Citation: Paresh Vyas, Rajesh Kumar Kasana, Sahanawaz Khan. Entropy Analysis for boundary layer Micropolar fluid flow[J]. AIMS Mathematics, 2020, 5(3): 2009-2026. doi: 10.3934/math.2020133
[1] | A. C. Eringen, Theory of micropolar fluids, J. Math. Mech., 16 (1966), 1-18. |
[2] | A. C. Eringen, Theory of thermomicrofluids, J. Math. Anal. Appl., 38 (1966), 480-496. |
[3] | M. M. Khonsari, On the self-excited whirl orbits of a journal in a sleeve, bearing lubricated with micropolar fluids, Acta Mech., 81 (1990), 235-244. |
[4] | M. M. Khonsari, D. Brewe, On the performance of finite journal bearing lubricated with micropolar fluids, STLE Tribol. Transm., 32 (1989), 155-160. doi: 10.1080/10402008908981874 |
[5] | B. Hadimoto, T. Tokioka, Two-dimensional shear flows of linear micropolar fluids, Int. J. Eng. Sci., 7 (1969), 515-522. doi: 10.1016/0020-7225(69)90036-6 |
[6] | F. Lockwood, M. Benchaita, S. Friberg, Study of polyotropic liquid crystals in viscometric flow and elasto hydrodynamic contact, ASLE Tribol. Transm., 30 (1987), 539-548. |
[7] | J. D. Lee, A. C. Eringen, Boundary effects of orientation of nematic liquid crystals, J. Chem. Phys., 55 (1971), 509-512. |
[8] | V. Kolpashchikov, N. P. Migun, P. P. Prokhorenko, Experimental determinations of material micropolar coefficients, Int. J. Eng. Sci., 21 (1983), 405-411. doi: 10.1016/0020-7225(83)90123-4 |
[9] | T. Ariman, M. A. Turk, N. D. Sylvester, Micro continuum fluid mechanics: A review, Int. J. Eng. Sci., 11 (1973), 905-930. doi: 10.1016/0020-7225(73)90038-4 |
[10] | T. Ariman, M. A. Turk, N. D. Sylvester, Application of micro continuum fluid mechanics, Int. J. Eng. Sci., 12 (1974), 273-293. doi: 10.1016/0020-7225(74)90059-7 |
[11] | G. Ahmedi, Self-similar solution of incompressible micropolar boundary layer flow over a semi-infinite plate, Int. J. Eng. Sci., 14 (1976), 639-646. doi: 10.1016/0020-7225(76)90006-9 |
[12] | S. K. Jena, M. N. Mathur, Free convection in the laminar boundary layer flow of thermomicropolar fluid past a non-isothermal vertical flat plate with suction/injection, Acta Mech., 42 (1982), 227-238. doi: 10.1007/BF01177194 |
[13] | E. M. Abo-Eldahab, M. A. El-Aziz, Flow and heat transfer in a micropolar fluid past a stretching surface embedded in a non-Darcian porous medium with uniform free stream, Appl. Math. Comput., 162 (2005), 881-899. |
[14] | M. M. Rashidi, N. Kavyani, S. Abelman, Investigation of entropy generation in MHD and slip flowover a rotating porous disk with variable properties, Int. J. Heat Mass Tran., 70 (2014), 892-917. doi: 10.1016/j.ijheatmasstransfer.2013.11.058 |
[15] | D. Gupta, L. Kumar, O. A. Bég, et al. Finite element simulation of mixed convection flow of micropolar fluid over a shrinking sheet with thermal radiation, P. I. Mech. Eng. E, 228 (2014), 61-72. |
[16] | N. Ali, A. Zaman, O. A. Bég, Numerical simulation of unsteady micropolar hemodynamics in a tapered catheterized artery with a combination of stenosis and aneurysm, Med. Biol. Eng. Comput., 54 (2015), 1423-1436. |
[17] | M. J. Uddin, M. N. Kabir, Y. M. Alginahi, Lie group analysis and numerical solution of magnetohydrodynamic free convective slip flow of micropolar fluid over a moving plate with heat transfer, Comput. Math. Appl., 70 (2015), 846-856. doi: 10.1016/j.camwa.2015.06.002 |
