Citation: Seung-Yeal Ha, Se Eun Noh, Jinyeong Park. Practical synchronization of generalized Kuramoto systems with an intrinsic dynamics[J]. Networks and Heterogeneous Media, 2015, 10(4): 787-807. doi: 10.3934/nhm.2015.10.787
[1] | J. A. Acebron, L. L. Bonilla, C. J. P. Pérez Vicente, F. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005), 137-185. doi: 10.1103/RevModPhys.77.137 |
[2] | T. M. Antonsen, R. T. Faghih, M. Girvan, E. Ott and J. Platig, External periodic driving of large systems of globally coupled phase oscillators, Chaos, 18 (2008), 037112, 10pp. doi: 10.1063/1.2952447 |
[3] | R. Bhatia, Matrix Analysis, Graduate Text in Mathematics, 169. Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0653-8 |
[4] | S. Bowong and J. Tewa, Practical adaptive synchronization of a class of uncertain chaotic systems, Nonlinear Dynam., 56 (2009), 57-68. doi: 10.1007/s11071-008-9379-6 |
[5] | J. Buck and E. Buck, Biology of synchronous flashing of fireflies, Nature, 211 (1966), 562-564. doi: 10.1038/211562a0 |
[6] | L. M. Childs and S. H. Strogatz, Stability diagram for the forced Kuramoto model, Chaos, 18 (2008), 043128, 9pp. doi: 10.1063/1.3049136 |
[7] | Y.-P. Choi, S.-Y. Ha, S. Jung and Y. Kim, Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model, Physica D, 241 (2012), 735-754. doi: 10.1016/j.physd.2011.11.011 |
[8] | Y.-P. Choi, S.-Y. Ha and S.-B. Yun, Complete synchronization of Kuramoto oscillators with finite inertia, Physica D, 240 (2011), 32-44. doi: 10.1016/j.physd.2010.08.004 |
[9] | N. Chopra and M. W. Spong, On exponential synchronization of Kuramoto oscillators, IEEE Trans. Automatic Control, 54 (2009), 353-357. doi: 10.1109/TAC.2008.2007884 |
[10] | X. Dong, J. Xi, Z. Shi and Y. Zhong, Consensus for High-Order Time-Delayed Swarm Systems With Uncertainties and External Disturbances, in Proceedings of the 30th Chinese Control Conference, Yantai, China 2011. |
[11] | F. Dorfler and F. Bullo, On the critical coupling for Kuramoto oscillators, SIAM J. Appl. Dyn. Syst., 10 (2011), 1070-1099. doi: 10.1137/10081530X |
[12] | R. Femat and G. Solis-Perales, On the chaos synchronization phenomena, Physics Letters A, 262 (1999), 50-60. doi: 10.1016/S0375-9601(99)00667-2 |
[13] | S.-Y. Ha, T. Ha and J.-H. Kim, On the complete synchronization of the Kuramoto phase model, Physica D, 239 (2010), 1692-1700. doi: 10.1016/j.physd.2010.05.003 |
[14] | S.-Y. Ha, E. Jeong and M.-J. Kang, Emergent behavior of a generalized Viscek-type flocking model, Nonlinearity, 23 (2010), 3139-3156. doi: 10.1088/0951-7715/23/12/008 |
[15] | S.-Y. Ha and Z. Li, Complete synchronization of Kuramoto oscillators with hierarchical leadership, Communications in Mathematical Sciences, 12 (2014), 485-508. doi: 10.4310/CMS.2014.v12.n3.a5 |
[16] | A. Jadbabaie, N. Motee and M. Barahona, On the stability of the Kuramoto model of coupled nonlinear oscillators, in Proceedings of the American Control Conference. Boston Massachusetts 2004. |
[17] | J. Kim, J. Yang, J. Kim and H. Shim, Practical Consensus for Heterogeneous Linear Time-Varying Multi-Agent Systems, in Proceedings of 12th International Conference on Control, Automation and Systems, Jeju Island, Korea 2012. |
[18] | Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer-Verlag Berlin 1984. doi: 10.1007/978-3-642-69689-3 |
[19] | Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, International symposium on mathematical problems in mathematical physics, Lecture notes in theoretical physics, 39 (1975), 420-422. |
[20] | P. Louodop, H. Fotsin, E. Megam Ngouonkadi, S. Bowong and H. Cerdeira, Effective Synchronization of a Class of Chua's Chaotic Systems Using an Exponential Feedback Coupling, Abstr. Appl. Anal., 2013 (2013), Art. ID 483269, 7 pp. |
[21] | M. Ma, J. Zhou and J. Cai, Practical synchronization of second-order nonautonomous systems with parameter mismatch and its applications, Nonlinear Dynam., 69 (2012), 1285-1292. doi: 10.1007/s11071-012-0346-x |
[22] | M. Ma, J. Zhou and J. Cai, Practical synchronization of non autonomous systems with uncertain parameter mismatch via a single feedback control, Int. J. Mod Phys C, 23 (2012), 1250073 14pp. |
[23] | R. E. Mirollo and S. H. Strogatz, The spectrum of the partially locked state for the Kuramoto model of coupled oscillator, J. Nonlinear Sci., 17 (2007), 309-347. doi: 10.1007/s00332-006-0806-x |
[24] | R. E. Mirollo and S. H. Strogatz, The spectrum of the locked state for the Kuramoto model of coupled oscillator, Physica D, 205 (2005), 249-266. doi: 10.1016/j.physd.2005.01.017 |
[25] | R. E. Mirollo and S. H. Strogatz, Stability of incoherence in a populations of coupled oscillators, J. Stat. Phy., 63 (1991), 613-635. doi: 10.1007/BF01029202 |
[26] | E. Ott and T. M. Antonsen, Low dimensional behavior of large systems of globally coupled oscillators, Chaos, 18 (2008), 037113, 6pp. doi: 10.1063/1.2930766 |
[27] | A. Pikovsky, M. Rosenblum and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511755743 |
[28] | H. Sakaguchi, Cooperative phenomena in coupled oscillator systems under external fields, Prog. Theor. Phys., 79 (1988), 39-46. doi: 10.1143/PTP.79.39 |
[29] | E. Steur, L. Kodde and H. Nijmeijer, Synchronization of Diffusively Coupled Electronic Hindmarsh-Rose Oscillators, in Dynamics and control of hybrid mechanical systems (eds. G. Leonov, H. Nijmeijer, A. Pogromsky and A. Fradkov), Singapore, World Scientific, (2010), 195-210. doi: 10.1142/9789814282321_0013 |
[30] | S. H. Strogatz, Human sleep and circadian rhythms: A simple model based on two coupled oscillators, J. Math. Biol., 25 (1987), 327-347. doi: 10.1007/BF00276440 |
[31] | A. T. Winfree, The Geometry of Biological Time, Springer New York 1980. |
[32] | A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol., 16 (1987), 15-42. doi: 10.1016/0022-5193(67)90051-3 |
[33] | H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen, Math. Ann., 71 (1912), 441-479. doi: 10.1007/BF01456804 |