Bessel function has a significant role in fractional calculus having immense applications in physical and theoretical approach. Present work aims to introduce fractional integral operators in which generalized multi-index Bessel function as a kernel, and develop some important special cases which are connected with fractional operators in fractional calculus. Here, we construct important links to familiar findings from some individual occurrence with our key outcomes.
Citation: Iqra Nayab, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Abdel-Haleem Abdel-Aty, Emad E. Mahmoud, Kottakkaran Sooppy Nisar. Estimation of generalized fractional integral operators with nonsingular function as a kernel[J]. AIMS Mathematics, 2021, 6(5): 4492-4506. doi: 10.3934/math.2021266
Bessel function has a significant role in fractional calculus having immense applications in physical and theoretical approach. Present work aims to introduce fractional integral operators in which generalized multi-index Bessel function as a kernel, and develop some important special cases which are connected with fractional operators in fractional calculus. Here, we construct important links to familiar findings from some individual occurrence with our key outcomes.
[1] | A. Baricz, Generalized Bessel functions of the first kind, Springer, 2010. |
[2] | D. N. Tumakov, The faster methods for computing Bessel functions of the first kind of an integer order with application to graphic processors, Lobachevskii J. Math., 40 (2019), 1725–1738. doi: 10.1134/S1995080219100287 |
[3] | J. Choi, P. Agarwal, Certain unified integrals involving a product of Bessel functions of first kind, Honam Math. J., 35 (2013), 667–677. doi: 10.5831/HMJ.2013.35.4.667 |
[4] | M. Abramowitz, I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables (Vol. 55), US Government printing office, 1948. |
[5] | N. Heymans, I. Podlubny, Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives, Rheol. Acta, 45 (2006), 765–771. doi: 10.1007/s00397-005-0043-5 |
[6] | G. N. Watson, A treatise on the theory of Bessel functions, Cambridge university press, 1995. |
[7] | S. D. Purohit, D. J. Suthar, S. L. Kalla, Marichev-Saigo-Maeda fractional integration operators of the Bassel functions, Le Matematiche, 67 (2012), 21–32. |
[8] | E. M. Wright, The asymptotic expansion of the generalized hypergeometric function, J. Lond. Math. Soc., 1 (1935), 286–293. |
[9] | T. N. Srivastava, Y. P. Singh, On Maitland's generalised Bessel Function, Can. Math. Bull., 11 (1968), 739–741. doi: 10.4153/CMB-1968-091-5 |
[10] | D. L. Suthar, H. Amsalu, Certain integrals associated with the generalized Bessel-Maitland function, Applications and Applied Mathematics, 12 (2017), 1002–1016. |
[11] | D. L. Suthar, H. Habenom, Integrals involving generalized Bessel-Maitland function, JOSA, 16 (2016), 357. |
[12] | R. S. Ali, S. Mubeen, I. Nayab, S. Araci, G. Rahman, K. S. Nisar, Some fractional operators with the generalized Bessel-Maitland function, Discrete Dyn. Nat. Soc., 2020 (2020), 1378457. |
[13] | W. A. Khan, K. S. Nisar, J. Choi, An integral formula of the Mellin transform type involving the extended Wright-Bessel function, FJMS, 102 (2017), 2903–2912. doi: 10.17654/MS102112903 |
[14] | D. L. Suthar, S. D. Purohit, R. K. Parmar, Generalized fractional calculus of the multiindex Bessel function, Math. Nat. Sci., 1 (2017), 26–32. doi: 10.22436/mns.01.01.03 |
[15] | M. Z. Sarikaya, H. Ogunmez, On new inequalities via Riemann-Liouville fractional integration, Abstr. Appl. Anal., 2012 (2020), 428983. |
[16] | B. Ahmad, J. J. Nieto, Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions, Bound. Value Probl., 2011 (2011), 36. doi: 10.1186/1687-2770-2011-36 |
[17] | M. U. Awan, S. Talib, Y. M. Chu, M. A. Noor, K. I. Noor, Some new refinements of Hermite-Hadamard-type inequalities involving-Riemann-Liouville fractional integrals and applications, Math. Probl. Eng., 2020 (2020), 3051920. |
[18] | Y. S. Liang, Fractal dimension of Riemann-Liouville fractional integral of 1-dimensional continuous functions, Fract. Calc. Appl. Anal., 21 (2018), 1651–1658. doi: 10.1515/fca-2018-0087 |
[19] | R. Agarwal, M. Belmekki, M. Benchohra, A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative, Adv. Differ. Equ., 2009 (2009), 1–47. |
[20] | H. M. Srivastava, $\check{Z}$. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag -Leffler function in the kernel, Appl. Math. Comput., 211 (2009), 198–210. |
[21] | T. R. Prabhakar, A singular integral equation with a generalized Mittag Leffler function in the kernel, J. Math. Comput. Sci., 22 (1971), 266–281. |
[22] | K. Tilahun, H. Tadessee, D. L. Suthar, The extended Bessel-Maitland function and integral operators associated with fractional calculus, J. Math., 2020 (2020), 7582063. |
[23] | S. G. Samko, A. A. Kilbas, I. O. Marichev, Fractional integrals and derivatives: theory and applications, Yverdon, Switzerland: Gordon and Breach Science Publishers, 1993. |
[24] | A. Kilbas, Fractional calculus of the generalized Wright function. Fract. Calc. Appl. Anal., 8 (2005), 113–126. |
[25] | S. Mubeen, R. S. Ali, I. Nayab, G. Rahman, T. Abdeljawad, K. S. Nisar, Integral transforms of an extended generalized multi-index Bessel function, AIMS Mathematics, 5 (2020), 7531–7547. doi: 10.3934/math.2020482 |
[26] | A. Petojevic, A note about the Pochhammer symbol, Mathematica Moravica, 12-1 (2008), 37–42. |
[27] | S. Mubeen, R. S. Ali, Fractional operators with generalized Mittag-Leffler k-function, Adv. Differ. Equ., 2019 (2019), 520. doi: 10.1186/s13662-019-2458-9 |
[28] | R. S. Ali, S. Mubeen, M. M. Ahmad, A class of fractional integral operators with multi-index Mittag-Leffler k-function and Bessel k-function of first kind, J. Math. Comput. Sci., 22 (2020), 266–281. doi: 10.22436/jmcs.022.03.06 |
[29] | A. M. Mathai, H. J. Haubold, Special functions for applied scientists, New York: Springer Science+ Business Media, 2008. |
[30] | T. O. Salim, A. W. Faraj, A generalization of Mittag-Leffler function and integral operator associated with fractional calculus, J. Fract. Calc. Appl., 3 (2012), 1–13. doi: 10.1142/9789814355216_0001 |
[31] | G. Rahman, D. Baleanu, M. A. Qurashi, S. D. Purohit, S. Mubeen, M. Arshad, The extended Mittag-Leffler function via fractional calculus, J. Nonlinear Sci. Appl., 10 (2017), 4244–4253. doi: 10.22436/jnsa.010.08.19 |