Citation: Guy Barles, Emmanuel Chasseigne. (Almost) Everything you always wanted to know about deterministic control problems in stratified domains[J]. Networks and Heterogeneous Media, 2015, 10(4): 809-836. doi: 10.3934/nhm.2015.10.809
[1] | Fang Liu, Yanfei Du . Spatiotemporal dynamics of a diffusive predator-prey model with delay and Allee effect in predator. Mathematical Biosciences and Engineering, 2023, 20(11): 19372-19400. doi: 10.3934/mbe.2023857 |
[2] | Honghua Bin, Daifeng Duan, Junjie Wei . Bifurcation analysis of a reaction-diffusion-advection predator-prey system with delay. Mathematical Biosciences and Engineering, 2023, 20(7): 12194-12210. doi: 10.3934/mbe.2023543 |
[3] | Meiling Zhu, Huijun Xu . Dynamics of a delayed reaction-diffusion predator-prey model with the effect of the toxins. Mathematical Biosciences and Engineering, 2023, 20(4): 6894-6911. doi: 10.3934/mbe.2023297 |
[4] | Guangxun Sun, Binxiang Dai . Stability and bifurcation of a delayed diffusive predator-prey system with food-limited and nonlinear harvesting. Mathematical Biosciences and Engineering, 2020, 17(4): 3520-3552. doi: 10.3934/mbe.2020199 |
[5] | Shunyi Li . Hopf bifurcation, stability switches and chaos in a prey-predator system with three stage structure and two time delays. Mathematical Biosciences and Engineering, 2019, 16(6): 6934-6961. doi: 10.3934/mbe.2019348 |
[6] | Kawkab Al Amri, Qamar J. A Khan, David Greenhalgh . Combined impact of fear and Allee effect in predator-prey interaction models on their growth. Mathematical Biosciences and Engineering, 2024, 21(10): 7211-7252. doi: 10.3934/mbe.2024319 |
[7] | Kalyan Manna, Malay Banerjee . Stability of Hopf-bifurcating limit cycles in a diffusion-driven prey-predator system with Allee effect and time delay. Mathematical Biosciences and Engineering, 2019, 16(4): 2411-2446. doi: 10.3934/mbe.2019121 |
[8] | Xin-You Meng, Yu-Qian Wu . Bifurcation analysis in a singular Beddington-DeAngelis predator-prey model with two delays and nonlinear predator harvesting. Mathematical Biosciences and Engineering, 2019, 16(4): 2668-2696. doi: 10.3934/mbe.2019133 |
[9] | Yue Xing, Weihua Jiang, Xun Cao . Multi-stable and spatiotemporal staggered patterns in a predator-prey model with predator-taxis and delay. Mathematical Biosciences and Engineering, 2023, 20(10): 18413-18444. doi: 10.3934/mbe.2023818 |
[10] | Ting Yu, Qinglong Wang, Shuqi Zhai . Exploration on dynamics in a ratio-dependent predator-prey bioeconomic model with time delay and additional food supply. Mathematical Biosciences and Engineering, 2023, 20(8): 15094-15119. doi: 10.3934/mbe.2023676 |
In ecological systems, the interactions between different species can generate rich phenomena. Many models are derived to illustrate the predator-prey system from the view of both mathematics and biology [2,22,28,32]. Meanwhile, it is well known that the spatial structure may further affect the population dynamics of the species [7,8,15]. The spatially homogeneous reaction-diffusion predator-prey model with classical Lotka-Volterra interaction and no flux boundary conditions has been studied by many scholars, and the unique positive steady state solution is globally asymptotically stable in that case [21]. Our work is based on the important contribution of Yi, Wei and Shi [35] in the bifurcation analysis from the constant coexistence equilibrium solution of the following Rosenzweig-MacArthur model with Holling type-Ⅱ functional response [14,27]:
$(BP)
{Ut−d1ΔU=r1U(1−UK)−m1UVγ+U,x∈Ω, t>0,Vt−d2ΔU=−r2V+m2UVγ+U,x∈Ω, t>0,∂νU=∂νV=0,x∈∂Ω, t>0.U(x,0)=U0(x)≥0, V(x,0)=V0(x)≥0,x∈Ω.
$
|
Here
It is worth noting that the functional responses in two species are the same in the model
The term was invented by Dutch biologist Hans Kruuk [16] after studying spotted hyenas in Africa and red foxes in England. Other than humans, surplus killing has been observed among zooplankton, weasels, honey badgers, wolves, red foxes, leopards, lions, spotted hyenas, spiders[1,5,9,11,17,19,20,31]. The emergence of these phenomena refers to the fact that animals may only partially consume or abandon intact prey they have captured. There are many documented examples of predators exhibiting surplus killing. For example, Samu and Bíró [30] have found that the wandering spider, Pardosa hortensis (Lycosidae), exhibited significant levels of both partial feeding and prey abandonment at high rates of encounter with prey. In Canada's Northwest Territories, the researchers once found the bodies of 34 neonatal caribou calves that had been killed by wolves and scattered-some half-eaten and some completely untouched-over 3 square kilometres. In surplus killing, predators eat only the most-preferred animals and animal parts. Bears engaging in surplus killing of salmon are likelier to eat unspawned fish because of their higher muscle quality, and high-energy parts such as brains and eggs [16]. Surplus killing can deplete the overall food supply, waste predator energy and risk them being injured. Nonetheless, researchers say animals surplus kill whenever they can, in order to procure food for offspring and others, to gain valuable killing experience, and to create the opportunity to eat the carcass later when they are hungry again.
Inspired by their work, in this article, we would like to study the following predator-prey system with the predator exhibiting a "surplus killing" behaviour which can be demonstrated by different functional responses in the equations.
$
{∂u∂t−d1Δu=r1u(1−uK1)−m1uv, x∈Ω, t>0,∂v∂t−d2Δv=r2v(1−vK2)+m2uvγ+u, x∈Ω, t>0,∂u∂ν =∂u∂ν =0, x∈∂Ω, t>0,u(x,0)=u0(x)≥0(≢0), v(x,0)=v0(x)≥0(≢0), x∈Ω.
$
|
(1) |
Here
With a dimensionless change of variables:
$ \tilde{u}=\cfrac{u}{\gamma},~~\tilde{v}=\cfrac{v}{K_2},~~\tilde{t}=r_1 t,~~\tilde{d_1}=\cfrac{d_1}{r_1},~~\tilde{d_2}=\cfrac{d_2}{r_1},\\ $ |
$ ~~\theta=\cfrac{r_2}{r_1},~\widetilde{\gamma}=\cfrac{\gamma}{K_1},~~\widetilde{m}_1=\cfrac{m_1K_2}{r_1},~~\widetilde{m}_2=\cfrac{ m_2}{r_1}, $ |
still denote
$
{∂u∂t−d1Δu=u(1−γu)−m1uv,x∈Ω, t>0,∂v∂t−d2Δv=θv(1−v)+m2uv1+u,x∈Ω, t>0,∂u∂ν = ∂u∂ν =0,x∈∂Ω, t>0.u(x,0)=u0(x)≥0(≢0), v(x,0)=v0(x)≥0(≢0),x∈Ω.
