Citation: Alberto Bressan, Khai T. Nguyen. Optima andequilibria for traffic flow on networkswith backward propagating queues[J]. Networks and Heterogeneous Media, 2015, 10(4): 717-748. doi: 10.3934/nhm.2015.10.717
[1] | N. Bellomo, M. Delitala and V. Coscia, On the mathematical theory of vehicular traffic flow. I. Fluid dynamic and kinetic modelling, Math. Models Methods Appl. Sci., 12 (2002), 1801-1843. doi: 10.1142/S0218202502002343 |
[2] | A. Bressan and K. Han, Optima and equilibria for a model of traffic flow, SIAM J. Math. Anal., 43 (2011), 2384-2417. doi: 10.1137/110825145 |
[3] | A. Bressan and K. Han, Nash equilibria for a model of traffic flow with several groups of drivers, ESAIM; Control, Optim. Calc. Var., 18 (2012), 969-986. doi: 10.1051/cocv/2011198 |
[4] | A. Bressan and K. Han, Existence of optima and equilibria for traffic flow on networks, Networks & Heter. Media, 8 (2013), 627-648. doi: 10.3934/nhm.2013.8.627 |
[5] | A. Bressan, C. J. Liu, W. Shen and F. Yu, Variational analysis of Nash equilibria for a model of traffic flow, Quarterly Appl. Math., 70 (2012), 495-515. doi: 10.1090/S0033-569X-2012-01304-9 |
[6] | A. Bressan and K. Nguyen, Conservation law models for traffic flow on a network of roads, Networks & Heter. Media, 10 (2015), 255-293. doi: 10.3934/nhm.2015.10.255 |
[7] | A. Bressan and F. Yu, Continuous Riemann solvers for traffic flow at a junction, Discr. Cont. Dyn. Syst., 35 (2015), 4149-4171. doi: 10.3934/dcds.2015.35.4149 |
[8] | A. Cascone, C. D'Apice, B. Piccoli and L. Rarità, Optimization of traffic on road networks, Math. Models Methods Appl. Sci., 17 (2007), 1587-1617. doi: 10.1142/S021820250700239X |
[9] | Y. Chitour and B. Piccoli, Traffic circles and timing of traffic lights for cars flow, Discrete Contin. Dyn. Syst. B, 5 (2005), 599-630. doi: 10.3934/dcdsb.2005.5.599 |
[10] | G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network, SIAM J. Math. Anal., 36 (2005), 1862-1886. doi: 10.1137/S0036141004402683 |
[11] | R. M. Colombo and A. Marson, A Hölder continuous ODE related to traffic flow, Proc. Roy. Soc. Edinburgh, A 133 (2003), 759-772. doi: 10.1017/S0308210500002663 |
[12] | C. D'Apice, P. I. Kogut and R. Manzo, Efficient controls for traffic flow on networks, J. Dyn. Control Syst., 16 (2010), 407-437. doi: 10.1007/s10883-010-9099-3 |
[13] | L. C. Evans, Partial Differential Equations. Second edition, American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/019 |
[14] | T. Friesz, Dynamic Optimization and Differential Games, Springer, New York, 2010. doi: 10.1007/978-0-387-72778-3 |
[15] | T. Friesz and K. Han, Dynamic Network User Equilibrium, Springer, 2013. |
[16] | T. Friesz, K. Han, P. A. Neto, A. Meimand and T. Yao, Dynamic user equilibrium based on a hydrodynamic model, Transp. Res., B 47 (2013), 102-126. doi: 10.1016/j.trb.2012.10.001 |
[17] | T. Friesz, T. Kim, C. Kwon and M. A. Rigdon, Approximate network loading and dual-time-scale dynamic user equilibrium, Transp. Res., B 45 (2011), 176-207. doi: 10.1016/j.trb.2010.05.003 |
[18] | M. Garavello and P. Goatin, The Cauchy problem at a node with buffer, Discrete Contin. Dyn. Syst. 32 (2012), 1915-1938. doi: 10.3934/dcds.2012.32.1915 |
[19] | M. Garavello and B. Piccoli, Traffic Flow on Networks. Conservation Laws Models, AIMS Series on Applied Mathematics, Springfield, Mo., 2006. |
[20] | M. Garavello and B. Piccoli, Conservation laws on complex networks, Ann. Inst. H. Poincar\'e, 26 (2009), 1925-1951. doi: 10.1016/j.anihpc.2009.04.001 |
[21] | M. Garavello and B. Piccoli, A multibuffer model for LWR road networks, in Advances in Dynamic Network Modeling in Complex Transportation Systems, Complex Networks and Dynamic Systems, S V. Ukkusuri and K. Ozbay eds., Springer, New York, 2 (2013), 143-161. doi: 10.1007/978-1-4614-6243-9_6 |
[22] | M. Gugat, M. Herty, A. Klar and G. Leugering, Optimal control for traffic flow networks, J. Optim. Theory Appl., 126 (2005), 589-616. doi: 10.1007/s10957-005-5499-z |
[23] | K. Han,T. Friesz and T. Yao, Existence of simultaneous route and departure choice dynamic user equilibrium, Transp. Res., B 53 (2013), 17-30. doi: 10.1016/j.trb.2013.01.009 |
[24] | M. Herty, C. Kirchner and A. Klar, Instantaneous control for traffic flow, Math. Methods Appl. Sci., 30 (2007), 153-169. doi: 10.1002/mma.779 |
[25] | M. Herty, J. P. Lebacque and S. Moutari, A novel model for intersections of vehicular traffic flow, Netw. Heterog. Media, 4 (2009), 813-826. doi: 10.3934/nhm.2009.4.813 |
[26] | M. Herty, S. Moutari and M. Rascle, Optimization criteria for modelling intersections of vehicular traffic flow, Netw. Heter. Media, 1 (2006), 275-294. doi: 10.3934/nhm.2006.1.275 |
[27] | D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Reprint of the 1980 original. SIAM, Philadelphia, PA, 2000. doi: 10.1137/1.9780898719451 |
[28] | M. Lighthill and G. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Proceedings of the Royal Society of London: Series A, 229 (1955), 317-345. doi: 10.1098/rspa.1955.0089 |
[29] | P. I. Richards, Shock waves on the highway, Oper. Res., 4 (1956), 42-51. doi: 10.1287/opre.4.1.42 |