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Abstract. This paper studies an optimal decision problem for several groups

of drivers on a network of roads. Drivers have different origins and destina-

tions, and different costs, related to their departure and arrival time. On each
road the flow is governed by a conservation law, while intersections are mod-

eled using buffers of limited capacity, so that queues can spill backward along

roads leading to a crowded intersection. Two main results are proved: (i) the
existence of a globally optimal solution, minimizing the sum of the costs to all

drivers, and (ii) the existence of a Nash equilibrium solution, where no driver

can lower his own cost by changing his departure time or the route taken to
reach destination.

1. Introduction. Optimal traffic assignment and dynamic user equilibria on net-
works have been widely discussed in the engineering literature [14, 15, 16, 17, 23].
For conservation law models of traffic flow on a network of roads, these problems
were recently studied in [4]. The basic setting comprises a network with nodes
A1, . . . , Am, and connecting arcs γij . Drivers choose their time of departure and
route to destination in order to minimize the sum of a departure cost ϕ(τd) and
an arrival cost ψ(τa). The problem is highly nontrivial because the arrival time τa

depends not only on the departure time τd but also on the overall traffic pattern.
As in [28, 29], along each arc we model the traffic flow in terms of the conservation

law

ρt + [ρ vij(ρ)]x = 0 . (1.1)

Here t is time and x ∈ [0, Lij ] is the space variable along the arc γij . The variable
ρ = ρ(t, x) describes the traffic density, i.e. the number of cars per unit length, while
the map ρ 7→ vij(ρ) is the speed of cars as function of the density, along the arc
γij . We assume that vij is a continuous, nonincreasing function of the density ρ.
At each node of the network, the conservation laws (1.1) must be supplemented by
suitable boundary conditions, modeling traffic flow at an intersection. In the earlier
paper [4] a buffer of unlimited capacity was assumed to be present at the beginning
of each road. Arriving cars are placed in this buffer, waiting for their turn to enter
the new road. With this model, roads never become congested and queues never
propagate backwards.
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Aim of the present paper is to prove the existence of global optima and Nash
equilibria, for a more realistic model where queues can propagate backwards along
roads leading to a crowded intersection. Starting with a definition of Riemann
Solver, models describing traffic flow at an intersection were recently developed in
[10, 19, 20]. Unfortunately, in the specific context of our optimization problems,
they lead to ill posed Cauchy problems. The counterexamples in [7] motivated
the introduction of new intersection models [6], where each node of the network
contains a buffer of limited capacity. When the buffer is nearly full, cars can access
the intersection only at a very slow rate, and queues propagate backwards along
incoming roads. As proved in [6], for these models the Cauchy problem is well posed
within the general class of L∞ initial data. The solution can be constructed as the
unique fixed point of a contractive transformation, defined in terms of a Lax-type
variational formula. A key feature of these models is that the travel time between
any two nodes of the network depends continuously on the data, w.r.t. the topology
of weak convergence. These properties are precisely what is needed, in order to
apply the topological arguments in [4] and establish the existence of global optima
and equilibria.

Our optimal decision problems are formulated for n groups of drivers traveling
on the network. Different groups are distinguished by the locations of departure
and arrival, and by their cost functions. For k ∈ {1, . . . , n}, let Gk be the total
number of drivers in the k-th group. All these drivers depart from a node Ad(k)

and arrive at a node Aa(k), but can choose different paths to reach destination. Of
course, we assume that there exists at least one path (i.e., a concatenation of arcs)

Γ
.
=
(
γ
i(0),i(1)

, γ
i(1),i(2)

, . . . , γ
i(N−1),i(N)

)
(1.2)

with i(0) = d(k) and i(N) = a(k), connecting the departure node Ad(k) with the
arrival node Aa(k). We shall denote by

V .
=
{

Γ1, Γ2, . . . , ΓK

}
the set of all paths which do not contain any closed loop. Since there are m nodes
in the network, and each chain can visit each of them at most once, the set V
contains finitely many elements. For a given k ∈ {1, . . . , n}, let Vk ⊂ V be the set of
all paths available to k-drivers, connecting Ad(k) with Aa(k). By uk,p(·) we denote
the departure rate of drivers of the k-th group, traveling along the viable path Γp.
Hence

Uk,p(t)
.
=

∫ t

−∞
uk,p(s) ds (1.3)

is the total number of drivers of the k-th group, traveling along the path Γp, who
have started their journey before time t.

