � ∇u)(t0) < λ2
2. (2.9)

(1) If λ′2 <
(
l‖∇u(t0)‖22 + (g � ∇u)(t0)

) 1
2
< λ2, it is inferred that

h
(
[l‖∇u(t0)‖22 + (g � ∇u)(t0)]

1
2
)
> E(0) ≥ E(t0),

which contradicts (2.6).

(2) Assume that
(
l‖∇u(t0)‖22 + (g � ∇u)(t0)

) 1
2
≤ λ′2 holds. Considering l

1
2 ‖∇u0‖2 > λ1, we get from

(2.6) that h(l
1
2 ‖∇u0‖2) < E(0) = h(λ2), which implies l

1
2 ‖∇u0‖2 > λ2. Thus, applying the continuity of(

l‖∇u‖22 + (g � ∇u)(t)
) 1

2 , we know that there exists a t1 ∈ (0, t0) such that

λ′2 <
(
l‖∇u(t1)‖22 + (g � ∇u)(t1)

) 1
2
< λ2. Hence, we have

h
(
(l‖∇u(t1)‖22 + (g � ∇u)(t1))

1
2
)
> E(0) ≥ E(t0),

which also contradicts (2.6).
Next, we will mention an important lemma which is similar to the lemmas of [26] with slight

modification.

Lemma 2.2. Let J(t) be a nonincreasing function on [t0,∞), t0 ≥ 0, and satisfy the differential
inequality

J′(t)2 ≥ α + βJ(t)2+ 1
δ , for t ≥ t0, (2.10)

where α > 0 and β < 0. Then there exists a finite positive time T ∗ such that

lim
t→T ∗−

J(t) = 0, (2.11)
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and the upper bound for T ∗ is estimated by:

T ∗ ≤ t0 +
1
√
−β

ln

√
α
−β√

α
−β
− J(t0)

, (2.12)

where J(t0) < min
{
1,

√
α
−β

}
.

3. Upper bound for blow-up time

In this section, we will give some blow-up results for the solutions with initial energy E(0) < 0,

0 ≤ E(0) < η

p E1 and η

p E1 ≤ E(0) <
‖u0‖

2
H1

γ
, respectively. Furthermore, some upper bounds for blow-up

time T ∗ depending on the sign and size of initial energy E(0) are obtained for problem (1.1)–(1.3).
To obtain the blow-up results and upper bounds, we first define functionals

a(t) =

∫ t

0
‖u‖2H1dτ, t ∈ [0,∞), (3.1)

and

J(t) =

(∫ t

0
‖u‖2H1dτ + (T0 − t)‖u0‖

2
H1

)−δ
=

(
a(t) + (T0 − t)‖u0‖

2
H1

)−δ
, t ∈ [0,T0], (3.2)

where δ ∈ (0, p
2 ], T0 is positive constant to be chosen later and then give the following lemma.

Lemma 3.1. Assume that the conditions (i), (ii) hold, u0 ∈ H1
0(Ω) and u is a solution of problem

(1.1)–(1.3), then we have

a′′(t) − 4(1 + δ)
∫ t

0
‖ut‖

2
H1dτ ≥ G(t), (3.3)

where G(t) = −4(1 + δ)E(0) + η[l‖∇u‖22 + (g � ∇u)(t)], η = 1 + 2δ − 1
l > 0.

Proof. From (3.1), a direct computation yields

a′(t) = ‖u‖2H1 = 2
∫ t

0

∫
Ω

uutdxdτ + 2
∫ t

0

∫
Ω

∇u · ∇utdxdτ + ‖u0‖
2
H1 , (3.4)

and

a′′(t) = 2
∫

Ω

uutdx + 2
∫

Ω

∇u · ∇utdx

= 2
∫

Ω

u
[
4u −

∫ t

0
g(t − τ)4u(τ)dτ + |u|pu

]
dx

= −2‖∇u‖22 + 2‖u‖p+2
p+2 + 2

∫ t

0

∫
Ω

g(t − s)∇u(τ) · ∇u(t)dxdτ. (3.5)
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By (2.4), (2.5) and (3.5), it is found that

a′′(t) − 4(1 + δ)
∫ t

0
‖ut‖

2
H1dτ

≥ −4(1 + δ)E(0) + 2δ‖∇u‖22 + (2 + 2δ)(g � ∇u)(t) +
[
2 −

4 + 4δ
p + 2

]
‖u‖p+2

p+2

− (2 + 2δ)
∫ t

0
g(τ)dτ‖∇u‖22 + 2

∫ t

0

∫
Ω

g(t − s)∇u(τ) · ∇u(t)dxdτ. (3.6)

