Bessel function has a significant role in fractional calculus having immense applications in physical and theoretical approach. Present work aims to introduce fractional integral operators in which generalized multi-index Bessel function as a kernel, and develop some important special cases which are connected with fractional operators in fractional calculus. Here, we construct important links to familiar findings from some individual occurrence with our key outcomes.
Citation: Iqra Nayab, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Abdel-Haleem Abdel-Aty, Emad E. Mahmoud, Kottakkaran Sooppy Nisar. Estimation of generalized fractional integral operators with nonsingular function as a kernel[J]. AIMS Mathematics, 2021, 6(5): 4492-4506. doi: 10.3934/math.2021266
[1] | Ahmed Z. Abdullah, Adawiya J. Haider, Allaa A. Jabbar . Pure TiO2/PSi and TiO2@Ag/PSi structures as controllable sensor for toxic gases. AIMS Materials Science, 2022, 9(4): 522-533. doi: 10.3934/matersci.2022031 |
[2] | Angaraj Singh, Ajitanshu Vedrtnam, Kishor Kalauni, Aman Singh, Magdalena Wdowin . Synthesis routes of zeolitic imidazolate framework-8 for CO2 capture: A review. AIMS Materials Science, 2025, 12(1): 118-164. doi: 10.3934/matersci.2025009 |
[3] | Laís Weber Aguiar, Cleiser Thiago Pereira da Silva, Hugo Henrique Carline de Lima, Murilo Pereira Moises, Andrelson Wellington Rinaldi . Evaluation of the synthetic methods for preparing metal organic frameworks with transition metals. AIMS Materials Science, 2018, 5(3): 467-478. doi: 10.3934/matersci.2018.3.467 |
[4] | Jamal Alnofiay, Ahmed Al-Shahrie, Elsayed Shalaan . Green synthesis of high-performance gallium oxide supercapacitor: A path to outstanding energy density. AIMS Materials Science, 2024, 11(6): 1065-1082. doi: 10.3934/matersci.2024051 |
[5] | Akira Nishimura, Tadaki Inoue, Yoshito Sakakibara, Masafumi Hirota, Akira Koshio, Fumio Kokai, Eric Hu . Optimum molar ratio of H2 and H2O to reduce CO2 using Pd/TiO2. AIMS Materials Science, 2019, 6(4): 464-483. doi: 10.3934/matersci.2019.4.464 |
[6] | Akira Nishimura, Ryuki Toyoda, Daichi Tatematsu, Masafumi Hirota, Akira Koshio, Fumio Kokai, Eric Hu . Optimum reductants ratio for CO2 reduction by overlapped Cu/TiO2. AIMS Materials Science, 2019, 6(2): 214-233. doi: 10.3934/matersci.2019.2.214 |
[7] | Masatoshi Sakairi, Hirotaka Mizukami, Shuji Hashizume . Effects of solution composition on corrosion behavior of 13 mass% Cr martensitic stainless steel in simulated oil and gas environments. AIMS Materials Science, 2019, 6(2): 288-300. doi: 10.3934/matersci.2019.2.288 |
[8] | Pravina Kamini G., Kong Fah Tee, Jolius Gimbun, Siew Choo Chin . Biochar in cementitious material—A review on physical, chemical, mechanical, and durability properties. AIMS Materials Science, 2023, 10(3): 405-425. doi: 10.3934/matersci.2023022 |
[9] | Toni Varila, Henrik Romar, Tero Luukkonen, Ulla Lassi . Physical activation and characterization of tannin-based foams enforced with boric acid and zinc chloride. AIMS Materials Science, 2019, 6(2): 301-314. doi: 10.3934/matersci.2019.2.301 |
[10] | Endi Suhendi, Andini Eka Putri, Muhamad Taufik Ulhakim, Andhy Setiawan, Syarif Dani Gustaman . Investigation of ZnO doping on LaFeO3/Fe2O3 prepared from yarosite mineral extraction for ethanol gas sensor applications. AIMS Materials Science, 2022, 9(1): 105-118. doi: 10.3934/matersci.2022007 |
Bessel function has a significant role in fractional calculus having immense applications in physical and theoretical approach. Present work aims to introduce fractional integral operators in which generalized multi-index Bessel function as a kernel, and develop some important special cases which are connected with fractional operators in fractional calculus. Here, we construct important links to familiar findings from some individual occurrence with our key outcomes.