Definition 1. Let the group of k-drivers have size Gk > 0. We say that {uk,p ; k =
1, . . . , n, p ∈ Vk} is an admissible family of departure rates if each uk,p is a
nonnegative integrable function, and moreover∑

p∈Vk

∫ ∞
−∞

uk,p(t) dt = Gk for each k ∈ {1, . . . , n} . (1.4)

Here the admissibility condition (1.4) means that, sooner or later, every driver of
the k-th group will depart, choosing some path Γp ∈ Vk to reach his destination.
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As in [2, 3, 5], we consider a set of departure costs ϕk(·) and arrival costs ψk(·),
the same for all drivers in each given group. A driver of the k-th group departing
at time τd and arriving at destination at time τa has total cost

ϕk(τd) + ψk(τa). (1.5)

In this framework, the concepts of globally optimal solution and of Nash equilibrium
solution considered in [2, 3] can be extended to traffic flow on a network of roads.

Definition 2. An admissible family {uk,p} of departure rates is globally optimal
if it minimizes the sum of the total costs of all drivers.

Definition 3. An admissible family {uk,p} of departure rates is a Nash equilib-
rium solution if no driver of any group can lower his own total cost by changing
departure time or switching to a different path to reach destination.

From the above definition it follows that, in a Nash equilibrium, all drivers in a
same group must bear the same total cost (1.5).

In this paper we prove the existence of a globally optimal solution and of a Nash
equilibrium solution, extending the results in [4] to a model where queues can spill
backward through several nodes of the network. Our existence proofs, contained
in Sections 4 and 5, are similar to the ones given in [4] for buffers of infinite size.
However, in order to apply these earlier techniques to a model with finite buffers, a
substantial amount of preliminary analysis is needed.

The well posedness results proved in [6] refer to the initial-value problem. These
results need to be adapted to the boundary-value problem, where departure rates are
assigned for all times t ∈ IR. Moreover, one has to study how the travel time of each
driver depends on all the departure rates, w.r.t. the topology of weak convergence.
In this paper, Section 2 recalls the main definitions and modeling assumptions,
while Section 3 establishes the key continuity properties of our solutions.

In addition, the proof of the existence of a Nash equilibrium requires a uniform
a priori bound on the travel time of every driver. In a realistic situation, this is
largely expected. In the case of buffers of unlimited size considered in [4], such a
bound is easy to prove. However, in models where queues can spill backward, it
is hard to pinpoint a condition which guarantees that traffic will never get stuck,
and all drivers arrive at destination in finite time. See [9] for a discussion of this
issue. In Section 6 of the present paper we prove a partial result in this direction.
Namely, if the network does not contain any closed cycle, then the on each road
γij the traffic density remains uniformly bounded away from ρjamij and traffic never
gets stuck.

For the basic modeling of traffic flow we refer to [1, 28, 29]. Traffic flow on
networks has been the topic of an extensive literature, see for example [10, 14, 15,
17, 18, 20, 21, 25] and references therein. More detailed results on optima and
equilibria for traffic flow on a single road can be found in [2, 3, 5]. Various other
optimization problems for network flows have been considered in [8, 12, 22, 24, 26].

Remark 1. In closing, we explain the underlying motivation for adopting an
intersection model with buffers, and relying on weak convergence in all our existence
proofs.

To model traffic flow at each intersection, one needs to know the percentage θij
of drivers from an incoming road i that wish to turn into the outgoing road j. As
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long as these coefficients θij remain constant, the models based on Riemann Solvers
[10, 19, 20] work very well. Solutions are unique, have bounded variation, and
depend continuously on the initial data. However, if the coefficients θij = θij(t, x)
are not constant, the counterexamples in [7] show that these models lead to ill posed
Cauchy problems. More precisely:

• There exist initial data θij(0, ·) and traffic densities ρij(0, ·) with arbitrarily
small total variation, such that for every t > 0 the functions θij(t, ·) have
unbounded variation.