$
|
(2) |
Considering that the biomass that predator consumed cannot convert into the new production for an instant, we add time delay into the functional response of the second equation of (2), and make it conform with natural situation:
$
{∂u(x,t)∂t−d1Δu(x,t)=u(x,t)(1−γu(x,t))−m1u(x,t)v(x,t), x∈Ω, t>0,∂v(x,t)∂t−d2Δv(x,t)=θv(x,t)(1−v(x,t))+m2u(x,t−τ)v(x,t)1+u(x,t−τ), x∈Ω, t>0,∂u∂ν=∂u∂ν =0, x∈∂Ω, t>0,u(x,t)=u0(x,t)≥0(≢0), v(x,t)=v0(x,t)≥0(≢0), x∈Ω, −τ≤t≤0.
$
|
(3) |
Here,
Define the real-valued Sobolev space
$ X:=\{(u,v)\in H^{2}(0,l\pi)\times H^{2}(0,l\pi)|u_{x}=v_{x}=0,x=0,l\pi\}, $ |
with inner product
For sake of discussion, we make the following assumption:
$\left( {H1} \right){m_1} < 1.$ |
The system (3) always has three non-negative constant equilibrium solutions:
$u∗=12γθ[−Γ+√Γ2−4γθ2(m1−1)],v∗=1m1(1−γu∗).
$
|
with
Our main contribution for this article is a detailed and rigorous analysis about the global dynamics of the positive equilibrium of the diffusive predator-prey system (2). Keeping other parameters constant, we use the predation rate
The rest of the paper is organized as follows. In Section 2, the existence and priori bound of a positive solution for the reaction diffusion system are given, and the global asymptotically stability of positive equilibrium is proved. In Section 3, the stability of the positive constant steady state is considered, and the existence of the related Hopf bifurcation at the critical points is investigated with delay as the bifurcation parameter. In Section 4, by applying the normal form theory and center manifold reduction of partial functional differential equations, some detailed results of Hopf bifurcation are derived. Some numerical simulations are presented in Section 5. Throughout the paper, we denote
In this section, we shall investigate the existence of a positive solution for system (3) with delay
Clearly, the system (3) with
$
{∂u(x,t)∂t−d1Δu(x,t)=u(x,t)(1−γu(x,t))−m1u(x,t)v(x,t),x∈Ω, t>0,∂v(x,t)∂t−d2Δv(x,t)=θv(x,t)(1−v(x,t))+m2u(x,t)v(x,t)1+u(x,t),x∈Ω, t>0,∂u∂ν = ∂u∂ν =0,x∈∂Ω, t>0,u(x,0)=u0(x)≥0(≢0), v(x,0)=v0(x)≥0(≢0),x∈Ω,
$
|
(4) |
where
Theorem 2.1. Suppose that
$ 0<u(x,t)\leq u^*(t),~0<v(x,t)\leq v^*(t),~for~t>0~and~x\in\Omega, $ |
where
$
\left\{ {dudt=u(1−γu)dvdt=θv(1−v)+m2uv1+u,u(0)=u0,v(0)=v0, } \right.
$
|
(5) |
and
$ u_0=\sup\limits_{x\in\overline{\Omega}}u_0(x), ~~~~v_0=\sup\limits_{x\in\overline{\Omega}}v_0(x); $ |
$ \limsup\limits_{t\to\infty} u(x,t)\leq \cfrac{1}{\gamma} ,~~~~\limsup\limits_{t\to\infty} v(x,t)\leq 1+\cfrac{m_2}{\theta}. $ |
Proof. Define
$ f(u,v)=u(1-\gamma u)-m_1 uv,~~~~~~g(u,v)=\theta v(1-v)+\cfrac{m_2 uv}{1+u}. $ |
Obviously, for any
$ \text{D}f_v=-m_1 u\leq 0 ,~~~~ \text{D}g_u=\cfrac{m_2 v}{(1+u)^2}\geq 0, $ |
thus system (4) is a mixed quasi-monotone system(see[23]). Let
$ (\underline{u}(x,t),~\underline{v}(x,t))=(0,~0)~~ \mbox{and} ~~(\bar{u}(x,t),~\bar{v}(x,t))=(u^*(t),~v^*(t)). $ |
Substitute
$ \cfrac{\partial \bar{u}}{\partial t}-d_1\Delta\bar{u}-f(\bar{u},\underline{v})=0\geq 0=\cfrac{\partial\underline{u}}{\partial t}-d_1\Delta \underline{u}-f(\underline{u},\bar{v}), $ |
$ \cfrac{\partial \bar{v}}{\partial t}-d_2\Delta\bar{v}-g(\bar{u},\bar{v})=0\geq 0=\cfrac{\partial\underline{v}}{\partial t}-d_2\Delta \underline{v}-g(\underline{u},\underline{v}), $ |
and
$ 0\leq\ u_0(x)\leq u_0,~~~~0\leq v_0(x)\leq v_0. $ |
Then
$ 0\leq u(x,t)\leq u^*(t),~~0\leq v(x,t)\leq v^*(t),~t\geq0. $ |
Since
Let
${dudt=u(1−γu),u(0)=u0>0. $
|
One can see that
$ u(x,t)\leq 1/\gamma+\varepsilon ,~~~~ \mbox{for}~~t\geq T_0~~\mbox{and}~~x\in\overline{\Omega}, $ |
which implies that
$ \limsup\limits_{t\to\infty}u(x,t)\leq 1/\gamma. $ |
Let
$
{dvdt=θv(1−v)+m2v,v(0)=v0.
$
|
Then we have
$ \theta v(1-v)+\cfrac{m_2 uv}{1+u}\leq\theta v(1-v)+m_2 v, $ |
it follows that
$ v(x,t)\leq 1+\cfrac{m_2}{\theta}+\varepsilon'~~ \mbox{for}~~t\geq T_0'~~\mbox{and}~~x\in\overline{\Omega}, $ |
which implies that
$ \limsup\limits_{t\to\infty}v(x,t)\leq 1+\cfrac{m_2}{\theta}. $ |
The proof is complete.