From the Young inequality, it is inferred that∫ t

0

∫
Ω

g(t − s)∇u(τ) · ∇u(t)dxdτ

=

∫ t

0

∫
Ω

g(t − τ)∇u(t) · [∇u(τ) − ∇u(t)]dxdτ +

∫ t

0
g(t − τ)dτ‖∇u(t)‖22

≥ −
1
2

(g � ∇u)(t) +
1
2

∫ t

0
g(τ)dτ‖∇u‖22. (3.7)

Hence, combining (2.2), (3.6) and (3.7), it follows that

a′′(t) − 4(1 + δ)
∫ t

0
‖ut‖

2
H1dτ

≥ −4(1 + δ)E(0) + (1 + 2δ)(g � ∇u)(t) + 2δ‖∇u‖22 − (1 + 2δ)
∫ t

0
g(τ)dτ‖∇u‖22

≥ −4(1 + δ)E(0) + (1 + 2δ −
1
l
)l‖∇u‖22 +

(
1 + 2δ −

1
l
)
(g � ∇u)(t)

= −4(1 + δ)E(0) + η[l‖∇u‖22 + (g � ∇u)(t)], (3.8)

where η = 1 + 2δ − 1
l > 0. The proof is completed.

Next, we shall state and prove the finite time blow-up results on the solutions of problem (1.1)–(1.3).

Theorem 3.1. Assume that the conditions (i), (ii) hold and ‖u0‖
2
H1 <

1
T0

. Furthermore assume that
either one of the following three conditions is satisfied:

(1) E(0) < 0;
(2) 0 ≤ E(0) < η

p E1, and λ1 < l
1
2 ‖∇u0‖2;

(3) η

p E1 ≤ E(0) <
‖u0‖

2
H1

γ
.

Then, the solutions u of problem (1.1)–(1.3) blow up in finite time, which means that the maximum
existence time T ∗ of u is finite and

lim
t→T ∗−

∫ t

0
‖u‖2H1dτ = +∞. (3.9)

Moreover, the upper bounds for blow-up time T ∗ can be estimated according to the sign and size of
energy E(0):
Case (1): If E(0) < 0, then an upper bound of blow-up time T ∗ is given by

T ∗ ≤

√
−(2δ + 1)

8δ2(δ + 1)E(0)
ln

1
1 −
√

T0‖u0‖H1

;
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Case (2): If 0 ≤ E(0) < η

p E1, and λ1 < l
1
2 ‖∇u0‖2, then an upper bound of blow-up time T ∗ is given by

T ∗ ≤

√
(2δ + 1)

8δ2(δ + 1)
[ η

p E1 − E(0)
] ln

1
1 −
√

T0‖u0‖H1

;

Case (3): η

p E1 ≤ E(0) <
‖u0‖

2
H1

γ
, then an upper bound of blow-up time T ∗ is given by

T ∗ ≤

√
(2δ + 1)

2δ2DZ(0)
ln

1
1 −
√

T0‖u0‖H1

,

where Z(0) = ‖u0‖
2
H1 − γE(0), γ =

4(1+δ)
D and D =

ηlµ1
1+µ1

; µ1 is the first eigenvalue of operate −4 subject
to the homogeneous Dirichlet boundary condition.

Proof. We will consider the different cases depending on the sign and size of initial energy E(0).
Case (1): If E(0) ≤ 0, then it follows from (3.6) that

a′′(t) ≥ −4(1 + δ)E(0) + η[l‖∇u‖22 + (g � ∇u)(t)] + 4(1 + δ)
∫ t

0
‖ut‖

2
H1dτ > 0, (3.10)

for t ≥ 0. Thus, we get a′(t) > a′(0) = ‖u0‖
2
H1 ≥ 0, for t > 0. Obviously, by the direct computation, we

have from (3.2) that

J′(t) = −δJ(t)1+ 1
δ

(
a′(t) − ‖u0‖

2
H1

)
, (3.11)

and

J′′(t) = −δJ(t)1+ 2
δ

{
a′′(t)

[
a(t) + (T0 − t)‖u0‖

2
H1

]
− (1 + δ)

[
a′(t) − ‖u0‖

2
H1

]2
}

= −δJ(t)1+ 2
δ V(t), (3.12)

where

V(t) = a′′(t)
[
a(t) + (T0 − t)‖u0‖

2
H1

]
− (1 + δ)

[
a′(t) − ‖u0‖

2
H1

]2
. (3.13)