• Choosing initial data θij with unbounded variation, one can construct a
Cauchy problem having two distinct solutions.

• Solutions do not depend continuously on initial data, in the topology of weak
convergence. A sequence of initial data can be constructed where the coef-
ficients θνij(0, ·) converge weakly to θij(0, ·), as ν → ∞. However, for t > 0
the corresponding traffic densities ρνij(t, ·) converge to a limit ρ∞ij (t, ·) which
is different from the solution with initial data θij(0, ·).

Due to the above difficulties, in [6] the authors introduced an alternative model for
traffic flow at intersections, including buffers. In this case, Example 4 in [7] remains
valid, showing that the total variation of the solution can immediately blow-up.
However, lack of BV bounds is no longer a concern, because for the new model
with buffers the Cauchy problem is well posed even for L∞ data. In addition, the
solution depends continuously on the initial data also w.r.t. the topology of weak
convergence. This motivates the use of weak convergence as a basic tool in our
existence proofs.

At the present time, it is not clear whether global optima and Nash equilibria
exist, in connection with the intersection models [10, 19, 20] without buffers. To-
ward a proof, one may start by deriving necessary conditions for optimality. These
conditions may then be used to construct an explicit solution, or to provide a priori
bounds on the total variation. This approach may be successful for very simple
networks, but it appears very hard to implement it in the general case.

2. The traffic flow model.

2.1. Basic assumptions. In our model, x ∈ [0, Lij ] is the space variable, describ-
ing a point along the arc γij joining the node Ai to the node Aj . Here Lij measures
the length of this arc. The basic assumptions on the flux functions fij(ρ) = ρ vij(ρ)
and on the cost functions ϕk, ψk are as follows.

(A1) For every arc γij , the flux function ρ 7→ fij(ρ) = ρ vij(ρ) is twice continu-
ously differentiable, strictly concave down, and non-negative on some interval
[0, ρjamij ], with fij(0) = fij(ρ

jam
ij ) = 0. We shall denote by ρmaxij ∈]0, ρjamij [

the unique value such that

fij(ρ
max
ij ) = fmaxij

.
= max

ρ∈[0,ρjamij ]
fij(ρ) . (2.1)

(A2) For every k ∈ {1, . . . , n} the cost functions ϕk, ψk are continuously differen-
tiable and satisfy ϕ′k(t) < 0 ,

ψ′k(t) > 0 ,
lim
|t|→∞

(
ϕk(t) + ψk(t)

)
= +∞ . (2.2)
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Figure 1. The flux fij as a function of the density ρ, along the arc γij
from the node Ai to Aj .

Remark 2. For each flux fij , consider the Legendre transform gij of fij

gij(v)
.
= inf

u∈[0,ρjamij ]

{
uv − fij(u)

}
. (2.3)

Given a characteristic line t 7→ x(t) with characteristic speed ẋ = v, the Legendre
transform gij can be interpreted as

gij(v) = −[flux of cars from left to right, across a characteristic with speed v].
(2.4)

f(u)

u

g(v)

f
_

’f (0)

max
f

jam0

jam 0 v
’f (        )

max

ρ

ρ

Figure 2. The flux function fij and its Legendre transform gij defined
at (2.3). Notice that gij(0) = −fmax

ij , while gij(v) = 0 for v ≥ f ′ij(0) and

gij(v) = ρjamij v for v ≤ f ′ij(ρjamij ).

For v ∈
]
f ′ij(ρ

jam
ij ), f ′ij(0)

[
, differentiating w.r.t. v, one obtains

g′′ij(v) =
∂

∂v
g′ij(u

∗(v)) =
1

f ′′ij(u
∗(v))

< 0 , (2.5)

showing that gij is strictly concave down on this open interval. As shown in Fig. 2,
we also have the implications v ≤ f ′ij(ρ

jam
ij ) =⇒ gij(v) = ρjamij v,

v ≥ f ′ij(0) =⇒ gij(v) = 0.

(2.6)
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2.2. Evolution of traffic density. We now describe more in detail how the traffic
flow on the entire network can be uniquely determined, given the departure rates
uk,p.