In this section, we shall give the conditions to ensure that the positive constant equilibrium
Theorem 2.2. Suppose that
$ (H2)m_1\left(1+\cfrac{m_2}{\theta(1+\gamma)}\right)<1 $ |
are satisfied. Then the positive equilibrium
$ \lim\limits_{t\to\infty}u(x,t)=u_*,~\lim\limits_{t\to\infty}v(x,t)=v_*,~~ \mbox{for}~~ x\in\overline{\Omega}. $ |
Proof. In Section 2.1, we get that
$u(x,t)\leq 1/\gamma+\varepsilon, ~~~ \mbox{for}~~ t>T_0,~~x\in\overline{\Omega}.$ |
From
$ m_1+(1+m_1)\varepsilon_0+\cfrac{m_1 m_2(1+\gamma \varepsilon_0)}{\theta(1+\gamma+\gamma \varepsilon_0)}<1. $ | (6) |
Let
$ \cfrac{\partial v}{\partial t}=d_2 \Delta v+\theta v(1-v)+\cfrac{m_2u v}{1+u}\leq d_2 \Delta v+\theta v(1-v)+\cfrac{m_2 \bar{c}_1 v}{1+\bar{c}_1}, $ |
for
$ \bar{c}_2=1+\cfrac{m_2 \bar{c}_1 }{\theta(1+\bar{c}_1)}+\varepsilon_0. $ |
Again we have
$ \cfrac{\partial u}{\partial t}=d_1 \Delta u+u(1-\gamma u)-m_1 uv\geq d_1 \Delta u+u(1-\gamma u)-m_1 u\bar{c}_2, $ |
for
$ 1-m_1 \bar{c}_2>0, ~~ \mbox{and}~~~ 1-m_1 \bar{c}_2-\varepsilon_0>0. $ |
Hence, there exists a
$ \underline{c}_1=\cfrac{1}{\gamma}(1-m_1 \bar{c}_2-\varepsilon_0). $ |
Finally, using the similar method shown above, we have
$ \cfrac{\partial v}{\partial t}=d_2 \Delta v+\theta v(1-v)+\cfrac{m_2u v}{1+u}\geq d_2 \Delta v+\theta v(1-v)+\cfrac{m_2 \underline{c}_1 v}{1+\underline{c}_1}, $ |
for
$ 1+\cfrac{m_2 \underline{c}_1}{\theta(1+\underline{c}_1)}>1,~~\mbox{and}~~1+\cfrac{m_2 \underline{c}_1}{\theta(1+\underline{c}_1)}-\varepsilon_0>1. $ |
Then there exists a
$ \underline{c}_2=1+\cfrac{m_2 \underline{c}_1}{\theta(1+\underline{c}_1)}-\varepsilon_0. $ |
Therefor for
$ \underline{c}_1\leq u(x,t)\leq \bar{c}_1,~~~~\underline{c}_2\leq v(x,t)\leq \bar{c}_2, $ |
and
$ 1-\gamma \bar{c}_1-m_1 \underline{c}_2\leq 0,~~ 1-\bar{c}_2+\cfrac{m_2 \bar{c}_1}{\theta(1+\bar{c}_1)}\leq 0, $ |
$ 1-\gamma \underline{c}_1-m_1 \bar{c}_2\geq 0,~~ 1-\underline{c}_2+\cfrac{m_2 \underline{c}_1}{\theta(1+\underline{c}_1)}\geq 0. $ |
Then
To investigate the asymptotic behavior of the positive equilibrium, we define two sequences of constant vectors
$
{ˉu(m)=ˉu(m−1)+1L1[ˉu(m−1)(1−γˉu(m−1))−m1ˉu(m−1)v_(m−1)],u_(m)=u_(m−1)+1L1[u_(m−1)(1−γu_(m−1))−m1u_(m−1)ˉv(m−1)],ˉv(m)=ˉv(m−1)+1L2[θˉv(m−1)(1−ˉv(m−1))+m2ˉu(m−1)ˉv(m−1)1+ˉu(m−1)],v_(m)=v_(m−1)+1L2[θv_(m−1)(1−v_(m−1))+m2u_(m−1)v_(m−1)1+u_(m−1)],
$
|
(7) |
where
Then for
$(u_(0),v_(0))≤(u_(m),v_(m))≤(u_(m+1),v_(m+1))≤(ˉu(m+1), ˉv(m+1))≤(ˉu(m), ˉv(m))≤(ˉu(0), ˉv(0)), $
|
and
$ (\bar{u}^{(m)},~\bar{v}^{(m)})\rightarrow(\bar{u},\bar{v}), ~(\underline{u}^{(m)},~\underline{v}^{(m)})\rightarrow(\underline{u},\underline{v}),~~\mbox{as}~~m\rightarrow\infty. $ |
From the recursion (7), we can obtain that
$
ˉu(1−γˉu)−m1ˉuv_=0, θˉv(1−ˉv)+m2ˉuˉv1+ˉu=0,u_(1−γu_)−m1u_ˉv=0, θv_(1−v_)+m2u_ v_1+u_=0.
$
|
(8) |
Simplify the equations, we get
$ \gamma (\bar{u}-\underline{u})=m_1(\bar{v}-\underline{v}),~m_2(\bar{u}-\underline{u})=\theta(1+\bar{u})(1+\underline{u})(\bar{v}-\underline{v}). $ |
Then we obtain
$ \cfrac{\gamma}{m_1}(\bar{u}-\underline{u})=\cfrac{m_2(\bar{u}-\underline{u})}{\theta(1+\bar{u})(1+\underline{u})}. $ | (9) |
If we assume that
$ \cfrac{\underline{u}}{1+\underline{u}}=1-\cfrac{\theta \gamma(1+\bar{u})}{m_1 m_2}. $ | (10) |
From Eq.(8), we can also have
$ \underline{v}=\frac{1}{m_1}(1-\gamma \bar{u}) ~~ \mbox{and}~~ 1-\underline{v}+\frac{m_2 \underline{u}}{\theta (1+\underline{u})}=0. $ | (11) |
Substituting the first equation of Eq.(11) and Eq.(10) into the second equation of Eq.(11), it follows that
$ 1-\cfrac{1}{m_1}(1-\gamma \bar{u})+\cfrac{m_2}{\theta}\left(1-\cfrac{\theta \gamma(1+\bar{u})}{m_1 m_2}\right)=0, $ |
that is
$ \cfrac{1}{m_1}=\cfrac{m_2}{\theta(1+\gamma)}+\cfrac{1}{1+\gamma}. $ | (12) |
This is a contraction to the condition
Now we investigate the local stability of positive equilibrium
$ U(t):=(u(t),v(t))^T. $ |
Then the system (4) can be rewritten as
$ \dot{U}(t)=D\Delta U(t)+F(U), $ | (13) |
where
$ D=\text{diag}\{d_1,d_2\},~~\mbox{and}~~F:X\to \mathbb{R}^2, $ |
is defined by
$
F(U)=\left(u(t)(1−γu(t))−m1u(t)v(t)θv(t)(1−v(t))−m2u(t)v(t)1+u(t) \right).