[18] | I. Dražić, N. Črnjarić-Žic, L. Simčić, A shear flow problem for compressible viscous micropolar fluid: Derivation of the model and numerical solution, Math. Comput. Simulat., 162 (2019), 249-267. doi: 10.1016/j.matcom.2019.01.013 |
[19] | A. A. Farooq, D. Tripathib, T. Elnaqeeb, On the propulsion of micropolar fluid inside a channel due to ciliary induced metachronal wave, Appl. Math. Comput., 347 (2019), 225-235. |
[20] | H. H. Sherief, M. S. Faltas, S. El-Sapa, Interaction between two rigid spheres moving in a micropolar fluid with slip surfaces, J. Mol. Liq., 290 (2019), 111165. |
[21] | M. S. Uddin, K. Bhattacharyya, S. Shafie, Micropolar fluid flow and heat transfer over an exponentially permeable shrinking sheet, Popul. Power Res., 5 (2016), 310-317. |
[22] | R. D. Cess, The Interaction of thermal radiation with free convection heat transfer, Int. J. Heat Mass Tran., 9 (1966), 1269-1277. doi: 10.1016/0017-9310(66)90119-0 |
[23] | A. A. Hayday, D. A. Bowlus, R. A. McGraw, Free convection from a vertical flat plate with step discontinuities in surface temperature, ASME J. Heat Tran., 89 (1967), 244-250. doi: 10.1115/1.3614371 |
[24] | T. T. Kao, Laminar free convective heat transfer response along a vertical plat plate with step jump in surface temperature, Heat Mass Transfer, 2 (1975), 419-428. |
[25] | P. Cheng, W. J. Minkowycz, Flow about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike, J. Geophys. Res., 82 (1977), 2040-2044. doi: 10.1029/JB082i014p02040 |
[26] | A. Raptis, N. Kafousias, Heat transfer in flow through a porous medium bounded by an infinite vertical plate under the action of a magnetic field, Energy Res., 6 (1982), 241-245. doi: 10.1002/er.4440060305 |
[27] | M. V. A. Bianchi, R. Viskanta, Momentum and heat transfer on a continuous flat surface moving in a parallel counterflow free stream, Warme-und Stoffubertrangung, 29 (1993), 89-94. doi: 10.1007/BF01560077 |
[28] | H. S. Thakhar, R. S. R. Gorla, V. M. Soundalgekar, Radiation effect on MHD free convection flow of a radiating gas past a semi-infinite vertical plate, Int. J. Numer. Method Heat, 6 (1996), 77-83. |
[29] | A. J. Chamkha, Unsteady MHD convective heat and mass transfer past a semi-infinite vertical permeable moving plate with heat absorption, Int. J. Eng. Sci., 24 (2004), 217-230. |
[30] | M. M. Abdelkhalek, Heat and Mass transfer in MHD free convection from a moving permeable vertical surface by a perturbation technique, Commun. Nonlinear Sci., 14 (2009), 2091-2102. doi: 10.1016/j.cnsns.2008.06.001 |
[31] | O. D. Makinde, Similarity solution for natural convection from a moving vertical plate with internal heat generation and a convective boundary condition, Therm. Sci., 15 (2011), 5137-5143. |
[32] | D. Srinivasacharya, O. Surender, Non-similar solution for natural convective boundary layer flow of ananofluid past a vertical plate embedded in a doubly stratified porous medium, Int. J. Heat Mass Tran., 71 (2014), 431-438. doi: 10.1016/j.ijheatmasstransfer.2013.12.001 |