Then, by Lemma 3.1, we obtain that

a′′(t)
[
a(t) + (T0 − t)‖u0‖

2
H1

]
≥

[
G(t) + 4(1 + δ)

∫ t

0
‖ut‖

2
H1dτ

][ ∫ t

0
‖u‖2H1dτ + (T0 − t)‖u0‖

2
H1

]
≥ G(t)J(t)−

1
δ + 4(1 + δ)

∫ t

0
‖ut‖

2
H1dτ

∫ t

0
‖u‖2H1dτ. (3.14)

On the other hand,

[a′(t) − ‖u0‖
2
H1]2 = 4

(∫ t

0

∫
Ω

uutdxdτ
)2

+ 4
(∫ t

0

∫
Ω

∇u · ∇utdxdτ
)2
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+ 8
∫ t

0

∫
Ω

uutdxdτ
∫ t

0

∫
Ω

∇u · ∇utdxdτ. (3.15)

Applying the Hölder and Cauchy inequalities, we discover that

4
(∫ t

0

∫
Ω

uutdxdτ
)2

≤ 4
∫ t

0
‖u‖22dτ

∫ t

0
‖ut‖

2
2dτ, (3.16)

4
(∫ t

0

∫
Ω

∇u · ∇utdxdτ
)2

≤ 4
∫ t

0
‖∇u‖22dτ

∫ t

0
‖∇ut‖

2
2dτ, (3.17)

and

8
∫ t

0

∫
Ω

uutdxdτ
∫ t

0

∫
Ω

∇u · ∇utdxdτ

≤ 8
(∫ t

0
‖u‖22dτ

) 1
2
(∫ t

0
‖ut‖

2
2dτ

) 1
2
(∫ t

0
‖∇u‖22dτ

) 1
2
(∫ t

0
‖∇ut‖

2
2dτ

) 1
2

≤ 4
∫ t

0
‖u‖22dτ

∫ t

0
‖∇ut‖

2
2dτ + 4

∫ t

0
‖∇u‖22dτ

∫ t

0
‖ut‖

2
2dτ. (3.18)

Inserting (3.14)–(3.18) into (3.13), it follows that

V(t) = a′′(t)
[
a(t) + (T0 − t)‖u0‖

2
H1

]
− (1 + δ)

[
a′(t) − ‖u0‖

2
H1

]2
≥ G(t)J(t)−

1
δ . (3.19)

Thus, by (3.12), (3.19) and the definition of G(t), there appears the relation

J′′(t) ≤ −δG(t)J(t)1+ 1
δ ≤ 4δ(1 + δ)E(0)J(t)1+ 1

δ , for t ≥ 0. (3.20)

Note that by a′(t) > a′(0) = ‖u0‖
2
H1 for t > 0 and (3.11), we deduce that J′(t) < 0 for t > 0 and

J′(0) = 0. Multiplying (3.20) with J′(t) and integrating it from 0 to t, then we conclude that

J′(t)2 ≥ −
8δ2(δ + 1)

2δ + 1
E(0)J(0)2+ 1

δ +
8δ2(δ + 1)

2δ + 1
E(0)J(t)2+ 1

δ = α + βJ(t)2+ 1
δ , (3.21)

where

β =
8δ2(δ + 1)

2δ + 1
E(0) < 0, (3.22)

α = −
8δ2(δ + 1)

2δ + 1
E(0)J(0)2+ 1

δ > 0, (3.23)

where J(0) =
(
T0‖u0‖

2
H1

)−δ
> 1.

Then, by the combination of (3.21)–(3.23) and Lemma 2.2, we can obtain that there exists a finite
time T ∗ satisfying limt→T ∗− J(t) = 0, which also implies that

lim
t→T ∗−

∫ t

0
‖u‖2H1dτ = +∞.
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Furthermore, from Lemma 2.2, it follows that an upper bound of blow-up time T ∗ is given by

T ∗ ≤

√
−(2δ + 1)

8δ2(δ + 1)E(0)
ln

1
1 −
√

T0‖u0‖H1

. (3.24)

Case (2): If 0 ≤ E(0) < η

p E1, and l
1
2 ‖∇u0‖2 > λ1, then utilizing Lemma 2.1, definition of λ1 and (2.7),

we have

G(t) = −4(1 + δ)E(0) + η[l‖∇u‖22 + (g � ∇u)(t)]
≥ −4(1 + δ)E(0) + ηλ2

2

> −4(1 + δ)E(0) +
2η(p + 2)

p
E1

≥ 4(1 + δ)
[η

p
E1 − E(0)

]
> 0, (3.25)

where in the last inequality we have used 0 < δ ≤ p
2 . Inserting (3.25) into (3.8), it follows that

a′′(t) ≥ G(t) + 4(1 + δ)
∫ t

0
‖ut‖

2
H1dτ > 4(1 + δ)

[η
p

E1 − E(0)
]
+ 4(1 + δ)

∫ t

0
‖ut‖

2
H1dτ > 0. (3.26)

Hence, we also have a′(t) > a′(0) = ‖u0‖
2
H1 ≥ 0, for t > 0.