$
|
We consider the linearization at
$ \dot{U}(t)=D\Delta U(t)+L_{E_*}(U), $ | (14) |
where
$
L_{E_*}=\left(−γu∗−m1u∗m2v∗(1+u∗)2−θv∗ \right),\\
$
|
and its characteristic equation satisfies
$ \lambda\xi-D\Delta \xi-L_{E_*}\xi=0. $ | (15) |
It is well known that the eigenvalue problem
$ -\Delta \varphi = \mu \varphi, \quad x\in (0,l\pi), \quad \quad \varphi_x|_{x=0, l\pi}=0, $ |
has eigenvalues
$ \mu_n=n^2/l^2, n\in\mathbb{N}_0=\mathbb{N}\cup\{0\}, $ |
with corresponding eigenfunctions
$
\left(ϕψ \right)=\sum\limits_{n=0}^\infty\left(anbn \right)\cos(nx/l),~~a_n,~b_n\in \mathbb{C},
$
|
be an eigenfunction for (15). Then from a straightforward computation, we obtain that the eigenvalues of (15) can be given by the following equations
$ \text{det}(\lambda I+D\cfrac{n^2}{l^2}-L_{E_1})=0,~~~~~~~~~n\in\mathbb{N}_0, $ |
where
$ \lambda^2-T_n\lambda+D_n+B_*=0, ~~n\in\mathbb{N}_0. $ | (16) |
For all
$
Tn=−(d1+d2)n2l2−(γu∗+θv∗)<0,Dn+B∗=(d1n2l2+γu∗)(d2n2l2+θv∗)+m1m2u∗v∗(1+u∗)2>0.
$
|
Then all the roots of Eq.(16) have negative real parts. This implies that the positive equilibrium
The above result indicates that
Remark 1. According to the relationship between the original equation (1) and the dimensionless equation (2), we can illustrate the effect of "surplus killing". There are two different functional responses in equation (1), in order to be consistent with the assumptions, let the consumption rate
Remark 2. If
$ \cfrac{\partial v}{\partial t}=d_2 \Delta v+\theta v(1-v)+\cfrac{m_2u v}{1+u}\geq d_2 \Delta v+\theta v(1-v). $ |
It is well known that the positive solution of latter equation uniformly approach to
$ \cfrac{\partial u}{\partial t}=d_1 \Delta u+u(1-\gamma v)-m_1 uv \leq d_2 \Delta u+u(1-\gamma u-m_1(1-\varepsilon)), $ |
for
In this section, we shall study the stability of the positive constant steady state
The linearization of system (13) at
$ \dot{U}(t)=D\Delta U(t)+L_*(U_t), $ | (17) |
where
$ L_*(\phi_t)=L_1\phi(0)+L_2\phi(-\tau), $ |
and
$\begin{array}{l} L_1=\left( \begin{array}{cc} -\gamma u_*&-m_1 u_*\\ 0 &-\theta v_* \end{array} \right),~~
L_2=\left( 00m2v∗(1+u∗)20 \right),
\end{array}$
|
$ \phi(t)=(\phi_1(t),~\phi_2(t))^T,~~\phi_t(\cdot)=(\phi_1(t+\cdot),~\phi_2(t+\cdot))^T. $ |
The corresponding characteristic equation satisfies
$ \lambda \xi-D\Delta \xi-L(e^{\lambda\,\cdot}\xi)=0, $ | (18) |
where
$\det\left(\lambda I+D\cfrac{n^2}{l^2}-L_1-L_2 e^{-\lambda\tau}\right)=0,~~n\in\mathbb{N}_0.$ |
That is, each characteristic value
$ \lambda^2-T_n\lambda+D_n+B_*e^{-\lambda\tau}=0, ~~n\in\mathbb{N}_0, $ | (19) |
where
$
Tn=−(d1+d2)n2l2−γu∗−θv∗,Dn=(d1n2l2+γu∗)(d2n2l2+θv∗),B∗=m1m2u∗v∗(1+u∗)2.
$
|
Clearly,
Let
$-\omega^2-T_n i\omega+D_n+B_*e^{-i\omega\tau}=0.$ |
Separating the real and imaginary parts, it follows that
$
{B∗cosωτ=ω2−Dn,B∗sinωτ=−Tnω.
$
|
(20) |
Then we have
$ \omega^4-(2D_n-T_n^2)\omega^2+D_n^2-B^2_*=0. $ | (21) |
Denote
$ z^2-(2D_n-T_n^2)z+D_n^2-B_*^2=0, $ | (22) |
where
$ 2D_n-T_n^2=-(d_1^2+d_2^2)\cfrac{n^4}{l^4}-2(d_1\gamma u_*+d_2\theta v_*)-(\gamma^2u_*^2+\theta^2 v_*^2)<0. $ |
Hence Eq.(22) has a unique positive root
$ z_n=\cfrac{2D_n-T_n^2+\sqrt{(2D_n-T_n^2)^2-4(D_n^2-B_*^2)}}{2}, $ |
only if
From the explicit formula of
$ D_n-B_*=d_1d_2\cfrac{n^4}{l^4}+(d_1\theta v_*+d_2\gamma u_*)\cfrac{n^4}{l^4}+D_0-B_* \to\infty,~\text{as}~n\to\infty, $ |
where
$ D_0-B_*=\gamma\theta u_*v_*-\cfrac{m_2m_1 u_*v_*}{(1+u_*)^2}, $ |
and if
$ D_0-B_*= u_*v_*\left(\gamma\theta-\cfrac{m_2 m_1 }{(1+u_*)^2}\right)<0, $ |
we find a constant
$ D_n-B_*<0,~~\mbox{for}~~0\leq n< n_*. $ |
and
$ D_n-B_*\geq0,~~\mbox{for}~~n\geq n_*. $ |
Here we denote the set
$ \mathcal{S}=\{n\in\mathbb{N}_0|~D_n-B_*<0\}. $ |
By Eq.(20), we have
$ \tau_{n,j}=\cfrac{1}{\omega_n}\left(\arccos\cfrac{\omega_n^{2}-D_n}{B_*}+2j\pi\right),~j\in\mathbb{N}_0,~n\in\mathcal{S}. $ | (23) |
Following the work of Cooke and Grassman[6], we have
Lemma 3.1. Suppose that
$ \text{sign}~\alpha'(\tau_{n,j})=1,~~for~j\in\mathbb{N}_0,~n\in\mathcal{S}, $ |
where
$ \alpha(\tau)= ~\textrm{Re}\lambda(\tau). $ |
Proof. Substituting
$ (2\lambda-T_n-\tau B_*e^{-\lambda\tau})\cfrac{\text{d}\lambda}{\text{d}\tau}-\lambda B_*e^{-\lambda\tau}=0. $ |
Thus
$ \left(\cfrac{\text{d}\lambda}{\text{d}\tau}\right)^{-1}=\cfrac{2\lambda-T_n-\tau B_*e^{-\lambda\tau}}{\lambda B_*e^{-\lambda\tau}}. $ |
By Eq.(20), we have
$
Re(dλdτ)−1|τ=τn,j=2ωncosωnτn,j−Tnsinωnτn,jB∗ωn=2ω2n−2Dn+T2nB2∗=√T4n−4T2nDn+4B2∗B2∗.