Metal--organic materials (MOMs) are a class of synthesized, often porous, and crystalline materials that have comprised the focus of a large amount of experimental and theoretical studies for the past few decades [1,2,3]. The application of MOMs is very diverse and has become essentially ubiquitous in scientific research, ranging from gas sorption [3,4,5,6,7,8,9,10,11,12,13,14,15,16,17], separation [4,18,19], catalysis [20,21,22,23], sensing [24,25], photoinduced electron transfer [26,27,28,29] and biological uses [30,31]. The major reason for this is that there are conceivably infinite variations of MOM structures that can be synthesized by altering their component metal ions, organic linkers, secondary building units (SBUs) [32,33], solvents, and thermodynamic or physical conditions.
This study focuses on explaining the sorption properties of CO
Recent studies involved examining C
The syntheses of MPM-1-Cl and MPM-1-Br are reported in references [38,39], respectively. Both MPMs feature an interesting hydrogen-bonding network in which (1) four hydrogen atoms from four different adenine linkers are hydrogen-bonded to a single halide ion and (2) an adenine linker from one [Cu
The purpose of this study is to elucidate (with atomistic resolution) the sorption properties of CO
The potential energy function for MPM-1-Cl was developed by our group in previous work [41] and utilized herein. The crystal structure for MPM-1-Br was obtained from reference [39]. For all simulations in both MPMs, the sorbent atoms were treated as rigid to accomodate a constant volume ensemble system. This approximation is especially valid when phononic effects are minor [43]. As with previous work on MPM-1-Cl [41], all atoms of MPM-1-Br were given Lennard-Jones 12--6 parameters, point partial charges, and scalar point polarizabilities to model repulsion/dispersion, stationary electrostatic, and explicit polarization, respectively. The Lennard-Jones parameters for all MPM atoms were taken from the Universal Force Field (UFF)[44], while the exponentially-damped polarizabilities for all atoms other than Cu were obtained from van Duijnen et al. [45]. The polarizability parameter for Cu
The potentials used for CO
Simulated annealing calculations were performed using the polarizable CO
C
Interestingly, the relative uptake trend is reversed at 298 K: MPM-1-Br shows slightly greater affinity for C
Xie et al. also measured CO
Xie et al. [37] derived the experimental
CO | C | ||||||
MPM-1-Cl | Exp. | Simulation | Exp. | Simulation | |||
Model | CO | CO | TraPPE | C | C | ||
23.76 | 22.77 | 24.33 | 26.22 | 28.57 | 25.49 | 25.65 | |
0.05 atm loading, 273 K | 0.26 | 0.23 | 0.36 | 0.80 | 0.80 | 1.08 | 0.81 |
1.0 atm loading, 273 K | 3.50 | 3.63 | 4.75 | 5.06 | 3.86 | 5.05 | 5.25 |
0.05 atm loading, 298 K | 0.12 | 0.13 | 0.17 | 0.35 | 0.34 | 0.34 | 0.25 |
1.0 atm loading, 298 K | 1.97 | 2.07 | 2.74 | 3.60 | 2.78 | 4.21 | 4.57 |
MPM-1-Br | Exp. | Simulation | Exp. | Simulation | |||
Model | CO | CO | TraPPE | C | C | ||
21.61 | 25.02 | 25.57 | 25.40 | 25.05 | 30.61 | 27.55 | |
0.05 atm loading, 273 K | 0.19 | 0.23 | 0.33 | 0.51 | 0.81 | 1.41 | 1.23 |
1.0 atm loading, 273 K | 2.54 | 2.52 | 3.20 | 3.77 | 3.59 | 3.69 | 3.66 |
0.05 atm loading, 298 K | 0.12 | 0.11 | 0.13 | 0.20 | 0.43 | 0.34 | 0.22 |
1.0 atm loading, 298 K | 1.56 | 1.52 | 1.80 | 2.47 | 2.82 | 3.31 | 3.30 |