Then, using the similar arguments to the case (1), we obtain that

J′′(t) = −δJ(t)1+ 2
δ V(t), and V(t) ≥ G(t)J(t)−

1
δ . (3.27)

Hence, from (3.26) and (3.27), it follows that

J′′(t) ≤ −δG(t)J(t)1+ 1
δ ≤ −4δ(1 + δ)

[η
p

E1 − E(0)
]
J(t)1+ 1

δ , for t ≥ 0. (3.28)

Applying the same discussion as in case (1), we also have J′(t) < 0 for t > 0 and J′(0) = 0. Multiplying
(3.28) with J′(t) and integrating it from 0 to t, then we discover that

J′(t)2 ≥
8δ2(δ + 1)

2δ + 1
[η

p
E1 − E(0)

] (
J(0)2+ 1

δ − J(t)2+ 1
δ

)
= α1 + β1J(t)2+ 1

δ , (3.29)

where

β1 = −
8δ2(δ + 1)

2δ + 1
[η

p
E1 − E(0)

]
< 0, (3.30)

α1 =
8δ2(δ + 1)

2δ + 1
[η

p
E1 − E(0)

]
J(0)2+ 1

δ > 0. (3.31)

Therefore, we can obtain from Lemma 2.2 and (3.29)–(3.31) that there exists a finite time T ∗ such that
limt→T ∗− J(t) = 0, which means that

lim
t→T ∗−

∫ t

0
‖u‖2H1dτ = +∞.
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Furthermore, from Lemma 2.2, we get that an upper bound of blow-up time T ∗ is given by

T ∗ ≤

√
(2δ + 1)

8δ2(δ + 1)
[ η

p E1 − E(0)
] ln

1
1 −
√

T0‖u0‖H1

. (3.32)

Case (3): When η

p E1 ≤ E(0) <
‖u0‖

2
H1

γ
, we define the functional

Z(t) = ‖u‖2H1 − γE(0) = a′(t) − γE(0), (3.33)

where γ =
4(1+δ)

D and D =
ηlµ1
1+µ1

> 0; µ1 is the first eigenvalue of operate −4 subject to the homogeneous
Dirichlet boundary condition such that ‖∇u‖22 ≥ µ1‖u‖22. Using (3.33) and Poincaré inequality, we get
that

d
dt

Z(t) = a′′(t) ≥ −4(1 + δ)E(0) + η[l‖∇u‖22 + (g � ∇u)(t)] + 4(1 + δ)
∫ t

0
‖ut‖

2
H1dτ

≥
ηlµ1

1 + µ1

[
‖u‖2H1 −

4(1 + δ)(1 + µ1)
ηlµ1

E(0)
]

+ 4(1 + δ)
∫ t

0
‖ut‖

2
H1dτ

= D
[
‖u‖2H1 − γE(0)

]
+ 4(1 + δ)

∫ t

0
‖ut‖

2
H1dτ

= DZ(t) + 4(1 + δ)
∫ t

0
‖ut‖

2
H1dτ. (3.34)

Then, from

‖u0‖
2
H1 − γE(0) = a′(0) − γE(0) = Z(0) > 0, (3.35)

and (3.34), it is deduced that

Z(t) = a′(t) − γE(0) ≥ Z(0)eDt ≥ Z(0) > 0, for t ≥ 0. (3.36)

By (3.34) and (3.36), there appear the relation

d
dt

Z(t) = a′′(t) ≥ DZ(t) ≥ DZ(0) > 0. (3.37)

Hence, we also have a′(t) > a′(0) = ‖u0‖
2
H1 ≥ 0, for t > 0.

Next, using the same discussion as in case (1), it follows that

J′′(t) ≤ −δG(t)J(t)1+ 1
δ , for t ≥ 0. (3.38)

By (3.34) and (3.36) again, we also get that

G(t) ≥ DZ(t) ≥ DZ(0).

