(Almost) Everything you always wanted to know about deterministic control problems in stratified domains

  • Received: 01 February 2015 Revised: 01 August 2015
  • Primary: 49L20, 49L25; Secondary: 35F21.

  • We revisit the pioneering work of Bressan & Hong on deterministic control problems in stratified domains, i.e. control problems for which the dynamic and the cost may have discontinuities on submanifolds of $\mathbb{R}^N$. By using slightly different methods, involving more partial differential equations arguments, we $(i)$ slightly improve the assumptions on the dynamic and the cost; $(ii)$ obtain a comparison result for general semi-continuous sub and supersolutions (without any continuity assumptions on the value function nor on the sub/supersolutions); $(iii)$ provide a general framework in which a stability result holds.

    Citation: Guy Barles, Emmanuel Chasseigne. (Almost) Everything you always wanted to know about deterministic control problems in stratified domains[J]. Networks and Heterogeneous Media, 2015, 10(4): 809-836. doi: 10.3934/nhm.2015.10.809

    Related Papers:

  • We revisit the pioneering work of Bressan & Hong on deterministic control problems in stratified domains, i.e. control problems for which the dynamic and the cost may have discontinuities on submanifolds of $\mathbb{R}^N$. By using slightly different methods, involving more partial differential equations arguments, we $(i)$ slightly improve the assumptions on the dynamic and the cost; $(ii)$ obtain a comparison result for general semi-continuous sub and supersolutions (without any continuity assumptions on the value function nor on the sub/supersolutions); $(iii)$ provide a general framework in which a stability result holds.