$
|
Since the sign of
From the Proposition 2.3 of [4], we have that
$ \tau_{n,j}\leq\tau_{n,j+1},~~\mbox{for all}~~~j\in\mathbb{N}_0,n\in\mathcal{S}, $ |
and
$ \tau_{n,j}\leq\tau_{n+1,j},~~\mbox{for all}~~~j\in\mathbb{N}_0,n\in\mathcal{S}. $ |
Then
Lemma 3.2. Assume that
$ T_n^4-4T_n^2D_n+4B_*^2<0, $ |
or
$ T_n^4-4T_n^2D_n+4B_*^2\geq0~~and~~\gamma\theta -\cfrac{m_2 m_1}{(1+u_*)^2}>0, $ |
for all
$ \gamma\theta -\cfrac{m_2 m_1}{(1+u_*)^2}<0, $ |
then for
$ \tau=\tau_{n,j}~~,~~j\in\mathbb{N}_0,~n\in\mathcal{S}, $ |
the
From Lemmas 3.1 and 3.2, we have the following theorem.
Theorem 3.3. Assume that
$ T_n^4-4T_n^2D_n+4B_*^2<0, $ |
or
$ T_n^4-4T_n^2D_n+4B_*^2\geq0~~and~~\gamma\theta -\cfrac{m_2 m_1}{(1+u_*)^2}>0, $ |
for all
$ \gamma\theta-\cfrac{m_2 m_1 }{(1+u_*)^2}<0, $ |
then system (3) undergoes a Hopf bifurcation at the equilibrium
In section 3, we obtained some conditions under which the system (3) undergoes a Hopf bifurcation. In this section, we shall study the direction of Hopf bifurcation near the positive equilibrium and stability of the bifurcating periodic solutions. We are able to show more detailed information of Hopf bifurcation by using the normal form theory and center manifold reduction due to [10,13,33].
Rescaling the time
$
{∂˜u∂t=τ[d1Δ˜u−γu∗˜u−m1u∗˜v−f1(ut,vt)],x∈Ω, t>0,∂˜v∂t=τ[d2Δ˜v−θv∗˜v+m2v∗(1+u∗)2ut(−1)+f2(ut,vt)],x∈Ω, t>0,∂˜u∂ν=0, ∂˜v∂ν=0,x∈∂Ω, t>0,˜u(x,t)=˜u0(x,t), ˜v(x,t)=˜v0(x,t),x∈Ω,−1≤t≤0,
$
|
(24) |
where
$ u_t=u(x,t+\theta),~v_t=v(x,t+\theta),~~\theta\in [-1,0], $ |
$ \tilde{u}_0(x,t)=u_0(x,t)-u_*,~~\tilde{v}_0(x,t)=v_0(x,t)-v_*, $ |
and for
$ f_1(\phi_1,\phi_2)=-\gamma\phi_1(0)^2-m_1 \phi_1(0)\phi_2(0), $ | (25) |
$
f2(ϕ1,ϕ2)=−θϕ2(0)2+m2(1+u∗)2ϕ1(−1)ϕ2(0)−m2v∗(1+u∗)3ϕ1(−1)2−m2(1+u∗)3ϕ1(−1)2ϕ2(0)+m2v∗(1+u∗)4ϕ1(−1)3+O(4).
$
|
(26) |
Let
$ \dot{U}(t)=\tilde{D}\Delta U(t)+L_\epsilon(U_t)+F(\epsilon,U_t), $ | (27) |
where
$ \widetilde{D}=(\tau^*+\epsilon)D~~\mbox{and}~~L_\epsilon:\mathcal{C}\to X,~F:\mathcal{C}\to X $ |
are defined, respectively, by
$ L_\epsilon(\phi(\theta))=(\tau^*+\epsilon)L_1\phi(0)+(\tau^*+\epsilon)L_2\phi(-1), $ |
$ F(\epsilon,\phi(\theta))=(F_1(\epsilon,\phi(\theta)),~F_2(\epsilon,\phi(\theta)))^T, $ |
with
$ (F_1(\epsilon,\phi(\theta)),~F_2(\epsilon,\phi(\theta)))=(\tau^*+\epsilon)(f_1(\phi_1(\theta),\phi_2(\theta)),~f_2(\phi_1(\theta),\phi_2(\theta))), $ |
where
The linearized equation at the origin
$ \dot{U}(t)=\widetilde{D}\Delta U(t)+L_\epsilon(U_t). $ | (28) |
According to the theory of semigroup of linear operator [26], we have the solution operator of (28) is a
$
\mathcal{A}_{\epsilon}\phi={˙ϕ(θ),θ∈[−1,0),˜DΔϕ(0)+Lϵ(ϕ),θ=0,
$
|
(29) |
with
$ \text{dom}(\mathcal{A}_\epsilon):=\{\phi\in\mathcal{C}: \dot{\phi}\in\mathcal{C}, \phi(0)\in\text{dom}(\Delta), \dot{\phi}(0)=\widetilde{D}\Delta\phi(0)+L_{\epsilon}(\phi)\}. $ |
When
Hence, equation (27) can be rewritten as the abstract ODE in
$ \dot{U}_t=\mathcal{A}_\epsilon U_t+X_0 F(\epsilon,U_t), $ | (30) |
where
$
X_0(\theta)={0,θ∈[−1,0),I,θ=0.
$
|
We denote
$ b_n=\cfrac{\cos (nx/l)}{\|\cos(nx/l)\|},~ ~\beta_n=\{(b_n, 0)^{T}, (0, b_n)^{T}\}, $ |
where
$ \|\cos(nx/l)\|=\left(\int_0^{l\pi}\cos^2(nx/l)\text{d}x\right)^{\frac{1}{2}}. $ |
For
$ \phi_n=\langle \phi,\beta_n\rangle=\left(\langle \phi^{^{(1)}},b_n\rangle, \langle \phi^{^{(2)}},b_n\rangle\right)^{T}. $ |
Define
$
\mathcal{A}_{\epsilon, n}(\phi_n(\theta)b_n)={˙ϕn(θ)bn,θ∈[−1,0),∫0−1dηn(ϵ,θ)ϕn(θ)bn,θ=0,
$
|
(31) |
and
$ L_{\epsilon, n}(\phi_n)=(\tau^*+\epsilon)L_1\phi_n(0)+(\tau^*+\epsilon)L_2\phi_n(-1), $ |
$ \int_{-1}^{0}\text{d}\eta_n(\epsilon,\theta)\phi_n(\theta)=-\cfrac{n^2}{l^2} \widetilde{D}\phi_n(0)+L_{\epsilon,n}(\phi_n), $ |
where
$
\eta_n(\epsilon,\theta)={−(τ∗+ϵ)L2,θ=−1,0,θ∈(−1,0),(τ∗+ϵ)L1−n2l2˜D,θ=0.