With regards to C
The
The experimental and simulated C
Figure 5a shows the simulated C
As shown in Table 1, the experimental C
The simulated C
The theoretical
The simulated CO
The CO
A comparison of the experimental and simulated CO
As shown in Table 1, the experimental atmospheric CO
Note, we also performed simulations of CO
The simulated CO
In MPM-1-Br, the
The calculated
Pham et al. [41] reported a binding site for CO
The electrostatic and electrodynamic (polarizable) effects serve to attract the positively charged carbon center of the CO
MPM-1-Cl is able to sorb more CO
The primary binding site for C
Overall, there are more concurrent interactions between the C
The results for the classical binding energy calculations from simulated annealing are presented in Table 2. It is clear from these simulations that both materials favor C
MPM-1-Cl | Binding energy (kJ mol | Steps ( | Final Temp. (K) |
CO | 2.37 | 113 | |
C | 2.46 | 125 | |
MPM-1-Br | |||
CO | 3.24 | 129 | |
C | 4.53 | 150 |
This study aimed to elucidate the CO
It was discovered through our simulations that the primary binding site for C
Herein, we demonstrated how substitution of the halide ion in two isostructural MPMs with the empirical formula [Cu
The authors acknowledge the National Science Foundation (Award No. DMR-1607989), including support from the Major Research Instrumentation Program (Award No. CHE-1531590). Computational resources were made available by a XSEDE Grant (No. TG-DMR090028) and by Research Computing at the University of South Florida. B.S. also acknowledges support from an American Chemical Society Petroleum Research Fund grant (ACS PRF 56673-ND6).
The authors declare no conflict of interest related to the content of this publication.
[1] | A. Baricz, Generalized Bessel functions of the first kind, Springer, 2010. |
[2] |
D. N. Tumakov, The faster methods for computing Bessel functions of the first kind of an integer order with application to graphic processors, Lobachevskii J. Math., 40 (2019), 1725–1738. doi: 10.1134/S1995080219100287
![]() |
[3] |
J. Choi, P. Agarwal, Certain unified integrals involving a product of Bessel functions of first kind, Honam Math. J., 35 (2013), 667–677. doi: 10.5831/HMJ.2013.35.4.667
![]() |
[4] | M. Abramowitz, I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables (Vol. 55), US Government printing office, 1948. |
[5] |
N. Heymans, I. Podlubny, Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives, Rheol. Acta, 45 (2006), 765–771. doi: 10.1007/s00397-005-0043-5
![]() |
[6] | G. N. Watson, A treatise on the theory of Bessel functions, Cambridge university press, 1995. |
[7] | S. D. Purohit, D. J. Suthar, S. L. Kalla, Marichev-Saigo-Maeda fractional integration operators of the Bassel functions, Le Matematiche, 67 (2012), 21–32. |
[8] | E. M. Wright, The asymptotic expansion of the generalized hypergeometric function, J. Lond. Math. Soc., 1 (1935), 286–293. |
[9] |
T. N. Srivastava, Y. P. Singh, On Maitland's generalised Bessel Function, Can. Math. Bull., 11 (1968), 739–741. doi: 10.4153/CMB-1968-091-5
![]() |
[10] | D. L. Suthar, H. Amsalu, Certain integrals associated with the generalized Bessel-Maitland function, Applications and Applied Mathematics, 12 (2017), 1002–1016. |