Hence, it follows that

J′′(t) ≤ −δG(t)J(t)1+ 1
δ ≤ −δDZ(0)J(t)1+ 1

δ , for t ≥ 0. (3.39)
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Multiplying (3.39) with J′(t) and integrating it from 0 to t, then there appears the relation

J′(t)2 ≥
2δ2DZ(0)

2δ + 1

(
J(0)2+ 1

δ − J(t)2+ 1
δ

)
= α2 + β2J(t)2+ 1

δ , (3.40)

where

β2 = −
2δ2DZ(0)

2δ + 1
< 0, (3.41)

α2 =
2δ2DZ(0)

2δ + 1
J(0)2+ 1

δ > 0, t ≥ 0, (3.42)

Similarly, we can obtain from Lemma 2.2 and (3.40)–(3.42) that there exists a finite time T ∗ such that

lim
t→T ∗−

∫ t

0
‖u‖2H1dτ = +∞.

Similarly, from Lemma 2.2, we conclude that an upper bound of blow-up time T ∗ is given by

T ∗ ≤

√
(2δ + 1)

2δ2DZ(0)
ln

1
1 −
√

T0‖u0‖H1

. (3.43)

This completes the proof of Theorem 3.1.

4. Lower bound for blow-up time

Our goal of this section is turned to determine a lower bound for blow-up time T ∗ when blow up
occurs to the initial boundary value problem (1.1)–(1.3).

Theorem 4.1. Assume that the conditions (i), (ii) hold. Let u0 ∈ H1
0(Ω) and u be a blow-up solution of

problem (1.1)–(1.3), then a lower bound for blow-up time T ∗ can be estimated in the form

T ∗ ≥
∫ ∞

F(0)

1

η +
2p+6
p+2 Bp+2η

p+2
2 + 2E(0)

dη,

where B is the optimal constant satisfying the Sobolev embedding inequality ‖u‖p+2 ≤ B‖∇u‖2 and
F(0) = ‖u0‖

2
H1 .

Proof. Let us define the auxiliary function

F(t) = ‖u‖22 + ‖∇u‖22, for t ≥ 0. (4.1)

Differentiating (4.1) with respect to t and integration by parts, then we discover that

F′(t) = 2
∫

Ω

uutdx − 2
∫

Ω

u4utdx

= 2
∫

Ω

u
[
4u −

∫ t

0
g(t − τ)4u(τ)dτ + |u|pu

]
dx

AIMS Mathematics Volume 5, Issue 4, 3408–3422.



3420

= −2‖∇u‖22 + 2
∫ t

0
g(t − τ)∇u(τ) · ∇u(t)dτ + 2‖u‖p+2

p+2. (4.2)

Making use of the Young inequality, we have

2
∫ t

0
g(t − τ)∇u(τ) · ∇u(t)dτ

= 2
∫ t

0
g(t − τ)

[
∇u(τ) − ∇u(t)

]
· ∇u(t)dτ + 2

∫ t

0
g(τ)dτ‖∇u(t)‖22

≤ 3
∫ t

0
g(τ)dτ‖∇u(t)‖22 +

∫ t

0
g(t − τ)

[
∇u(τ) − ∇u(t)

]2dτ. (4.3)

Inserting (4.3) into (4.2), it follows that

F′(t) ≤ 3
( ∫ t

0
g(τ)dτ − 1

)
‖∇u‖22 + ‖∇u‖22 + (g � u)(t) + 2‖u‖p+2

p+2 (4.4)

From (2.1), (2.5), (4.4) and the definitions of E(t), F(t), we have

F′(t) ≤ ‖∇u‖22 + 2E(0) +
[
2 +

2
p + 2

]
‖u‖p+2

p+2

≤ ‖∇u‖22 +
2p + 6
p + 2

Bp+2‖∇u‖p+2
2 + 2E(0)

≤ F(t) +
2p + 6
p + 2

Bp+2F(t)
p+2

2 + 2E(0), (4.5)

where

B = sup
u∈H1

0 (Ω)

‖u‖p+2

‖∇u‖2
. (4.6)

Integrating the inequality (4.5) from 0 to t, we deduce that∫ F(t)

F(0)

1

η +
2p+6
p+2 Bp+2η

p+2
2 + 2E(0)

dη ≤ t. (4.7)

If u blows up in H1
0(Ω)-norm, then we establish a lower bound for T ∗ by the form

T ∗ ≥
∫ ∞

F(0)

1

η +
2p+6
p+2 Bp+2η

p+2
2 + 2E(0)

dη, (4.8)

which thereby completes the proof of Theorem 4.1.
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