[33] | A. Khalid, I. Khan, S. Shafie, Heat transfer in ferrofluid with cylindrical shape nanoparticles past a vertical plate with ramped wall temperature embedded in a porous medium, J. Mol. Liq., 221 (2016), 1175-1183. doi: 10.1016/j.molliq.2016.06.105 |
[34] | S. R. Mishra, I. Khanb, Q. M. Al-mdallalc, et al. Free convective micropolar fluid flow and heat transfer over a shrinking sheet with heat source, Case Stud. Therm. Eng., 11 (2018), 113-119. doi: 10.1016/j.csite.2018.01.005 |
[35] | H. Chen, J. Ma, H. Liu, Least square spectral collocation method for nonlinear heat transfer in moving porous plate with convective and radiative boundary conditions, Int. J. Therm. Sci., 132 (2018), 335-343. doi: 10.1016/j.ijthermalsci.2018.06.020 |
[36] | A. Bejan, A study of entropy generation in fundamental convective heat transfer, J. Heat Trans., 101 (1979), 718-725. doi: 10.1115/1.3451063 |
[37] | A. Bejan, Second law analysis in heat transfer, Energy, 5 (1980), 721-732. |
[38] | P. Vyas, S. Soni, Entropy analysis for MHD casson fluid flow in a channel subjected to weakly temperature dependent convection coefficient and hyderodynamic slip, J. Rajasthan Acad. Phys. Sci., 15 (2016), 1-18. |
[39] | P. Vyas, N. Srivastava, Entropy analysis of generalized MHD Couette flow inside a composite duct with asymmetric convective cooling, Arab. J. Sci. Eng., 40 (2015), 603-614. doi: 10.1007/s13369-014-1562-0 |
[40] | N. Srivastava, P. Vyas, S. Soni, Entropy generation analysis for oscillatory flow in a vertical channel filled with Porous Medium, IEEE International Conference on Recent Advances and Innovations in Engineering (ICRAIE-2016), December 23-25, Jaipur, India. |
[41] | M. F. Modest, Heat Transfer, 2 Eds., Academic press, 2003. |
[42] | D. Srinivasacharya, K. H. Bindu, Entropy generation due to micropolar fluid flow between concentric cylinders with slip and convective boundary conditions, Ain Shams Eng. J., 9 (2018), 245-255. doi: 10.1016/j.asej.2015.10.016 |
[43] | D. Srinivasacharya, K. H. Bindu, Entropy generation of micropolar fluid flow in an inclined porous pipe with convective boundary conditions, Sadhna, 42 (2017), 729-740. doi: 10.1007/s12046-017-0639-3 |
[44] | S. K. Asha, C. K. Deepa, Entropy generation for peristaltic blood flow of a magneto-micropolar fluid with thermal radiation in a tapered asymmetric channel, Results Eng., 3 (2019), 100024. |
[45] | A. Z. Sahin, Second law analysis of laminar viscous flow through a duct subjected to constant wall temperature, J. Heat Trans., 120 (1998), 76-83. doi: 10.1115/1.2830068 |
[46] | J. V. R. Murthy, J. Srinivas, Second law analysis for Poiseuille flow of immiscible micropolar fluids in a channel, Int. J. Heat Mass Tran., 65 (2013), 254-264. doi: 10.1016/j.ijheatmasstransfer.2013.05.048 |
[47] | C. K. Chen, Y. T. Yang, K. H. Chang, The effect of thermal radiation on entropy generation due to micro-polar fluid flow along a wavy surface, Entropy, 13 (2011),1595-1610. doi: 10.3390/e13091595 |
[48] | A. Shahsavar, P. T. Sardari, D. Toghraie, Free convection heat transfer and entropy generation analysis of water-Fe3O4/CNT hybridnanofluid in a concentric annulus, Int. J. Numer. Meth. Heat Fluid Flow, 424 (2018), 0961-5539. |