[11] | D. L. Suthar, H. Habenom, Integrals involving generalized Bessel-Maitland function, JOSA, 16 (2016), 357. |
[12] | R. S. Ali, S. Mubeen, I. Nayab, S. Araci, G. Rahman, K. S. Nisar, Some fractional operators with the generalized Bessel-Maitland function, Discrete Dyn. Nat. Soc., 2020 (2020), 1378457. |
[13] |
W. A. Khan, K. S. Nisar, J. Choi, An integral formula of the Mellin transform type involving the extended Wright-Bessel function, FJMS, 102 (2017), 2903–2912. doi: 10.17654/MS102112903
![]() |
[14] |
D. L. Suthar, S. D. Purohit, R. K. Parmar, Generalized fractional calculus of the multiindex Bessel function, Math. Nat. Sci., 1 (2017), 26–32. doi: 10.22436/mns.01.01.03
![]() |
[15] | M. Z. Sarikaya, H. Ogunmez, On new inequalities via Riemann-Liouville fractional integration, Abstr. Appl. Anal., 2012 (2020), 428983. |
[16] |
B. Ahmad, J. J. Nieto, Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions, Bound. Value Probl., 2011 (2011), 36. doi: 10.1186/1687-2770-2011-36
![]() |
[17] | M. U. Awan, S. Talib, Y. M. Chu, M. A. Noor, K. I. Noor, Some new refinements of Hermite-Hadamard-type inequalities involving-Riemann-Liouville fractional integrals and applications, Math. Probl. Eng., 2020 (2020), 3051920. |
[18] |
Y. S. Liang, Fractal dimension of Riemann-Liouville fractional integral of 1-dimensional continuous functions, Fract. Calc. Appl. Anal., 21 (2018), 1651–1658. doi: 10.1515/fca-2018-0087
![]() |
[19] | R. Agarwal, M. Belmekki, M. Benchohra, A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative, Adv. Differ. Equ., 2009 (2009), 1–47. |
[20] | H. M. Srivastava, ˇZ. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag -Leffler function in the kernel, Appl. Math. Comput., 211 (2009), 198–210. |
[21] | T. R. Prabhakar, A singular integral equation with a generalized Mittag Leffler function in the kernel, J. Math. Comput. Sci., 22 (1971), 266–281. |
[22] | K. Tilahun, H. Tadessee, D. L. Suthar, The extended Bessel-Maitland function and integral operators associated with fractional calculus, J. Math., 2020 (2020), 7582063. |
[23] | S. G. Samko, A. A. Kilbas, I. O. Marichev, Fractional integrals and derivatives: theory and applications, Yverdon, Switzerland: Gordon and Breach Science Publishers, 1993. |
[24] | A. Kilbas, Fractional calculus of the generalized Wright function. Fract. Calc. Appl. Anal., 8 (2005), 113–126. |
[25] |
S. Mubeen, R. S. Ali, I. Nayab, G. Rahman, T. Abdeljawad, K. S. Nisar, Integral transforms of an extended generalized multi-index Bessel function, AIMS Mathematics, 5 (2020), 7531–7547. doi: 10.3934/math.2020482
![]() |
[26] | A. Petojevic, A note about the Pochhammer symbol, Mathematica Moravica, 12-1 (2008), 37–42. |
[27] |
S. Mubeen, R. S. Ali, Fractional operators with generalized Mittag-Leffler k-function, Adv. Differ. Equ., 2019 (2019), 520. doi: 10.1186/s13662-019-2458-9
![]() |
[28] |
R. S. Ali, S. Mubeen, M. M. Ahmad, A class of fractional integral operators with multi-index Mittag-Leffler k-function and Bessel k-function of first kind, J. Math. Comput. Sci., 22 (2020), 266–281. doi: 10.22436/jmcs.022.03.06
![]() |
[29] | A. M. Mathai, H. J. Haubold, Special functions for applied scientists, New York: Springer Science+ Business Media, 2008. |
[30] |
T. O. Salim, A. W. Faraj, A generalization of Mittag-Leffler function and integral operator associated with fractional calculus, J. Fract. Calc. Appl., 3 (2012), 1–13. doi: 10.1142/9789814355216_0001