    加载中
    [1] Y. Achdou, F. Camilli, A. Cutri and N. Tchou, Hamilton-Jacobi equations constrained on networks, NoDea Nonlinear Differential Equations Appl., 20 (2013), 413-445. doi: 10.1007/s00030-012-0158-1
    [2] Adimurthi, S. Mishra and G. D. Veerappa Gowda, Explicit Hopf-Lax type formulas for Hamilton-Jacobi equations and conservation laws with discontinuous coefficients, J. Differential Equations, 241 (2007), 1-31. doi: 10.1016/j.jde.2007.05.039
    [3] J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Systems & Control: Foundations & Applications, 2. Birkhäuser Boston, Inc., Boston, MA, 1990.
    [4] M. Bardi and I. Capuzzo Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi- Bellman Equations, Systems & Control: Foundations & Applications, Birkhauser Boston Inc., Boston, MA, 1997. doi: 10.1007/978-0-8176-4755-1
    [5] G. Barles, Solutions de Viscosité des Équations de Hamilton-Jacobi, Springer-Verlag, Paris, 1994.
    [6] G. Barles, A. Briani and E. Chasseigne, A Bellman approach for two-domains optimal control problems in $\mathbbR^N$, ESAIM COCV, 19 (2013), 710-739. doi: 10.1051/cocv/2012030
    [7] G. Barles, A. Briani and E. Chasseigne, A Bellman approach for regional optimal control problems in $\mathbbR^N$, SIAM J. Control Optim., 52 (2014), 1712-1744. doi: 10.1137/130922288
    [8] arXiv:1405.0661.
    [9] G. Barles and E. R. Jakobsen, On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations, M2AN, 36 (2002), 33-54. doi: 10.1051/m2an:2002002
    [10] G. Barles and B. Perthame, Exit time problems in optimal control and vanishing viscosity method, SIAM J. in Control and Optimisation, 26 (1988), 1133-1148. doi: 10.1137/0326063
    [11] R. Barnard and P. Wolenski, Flow invariance on stratified domains, Set-Valued and Variational Analysis, 21 (2013), 377-403. doi: 10.1007/s11228-013-0230-y
    [12] A. Bressan and Y. Hong, Optimal control problems on stratified domains, Netw. Heterog. Media., 2 (2007), 313-331 (electronic) and Errata corrige: Optimal control problems on stratified domains. Netw. Heterog. Media., 8 (2013), p625. doi: 10.3934/nhm.2007.2.313
    [13] F. Camilli and D. Schieborn, Viscosity solutions of Eikonal equations on topological networks, Calc. Var. Partial Differential Equations, 46 (2013), 671-686. doi: 10.1007/s00526-012-0498-z
    [14] F. Camilli, C. Marchi and D. Schieborn, Eikonal equations on ramified spaces, Interfaces Free Bound, 15 (2013), 121-140. doi: 10.4171/IFB/297
    [15] F Camilli and A. Siconolfi, Time-dependent measurable Hamilton-Jacobi equations, Comm. in Par. Diff. Eq., 30 (2005), 813-847. doi: 10.1081/PDE-200059292
    [16] G. Coclite and N. Risebro, Viscosity solutions of Hamilton-Jacobi equations with discontinuous coefficients, J. Hyperbolic Differ. Equ., 4 (2007), 771-795. doi: 10.1142/S0219891607001355
    [17] C. De Zan and P. Soravia, Cauchy problems for noncoercive Hamilton-Jacobi-Isaacs equations with discontinuous coefficients, Interfaces Free Bound, 12 (2010), 347-368. doi: 10.4171/IFB/238
    [18] K. Deckelnick and C. Elliott, Uniqueness and error analysis for Hamilton-Jacobi equations with discontinuities, Interfaces Free Bound, 6 (2004), 329-349. doi: 10.4171/IFB/103
    [19] P. Dupuis, A numerical method for a calculus of variations problem with discontinuous integrand, Applied stochastic analysis (New Brunswick, NJ, 1991), 90-107, Lecture Notes in Control and Inform. Sci., 177, Springer, Berlin, 1992. doi: 10.1007/BFb0007050
    [20] W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions, Applications of Mathematics, Springer-Verlag, New York, 1993.
    [21] M. Garavello and P. Soravia, Optimality principles and uniqueness for Bellman equations of unbounded control problems with discontinuous running cost, NoDEA Nonlinear Differential Equations Appl. 11 (2004), 271-298. doi: 10.1007/s00030-004-1058-9
    [22] M. Garavello and P. Soravia, Representation formulas for solutions of the HJI equations with discontinuous coefficients and existence of value in differential games, J. Optim. Theory Appl., 130 (2006), 209-229. doi: 10.1007/s10957-006-9099-3
    [23] Y. Giga, P. Gòrka and P. Rybka, A comparison principle for Hamilton-Jacobi equations with discontinuous Hamiltonians, Proc. Amer. Math. Soc., 139 (2011), 1777-1785. doi: 10.1090/S0002-9939-2010-10630-5
    [24] C. Imbert, R. Monneau and H. Zidani, A Hamilton-Jacobi approach to junction problems and application to traffic flows, ESAIM: COCV, 19 (2013), 129-166. doi: 10.1051/cocv/2012002
    [25] arXiv:1410.3056.
    [26] arXiv:1306.2428.
    [27] H. Ishii, Hamilton-Jacobi Equations with discontinuous Hamiltonians on arbitrary open sets, Bull. Fac. Sci. Eng. Chuo Univ., 28 (1985), 33-77.
    [28] Z. Rao and H. Zidani, Hamilton-Jacobi-Bellman Equations on Multi-Domains, Control and Optimization with PDE Constraints, International Series of Numerical Mathematics, 164, Birkhäuser Basel, 2013. doi: 10.1007/978-3-0348-0631-2_6
    [29] Z. Rao, A. Siconolfi and H. Zidani, Transmission conditions on interfaces for Hamilton-Jacobi-Bellman equations, J. Differential Equations, 257 (2014), 3978-4014. doi: 10.1016/j.jde.2014.07.015
    [30] P. Soravia, Degenerate eikonal equations with discontinuous refraction index, ESAIM COCV, 12 (2006), 216-230. doi: 10.1051/cocv:2005033
    [31] H. Whitney, Tangents to an analytic variety, Annals of Mathematics, 81 (1965), 496-549. doi: 10.2307/1970400
    [32] H. Whitney, Local properties of analytic varieties, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), pp. 205-244, Princeton Univ. Press, Princeton, N. J., 1965.
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3714) PDF downloads(179) Cited by(10)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog