Citation: Martin Gugat, Alexander Keimer, Günter Leugering, Zhiqiang Wang. Analysis of a system of nonlocal conservation laws for multi-commodity flow on networks[J]. Networks and Heterogeneous Media, 2015, 10(4): 749-785. doi: 10.3934/nhm.2015.10.749
[1] | R. A. Adams and J. J. Fournier, Sobolev Spaces, vol. 140 of Pure and Applied Mathematics (Amsterdam), 2nd edition, Elsevier/Academic Press, Amsterdam, 2003. |
[2] | A. Aggarwal, R. M. Colombo and P. Goatin, Nonlocal systems of conservation laws in several space dimensions, SIAM Journal on Numerical Analysis, 53 (2015), 963-983. doi: 10.1137/140975255 |
[3] | L. Ambrosio, N. Fusco and D. Pallara, Functions Of Bounded Variation And Free Discontinuity Problems, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 2000. |
[4] | D. Armbruster, P. Degond and C. Ringhofer, A model for the dynamics of large queuing networks and supply chains, SIAM J. Appl. Math., 66 (2006), 896-920. doi: 10.1137/040604625 |
[5] | D. Armbruster, D. E. Marthaler, C. A. Ringhofer, K. G. Kempf and T.-C. Jo, A continuum model for a re-entrant factory, Operations Research, 54 (2006), 933-950. doi: 10.1287/opre.1060.0321 |
[6] | A. A. Assad, Multicommodity network flows - a survey, Networks, 8 (1978), 37-91. doi: 10.1002/net.3230080107 |
[7] | H. Attouch, G. Buttazzo and G. Michaille, Variational Analysis in Sobolev and BV Spaces, vol. 6 of MPS/SIAM Series on Optimization, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2006. doi: 10.1137/1.9781611973488 |
[8] | S. Blandin and P. Goatin, Well-posedness of a conservation law with non-local flux arising in traffic flow modeling, Numerische Mathematik, Springer Berlin Heidelberg, (2015), 1-25. doi: 10.1007/s00211-015-0717-6 |
[9] | H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011. doi: 10.1007/978-0-387-70914-7 |
[10] | R. M. Colombo, M. Herty and M. Mercier, Control of the continuity equation with a non local flow, ESAIM Control Optim. Calc. Var., 17 (2011), 353-379. doi: 10.1051/cocv/2010007 |
[11] | J.-M. Coron, M. Kawski and Z. Wang, Analysis of a conservation law modeling a highly re-entrant manufacturing system, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1337-1359. doi: 10.3934/dcdsb.2010.14.1337 |
[12] | L. R. Ford Jr. and D. R. Fulkerson, Flows in Networks, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1962. |
[13] | A. Freno and E. Trentin, Hybrid Random Fields: A Scalable Approach to Structure and Parameter Learning in Probabilistic Graphical Models, Intelligent Systems Reference Library, Springer, 2011. doi: 10.1007/978-3-642-20308-4 |
[14] | E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Vol. 80 of Monographs in Mathematics, Birkhäuser Boston, 1984. doi: 10.1007/978-1-4684-9486-0 |
[15] | M. Gröschel, A. Keimer, G. Leugering and Z. Wang, Regularity theory and adjoint based optimality conditions for a nonlinear transport equation with nonlocal velocity, SIAM J. Control Optim., 52 (2014), 2141-2163. doi: 10.1137/120873832 |
[16] | M. Gugat, F. M. Hante, M. Hirsch-Dick and G. Leugering, Stationary states in gas networks, Networks and Heterogeneous Media, 10 (2015), 295-320. doi: 10.3934/nhm.2015.10.295 |
[17] | M. Gugat, M. Herty, A. Klar and G. Leugering, Optimal control for traffic flow networks, Journal of Optimization Theory and Applications, 126 (2005), 589-616. doi: 10.1007/s10957-005-5499-z |
[18] | M. Gugat, M. Herty, A. Klar, G. Leugering and V. Schleper, Well-posedness of networked hyperbolic systems of balance laws, in Constrained optimization and optimal control for partial differential equations, vol. 160 of Internat. Ser. Numer. Math., Birkhäuser/Springer Basel AG, Basel, 2012, 123-146. doi: 10.1007/978-3-0348-0133-1_7 |
[19] | J. L. Kennington, A survey of linear cost multicommodity network flows, Operations Res., 26 (1978), 209-236. doi: 10.1287/opre.26.2.209 |
[20] | M. La Marca, D. Armbruster, M. Herty and C. Ringhofer, Control of continuum models of production systems, IEEE Trans. Automat. Contr., 55 (2010), 2511-2526. doi: 10.1109/TAC.2010.2046925 |
[21] | G. Leoni, A First Course in Sobolev Spaces, vol. 105 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2009. doi: 10.1090/gsm/105 |
[22] | J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl. (4), 146 (1987), 65-96 doi: 10.1007/BF01762360 |
[23] | D. W. Stroock, Essentials of Integration Theory for Analysis, vol. 262, Springer, 2011. doi: 10.1007/978-1-4614-1135-2 |
[24] | http://math.stackexchange.com/questions/329253/compactness-in-l2. |
[25] | J. J. Yeh, Lectures On Real Analysis, World Scientific Publishing Co. Inc., River Edge, NJ, 2000. doi: 10.1142/9789812799531_0003 |