![]() |
[31] |
G. Rahman, D. Baleanu, M. A. Qurashi, S. D. Purohit, S. Mubeen, M. Arshad, The extended Mittag-Leffler function via fractional calculus, J. Nonlinear Sci. Appl., 10 (2017), 4244–4253. doi: 10.22436/jnsa.010.08.19
![]() |
1. | Douglas M. Franz, Jonathan L. Belof, Keith McLaughlin, Christian R. Cioce, Brant Tudor, Adam Hogan, Luciano Laratelli, Meagan Mulcair, Matthew Mostrom, Alejandro Navas, Abraham C. Stern, Katherine A. Forrest, Tony Pham, Brian Space, MPMC and MCMD: Free High‐Performance Simulation Software for Atomistic Systems, 2019, 2, 2513-0390, 1900113, 10.1002/adts.201900113 | |
2. | Yu-Yun Lin, Fu-Yu Liu, I-Chia Chen, Hwei-Yan Tsai, Jhen-Wei Huang, Jia-Hao Lin, Chiing-Chang Chen, Photocatalytic reduction of carbon dioxide by BiTeX (X = Cl, Br, I) under visible-light irradiation, 2024, 365, 03014797, 121536, 10.1016/j.jenvman.2024.121536 | |
3. | Yu-Yun Lin, Hong-Han Huang, Shiuh-Tsuen Huang, Fu-Yu Liu, Jia-Hao Lin, Chiing-Chang Chen, Synthesis, characterization, photocatalytic activity of selenium vacancy in BiSeX and BiSeX/GO (X = Cl、Br、I) photocatalysts, 2025, 10106030, 116330, 10.1016/j.jphotochem.2025.116330 |
CO | C | ||||||
MPM-1-Cl | Exp. | Simulation | Exp. | Simulation | |||
Model | CO | CO | TraPPE | C | C | ||
23.76 | 22.77 | 24.33 | 26.22 | 28.57 | 25.49 | 25.65 | |
0.05 atm loading, 273 K | 0.26 | 0.23 | 0.36 | 0.80 | 0.80 | 1.08 | 0.81 |
1.0 atm loading, 273 K | 3.50 | 3.63 | 4.75 | 5.06 | 3.86 | 5.05 | 5.25 |
0.05 atm loading, 298 K | 0.12 | 0.13 | 0.17 | 0.35 | 0.34 | 0.34 | 0.25 |
1.0 atm loading, 298 K | 1.97 | 2.07 | 2.74 | 3.60 | 2.78 | 4.21 | 4.57 |
MPM-1-Br | Exp. | Simulation | Exp. | Simulation | |||
Model | CO | CO | TraPPE | C | C | ||
21.61 | 25.02 | 25.57 | 25.40 | 25.05 | 30.61 | 27.55 | |
0.05 atm loading, 273 K | 0.19 | 0.23 | 0.33 | 0.51 | 0.81 | 1.41 | 1.23 |
1.0 atm loading, 273 K | 2.54 | 2.52 | 3.20 | 3.77 | 3.59 | 3.69 | 3.66 |
0.05 atm loading, 298 K | 0.12 | 0.11 | 0.13 | 0.20 | 0.43 | 0.34 | 0.22 |
1.0 atm loading, 298 K | 1.56 | 1.52 | 1.80 | 2.47 | 2.82 | 3.31 | 3.30 |
MPM-1-Cl | Binding energy (kJ mol | Steps ( | Final Temp. (K) |
CO | 2.37 | 113 | |
C | 2.46 | 125 | |
MPM-1-Br | |||
CO | 3.24 | 129 | |
C | 4.53 | 150 |
CO | C | ||||||
MPM-1-Cl | Exp. | Simulation | Exp. | Simulation | |||
Model | CO | CO | TraPPE | C | C | ||
23.76 | 22.77 | 24.33 | 26.22 | 28.57 | 25.49 | 25.65 | |
0.05 atm loading, 273 K | 0.26 | 0.23 | 0.36 | 0.80 | 0.80 | 1.08 | 0.81 |
1.0 atm loading, 273 K | 3.50 | 3.63 | 4.75 | 5.06 | 3.86 | 5.05 | 5.25 |
0.05 atm loading, 298 K | 0.12 | 0.13 | 0.17 | 0.35 | 0.34 | 0.34 | 0.25 |
1.0 atm loading, 298 K | 1.97 | 2.07 | 2.74 | 3.60 | 2.78 | 4.21 | 4.57 |
MPM-1-Br | Exp. | Simulation | Exp. | Simulation | |||
Model | CO | CO | TraPPE | C | C | ||
21.61 | 25.02 | 25.57 | 25.40 | 25.05 | 30.61 | 27.55 | |
0.05 atm loading, 273 K | 0.19 | 0.23 | 0.33 | 0.51 | 0.81 | 1.41 | 1.23 |
1.0 atm loading, 273 K | 2.54 | 2.52 | 3.20 | 3.77 | 3.59 | 3.69 | 3.66 |
0.05 atm loading, 298 K | 0.12 | 0.11 | 0.13 | 0.20 | 0.43 | 0.34 | 0.22 |
1.0 atm loading, 298 K | 1.56 | 1.52 | 1.80 | 2.47 | 2.82 | 3.31 | 3.30 |
MPM-1-Cl | Binding energy (kJ mol | Steps ( | Final Temp. (K) |
CO | 2.37 | 113 | |
C | 2.46 | 125 | |
MPM-1-Br | |||
CO | 3.24 | 129 | |
C | 4.53 | 150 |