$
|
Denote
$
\mathcal{A}^*\psi(s)={−˙ψ(s), s∈(0,1],∞∑n=0∫0−1dηTn(0,θ)ψn(−θ)bn, s=0.
$
|
Following [10], we introduce the bilinear formal
$ (\psi,\phi)=\sum\limits_{k,j=0}^\infty(\psi_k,\phi_j)_c\int_\Omega b_kb_j\text{d}x, $ |
where
$ \psi=\sum\limits_{n=0}^\infty \psi_nb_n\in\mathcal{C}^*,~\phi=\sum\limits_{n=0}^\infty \phi_nb_n\in\mathcal{C}, $ |
and
$ \phi_n\in C:=C([-1,0],\mathbb{R}^2),~~\psi_n\in C^*:=C([0,1],\mathbb{R}^2). $ |
Notice that
$ \int_\Omega b_kb_j\text{d}x=0~~\mbox{for}~~k\neq j, $ |
we have
$ (\psi,\phi)=\sum\limits_{n=0}^\infty(\psi_n,\phi_n)_c|b_n|^2, $ |
where
$ (\psi_n,\phi_n)_c=\overline{\psi}_n^T(0)\phi_n(0)-\int_{-1}^0\int_{\xi=0}^\theta\overline{\psi}_n^T(\xi-\theta) \text{d}\eta_n(0,\theta)\phi_n(\xi)\text{d}\xi. $ |
Let
$ q(\theta)b_{n_0}=q(0)e^{i\omega_{n_0}\tau^*\theta}b_{n_0}, ~q^*(s)b_{n_0}=q^*(0)e^{i\omega_{n_0}\tau^* s}b_{n_0} $ |
be the eigenfunctions of
$ q(0)=(1, q_1)^{T},~q^*(0)=M(q_2, 1)^{T}, $ |
so that
$q1=−iωn0+d1n20/l2+γu∗m1u∗, q2=iωn0−d2n20/l2−θv∗m1u∗,¯M=(1+u∗)2(q1+ˉq2)(1+u∗)2+τ∗m2v∗e−iωn0τ∗. $
|
Then we decompose the space
$ \mathcal{C}=P\oplus Q, $ |
where
$ P=\{zqb_{n_0}+\overline{z}\overline{q}b_{n_0}|z\in\mathbb{C}\}, $ |
$ Q=\{\phi\in\mathcal{C}|(q^*b_{n_0},\phi)=0~\text{and}~(\overline{q}^*b_{n_0},\phi)=0\}. $ |
That is
Thus, system (30) could be rewritten as
$ U_t=z(t)q(\cdot)b_{n_0}+\bar{z}(t)\bar{q}(\cdot)b_{n_0}+W(t,\cdot), $ |
where
$ z(t)=(q^*b_{n_0}, U_t),~~~W(t,\cdot)\in Q, $ | (32) |
and
$ W(t,\theta)=U_t(\theta)-2\text{Re}\{z(t)q(\theta)b_{n_0}\}. $ | (33) |
Then we have
$ \dot{z}(t)=i\omega_0z(t)+\bar{q}^{*T}(0)\langle F(0, U_t), \beta_{n_0}\rangle, $ | (34) |
where
$ \langle F, \beta_{n} \rangle:=(\langle F_1, b_{n}\rangle,\langle F_2, b_{n} \rangle)^T. $ |
It follows from Appendix A of [13](also see [18]), there exists a center manifold
$ W(t,\theta)=W(z(t),\bar{z}(t),\theta)=W_{20}(\theta)\frac{z^2}{2}+W_{11}(\theta)z\bar{z} +W_{02}(\theta)\frac{\bar{z}^2}{2}+\cdots, $ | (35) |
For solution
$ F(0, U_t)\mid _{\mathscr{C}_0}=\tilde{F}(0, z, \bar{z}), $ |
and
$ \tilde{F}(0, z, \bar{z})=\tilde{F}_{20}\frac{z^2}{2}+\tilde{F}_{11}z\bar{z}+\tilde{F}_{02}\frac{\bar{z}^2}{2} +\tilde{F}_{21}\frac{z^2\bar{z}}{2}+\cdots. $ |
Therefore the system restricted to the center manifold is given by
$ \dot{z}(t)=i\omega_0z(t)+g(z,\bar{z}), $ |
and denote
$g(z,\bar{z})=g_{20}\frac{z^2}{2}+g_{11}z\bar{z}+g_{02}\frac{\bar{z}^2}{2} +g_{21}\frac{z^2\bar{z}}{2}+\cdots.$ |
By direct calculation, we get
$g20=τ∗ˉM∫lπ0b3n0dx[ˉq2(−2γ−2m1q1)−2θq21+2m2q1(1+u∗)2e−iωn0τ∗−2m2v∗(1+u∗)3e−i2ωn0τ∗],g11=τ∗ˉM∫lπ0b3n0dx[ˉq2(−2γ−m1(q1+ˉq1))−2θq1ˉq1+m2(1+u∗)2(q1eiωn0τ∗+ˉq1e−iωn0τ∗+)−2m2v∗(1+u∗)3], $
|
$
g02=τ∗ˉM∫lπ0b3n0dx[ˉq2(−2γ−2m1ˉq1)−2θˉq21+2m2ˉq1(1+u∗)2eiωn0τ∗−2m2v∗(1+u∗)3ei2ωn0τ∗],g21=τ∗ˉM(Q1∫lπ0b4n0dx+Q2∫lπ0b2n0dx),
$
|
where
$
Q1=6m2v∗(1+u∗)4e−iωn0τ∗−2m2(1+u∗)3(2q1+ˉq1e−i2ωn0τ∗),Q2=ˉq2{−2γ[W(1)20(0)+2W(1)11(0)]−m1[W(2)20(0)+2W(2)11(0)+ˉq1W(1)20(0)+2q1W(1)11(0)]}−2θ[ˉq1W(2)20(0)+2q1W(2)11(0)]+m2(1+u∗)2[ˉq1W(1)20(−1)+W(2)20(0)eiωn0τ∗+2q1W(1)11(−1)+2W(2)11(0)e−iωn0τ∗]−2m2v∗(1+u∗)3[W(1)20(−1)eiωn0τ∗+2W(1)11(−1)e−iωn0τ∗].