[49] | E. Manay, E. F. Akyürek, B. Sahin, Entropy generation of nanofluid flow in a microchannel heat sink, Results Phys., 9 (2018), 615-624. doi: 10.1016/j.rinp.2018.03.013 |
[50] | P. Barnoon, D. Toghrai, R. B. Dehkordi, et al. MHD mixed convection and entropy generation in a lid-driven cavity with rotating cylinders filled by a nanofluid using two phase mixture model, J. Magn. Magn. Mater., 483 (2019), 224-248. doi: 10.1016/j.jmmm.2019.03.108 |
[51] | P. Barnoon, D. Toghraie, F. Eslami, et al. Entropy generation analysis of different nanofluid flows in the space between two concentric horizontal pipes in the presence of magnetic field: Single-phase and two-phase approaches, Comput. Math. Appl., 73 (2019), 662-692. |
[52] | A. A. A. A. Abdullah, O. A. Akbari, A. Heydari, et al. The numerical modeling of water/FMWCNT nanofluid flow and heat transfer in a backward-facing contracting channel, Physica B, 537 (2018), 176-183. doi: 10.1016/j.physb.2018.02.022 |
[53] | S. M. Seyyedi, A. S. Hashemi-Tilehnoee, M. Waqas, et al. Entropy generation and economic analyses in a nanofluid filled L-shaped enclosure subjected to an oriented magnetic field, Appl. Therm. Eng., 168 (2019), 114789. |
[54] | M. Maskaniyan, M. Nazari, S. Rashidi, et al. Natural convection and entropy generation analysis inside a channel with a porous plate mounted as a cooling system, Therm. Sci. Eng. Prog., 6 (2018),186-193. doi: 10.1016/j.tsep.2018.04.003 |
[55] | P. Gholamalipour, M. Siavashi, M. H. Doranehgard, Eccentricity effects of heat source inside a porous annulus on the natural convection heat transfer and entropy generation of Cu-water nanofluid, Int. Commun. Heat Mass Tran., 109 (2019), 104367. |
[56] | P. Vyas, S. Khan, Entropy analysis for MHD dissipative Casson fluid flow in porous medium due to stretching cylinder, Acta Tech., 61 (2016), 299-315. |
[57] | P. Vyas, N. Srivastava, Entropy analysis for magnetohyrodynamic fluid flow in porous medium due to a non-isothermal stretching sheet, J. Rajasthan Acad. Phys. Sci.,14 (2015), 323-336. |
[58] | Y. J. Kim, Heat and mass transfer in MHD micropolar flow over a vertical moving porous plate in a porous medium, Transport in Porous Med., 56 (2004), 17-37. doi: 10.1023/B:TIPM.0000018420.72016.9d |
[59] | A. A. Raptis, V. M. Soundalgekar, MHD flow past a steadily moving infinite vertical porous plate with constant heat flux, Nucl. Eng. Des., 72 (1982), 373-379. doi: 10.1016/0029-5493(82)90050-4 |
[60] | P. Vyas, A. Rai, K. S. Shekhawat, Dissipative heat and mass transfer in porous medium due to continuously moving plate, Appl. Math. Sci., 6 (2012), 4319-4330. |
[61] | A. A. Raptis, Flow of a micropolar fluid past a continuously moving plate by the presence of rotation, Int. J. Heat Mass Tran., 41 (1998), 2865-2866. doi: 10.1016/S0017-9310(98)00006-4 |
[62] | F. Atlan, M. E. A. El-Mikkawy, A new symbolic algorithm for solving general opposite-bordered tridiagonal linear systems, Am. J. Comput. Math., 5 (2015), 258-266. doi: 10.4236/ajcm.2015.53023 |
[63] | J. Jia, S. Li, New algorithms for numerically solving a class of bordered tridiagonal systems of linear equations, Comput. Math. Appl., 78 (2019), 144-151.< doi: 10.1016/j.camwa.2019.02.028 |