$
|
Since
$
˙W=˙Ut−˙zqbn0−˙ˉzˉqbn0={A0W−2Re{g(z,ˉz)q(θ)}bn0,θ∈[−r,0),A0W−2Re{g(z,ˉz)q(θ)}bn0+˜F,θ=0,≐A0W+H(z,ˉz,θ),
$
|
(36) |
where
$ H(z,\bar{z},\theta)=H_{20}(\theta)\frac{z^2}{2}+H_{11}(\theta)z\bar{z}+H_{02}(\theta)\frac{\bar{z}^2}{2}+\cdots. $ |
Obviously,
$
H20(θ)={−g20q(θ)bn0−ˉg02ˉq(θ)bn0,θ∈[−r,0),−g20q(0)bn0−ˉg02ˉq(0)bn0+˜F20,θ=0,H11(θ)={−g11q(θ)bn0−ˉg11ˉq(θ)bn0,θ∈[−r,0),−g11q(0)bn0−ˉg11ˉq(0)bn0+˜F11,θ=0,⋯.
$
|
Comparing the coefficients of (36) with the derived function of (35), we obtain
$ (A_0 -2i\omega_0 I)W_{20}(\theta)=-H_{20}(\theta), A_0 W_{11}(\theta)=-H_{11}(\theta),~\cdots. $ | (37) |
From (29) and (37), for
$
W20(θ)=−g20iωn0τ∗(1q1)eiωn0τ∗θbn0−ˉg023iωn0τ∗(1ˉq1)e−iωn0τ∗θbn0+E1e2iωn0τ∗θ,W11(θ)=g11iωn0τ∗(1q1)eiωn0τ∗θbn0−ˉg11iωn0τ∗(1ˉq1)e−iωn0τ∗θbn0+E2,
$
|
(38) |
where
$ (A_0 -2i\omega_{n_0}^+\tau^*I)E_1e^{2i\omega_{n_0}^+\tau^*\theta}\mid_{\theta=0}+\tilde{F}_{20}=0, A_0 E_2\mid_{\theta=0}+\tilde{F}_{11}=0. $ | (39) |
The terms
$ \tilde{F}_{20}=\sum\limits_{n=1}^{\infty}\langle \tilde{F}_{20}, \beta_n \rangle b_n, \tilde{F}_{11}=\sum\limits_{n=1}^{\infty}\langle \tilde{F}_{11}, \beta_n \rangle b_n. $ |
Denote
$ E_1=\sum\limits_{n=0}^{\infty}E_1^n b_n,~~E_2=\sum\limits_{n=0}^{\infty}E_2^n b_n, $ |
then from (39) we have
$
(A0−2iωn0τ∗I)En1bne2iωn0τ∗θ∣θ=0=−⟨˜F20,βn⟩bn,A0En2bn∣θ=0=−⟨˜F11,βn⟩bn,n=0,1,⋯.
$
|
Thus,
$
En1=(2iωn0τ∗I−∫0−1e2iωn0τ∗θdηn(0,θ))−1⟨˜F20,βn⟩,En2=−(∫0−1dηn(0,θ))−1⟨˜F11,βn⟩,n=0,1,⋯,
$
|
where
$\langle \tilde{F}_{20}, \beta_n \rangle={1√lπˆF20,n0≠0, n=0,1√2lπˆF20,n0≠0, n=2n0,1√lπˆF20,n0=0, n=0,0,other, $
|
$\langle \tilde{F}_{11}, \beta_n \rangle={1√lπˆF11,n0≠0, n=0,1√2lπˆF11,n0≠0, n=2n0,1√lπˆF11,n0=0, n=0,0,other, $
|
$\hat{F}_{20}=\left[−2γ−2m1q1−2θq21+2m2q1(1+u∗)2e−iωn0τ∗−2m2v∗(1+u∗)3e−i2ωn0τ∗ \right],$
|
$\hat{F}_{11}=\left[−2γ−m1(q1+ˉq1)−2θq1ˉq1+m2(1+u∗)2(q1eiωn0τ∗+ˉq1e−iωn0τ∗)−m2v∗(1+u∗)3 \right].$
|
Hence,
Denote
$
c1(0)=i2ωn0τ∗(g20g11−2|g11|2−13|g02|2)+12g21,μ2=−Re(c1(0))τ∗Re(λ′(τ∗)), β2=2Re(c1(0)),T2=−1ωn0τ∗(Im(c1(0))+μ2(ωn0+τ∗Im(λ′(τ∗))).
$
|
(40) |
Then by the general result of Hopf bifurcation theory (see [13]), we know that the parameters in (40) determine the properties of Hopf bifurcation which we can describe specifically:
From 3.1 in Section 4, we know that
Theorem 4.1. If
In this section, we make some simulations to support and extend our analytical results. Taking
$ \gamma=0.01 ,~~~\theta=0.05 ,~~~m_1=0.20 ,~~~m_2=0.30 ,~~~d_1=1 ,~~~d_2=0.50. $ |
Since
$ \omega\approx 0.2074,~~~~ \tau^*\approx 4.6242. $ |
Furthermore, we have
If we choose
$ \gamma=0.01 ,~~~\theta=0.05 ,~~~m_1=2 ,~~~m_1=0.30 ,~~~d_1=1 ,~~~d_2=0.50, ~~~\tau=1. $ |
Here we chose
The initial conditions in all simulations are given by
Remark 3.
Fig. 2 and Fig. 3 come into being on the precondition of
The authors greatly appreciate the anonymous referees' careful reading and valuable comments. Their critical comments and helpful suggestions greatly improve the presentation of the manuscript.
[1] |
Y. Achdou, F. Camilli, A. Cutri and N. Tchou, Hamilton-Jacobi equations constrained on networks, NoDea Nonlinear Differential Equations Appl., 20 (2013), 413-445. doi: 10.1007/s00030-012-0158-1
![]() |
[2] |
Adimurthi, S. Mishra and G. D. Veerappa Gowda, Explicit Hopf-Lax type formulas for Hamilton-Jacobi equations and conservation laws with discontinuous coefficients, J. Differential Equations, 241 (2007), 1-31. doi: 10.1016/j.jde.2007.05.039
![]() |
[3] | J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Systems & Control: Foundations & Applications, 2. Birkhäuser Boston, Inc., Boston, MA, 1990. |
[4] |
M. Bardi and I. Capuzzo Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi- Bellman Equations, Systems & Control: Foundations & Applications, Birkhauser Boston Inc., Boston, MA, 1997. doi: 10.1007/978-0-8176-4755-1
![]() |
[5] | G. Barles, Solutions de Viscosité des Équations de Hamilton-Jacobi, Springer-Verlag, Paris, 1994. |
[6] |
G. Barles, A. Briani and E. Chasseigne, A Bellman approach for two-domains optimal control problems in $\mathbbR^N$, ESAIM COCV, 19 (2013), 710-739. doi: 10.1051/cocv/2012030
![]() |
[7] |
G. Barles, A. Briani and E. Chasseigne, A Bellman approach for regional optimal control problems in $\mathbbR^N$, SIAM J. Control Optim., 52 (2014), 1712-1744. doi: 10.1137/130922288
![]() |
[8] | arXiv:1405.0661. |
[9] |
G. Barles and E. R. Jakobsen, On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations, M2AN, 36 (2002), 33-54. doi: 10.1051/m2an:2002002
![]() |
[10] |
G. Barles and B. Perthame, Exit time problems in optimal control and vanishing viscosity method, SIAM J. in Control and Optimisation, 26 (1988), 1133-1148. doi: 10.1137/0326063
![]() |
[11] |
R. Barnard and P. Wolenski, Flow invariance on stratified domains, Set-Valued and Variational Analysis, 21 (2013), 377-403. doi: 10.1007/s11228-013-0230-y
![]() |
[12] |
A. Bressan and Y. Hong, Optimal control problems on stratified domains, Netw. Heterog. Media., 2 (2007), 313-331 (electronic) and Errata corrige: Optimal control problems on stratified domains. Netw. Heterog. Media., 8 (2013), p625. doi: 10.3934/nhm.2007.2.313
![]() |
[13] |
F. Camilli and D. Schieborn, Viscosity solutions of Eikonal equations on topological networks, Calc. Var. Partial Differential Equations, 46 (2013), 671-686. doi: 10.1007/s00526-012-0498-z
![]() |
[14] |
F. Camilli, C. Marchi and D. Schieborn, Eikonal equations on ramified spaces, Interfaces Free Bound, 15 (2013), 121-140. doi: 10.4171/IFB/297
![]() |
[15] |
F Camilli and A. Siconolfi, Time-dependent measurable Hamilton-Jacobi equations, Comm. in Par. Diff. Eq., 30 (2005), 813-847. doi: 10.1081/PDE-200059292
![]() |
[16] |
G. Coclite and N. Risebro, Viscosity solutions of Hamilton-Jacobi equations with discontinuous coefficients, J. Hyperbolic Differ. Equ., 4 (2007), 771-795. doi: 10.1142/S0219891607001355
![]() |
[17] |
C. De Zan and P. Soravia, Cauchy problems for noncoercive Hamilton-Jacobi-Isaacs equations with discontinuous coefficients, Interfaces Free Bound, 12 (2010), 347-368. doi: 10.4171/IFB/238
![]() |
[18] |
K. Deckelnick and C. Elliott, Uniqueness and error analysis for Hamilton-Jacobi equations with discontinuities, Interfaces Free Bound, 6 (2004), 329-349. doi: 10.4171/IFB/103
![]() |
[19] |
P. Dupuis, A numerical method for a calculus of variations problem with discontinuous integrand, Applied stochastic analysis (New Brunswick, NJ, 1991), 90-107, Lecture Notes in Control and Inform. Sci., 177, Springer, Berlin, 1992. doi: 10.1007/BFb0007050
![]() |
[20] | W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions, Applications of Mathematics, Springer-Verlag, New York, 1993. |
[21] |
M. Garavello and P. Soravia, Optimality principles and uniqueness for Bellman equations of unbounded control problems with discontinuous running cost, NoDEA Nonlinear Differential Equations Appl. 11 (2004), 271-298. doi: 10.1007/s00030-004-1058-9
![]() |
[22] |
M. Garavello and P. Soravia, Representation formulas for solutions of the HJI equations with discontinuous coefficients and existence of value in differential games, J. Optim. Theory Appl., 130 (2006), 209-229. doi: 10.1007/s10957-006-9099-3
![]() |
[23] |
Y. Giga, P. Gòrka and P. Rybka, A comparison principle for Hamilton-Jacobi equations with discontinuous Hamiltonians, Proc. Amer. Math. Soc., 139 (2011), 1777-1785. doi: 10.1090/S0002-9939-2010-10630-5
![]() |
[24] |
C. Imbert, R. Monneau and H. Zidani, A Hamilton-Jacobi approach to junction problems and application to traffic flows, ESAIM: COCV, 19 (2013), 129-166. doi: 10.1051/cocv/2012002
![]() |
[25] | arXiv:1410.3056. |
[26] | arXiv:1306.2428. |
[27] | H. Ishii, Hamilton-Jacobi Equations with discontinuous Hamiltonians on arbitrary open sets, Bull. Fac. Sci. Eng. Chuo Univ., 28 (1985), 33-77. |
[28] |
Z. Rao and H. Zidani, Hamilton-Jacobi-Bellman Equations on Multi-Domains, Control and Optimization with PDE Constraints, International Series of Numerical Mathematics, 164, Birkhäuser Basel, 2013. doi: 10.1007/978-3-0348-0631-2_6
![]() |
[29] |
Z. Rao, A. Siconolfi and H. Zidani, Transmission conditions on interfaces for Hamilton-Jacobi-Bellman equations, J. Differential Equations, 257 (2014), 3978-4014. doi: 10.1016/j.jde.2014.07.015
![]() |
[30] |
P. Soravia, Degenerate eikonal equations with discontinuous refraction index, ESAIM COCV, 12 (2006), 216-230. doi: 10.1051/cocv:2005033
![]() |
[31] |
H. Whitney, Tangents to an analytic variety, Annals of Mathematics, 81 (1965), 496-549. doi: 10.2307/1970400
![]() |
[32] | H. Whitney, Local properties of analytic varieties, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), pp. 205-244, Princeton Univ. Press, Princeton, N. J., 1965. |
1. | Zuolin Shen, Junjie Wei, Bifurcation Analysis in a Diffusive Mussel-Algae Model with Delay, 2019, 29, 0218-1274, 1950144, 10.1142/S021812741950144X | |
2. | Yuying Liu, Junjie Wei, Dynamical analysis in a diffusive predator‐prey system with a delay and strong Allee effect, 2020, 43, 0170-4214, 1590, 10.1002/mma.5987 | |
3. | Yan Zhang, Shujing Gao, Shihua Chen, Modelling and analysis of a stochastic nonautonomous predator-prey model with impulsive effects and nonlinear functional response, 2021, 18, 1551-0018, 1485, 10.3934/mbe.2021077 | |
4. | Yue Zhang, Xue Li, Xianghua Zhang, Guisheng Yin, Lei Chen, Stability and Hopf Bifurcation Analysis of an Epidemic Model with Time Delay, 2021, 2021, 1748-6718, 1, 10.1155/2021/1895764 |