We assume that the set N of all nodes of the network can be partitioned as the
disjoint union

N = Nd ∪Nt ∪Na ,
where the three sets on the right hand side denote the departure nodes, the transit
nodes and the arrival nodes, respectively (Fig. 3).
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Figure 3. In this network, A1, A2 are entrance nodes, A3, . . . , A8 are
transit nodes, and A9, A10 are exit nodes. We denote by Pij the mid-
point of the arc γij from Ai to Aj .

I - Dynamics at departure nodes. Departure nodes have no incoming road
and only one outgoing road. As in [4], let u(t) be the rate of departures from a
node Ai ∈ Nd, and let ρ(t, x), x ∈ [0, L], be the density of traffic along this single
outgoing road. We assume that ρ satisfies the conservation law

ρt + f(ρ)x = 0.

Call q(t) the length of the queue at the entrance of the road, and let

ρ̄(t) = lim
x→0+

ρ(x, t)

be the boundary value for the density. Moreover, define

ω(t) =

{
fmax if ρ̄(t) ≤ ρ∗,
f(ρ̄(t)) if ρ̄(t) ≥ ρ∗.

Notice that ω(t) is the maximum flux of cars that can enter the road at time t.
The boundary value for the flux and the length of the queue are then governed

by the equations

f(ρ̄(t)) =

{
ω(t) if q(t) > 0 ,
u(t) if q(t) = 0 ,

(2.7)

q̇(t) = u(t)− ω(t) if q(t) > 0. (2.8)

Here and throughout the sequel, an upper dot denotes a derivative w.r.t. time.
II - Dynamics at arrival nodes. We assume that each arrival node Aj ∈ Na

has one incoming road, say γij , and no outgoing road. Cars exit instantly upon
reaching the node Aj , and no backward queue is ever formed along the road leading
to Aj . We can thus assume that the density ρij satisfies

ρij ≤ ρmaxij , f ′ij(ρij) ≥ 0,
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for all t ≥ 0, x ∈ [0, Lij ]. Since all characteristics have positive speed, the initial-
boundary value problem along the arc γij is well posed without assigning any con-
dition at the terminal point x = Lij .

III - Dynamics at transit nodes. Following [6], we assume that at each
intersection there is a buffer of limited capacity. The incoming fluxes of cars toward
the intersection are related to the current degree of occupancy of the buffer. To
fix the ideas, consider an intersection with m incoming and n outgoing roads. To
simplify the notation, we label with the index i ∈ I the incoming roads and j ∈ O
the outgoing roads. As in [6], the space variable is x < 0 along incoming roads and
x > 0 along outgoing roads. For k ∈ I ∪ O, we denote by ρk the density of cars
on the k-th road. Moreover, for i ∈ I and j ∈ O, we denote by θij the fraction of
cars in road i who wish to turn into road j. The above functions evolve according
to the conservation laws

(ρk)t + fk(ρk)x = 0 , k ∈ I ∪ O, (2.9)

and the linear transport equations

(θij)t + vi(ρi)(θij)x = 0 , i ∈ I, j ∈ O . (2.10)

The state of the buffer at the intersection is described by an n-vector

q = (qj)j∈O .

Here qj(t) is the number of cars at the intersection waiting to enter road j ∈ O, i.e.,
the length of the queue in front of road j. Boundary values at the junction will be
denoted by

θ̄ij(t)
.
= limx→0− θij(t, x), i ∈ I, j ∈ O ,

ρ̄i(t)
.
= limx→0− ρi(t, x), i ∈ I ,

ρ̄j(t)
.
= limx→0+ ρj(t, x), j ∈ O ,

f̄i(t)
.
= fi(ρ̄i(t)) = limx→0− fi(ρi(t, x)), i ∈ I ,

f̄j(t)
.
= fj(ρ̄j(t)) = limx→0+ fj(ρj(t, x)), j ∈ O .

(2.11)

Conservation of the total number of cars implies

q̇j =
∑
i∈I

f̄iθ̄ij − f̄j for all j ∈ O . (2.12)

Following [20], we say that a density ρ ∈ [0, ρjamk ] along the k-th road is

- a free state if ρ ∈ [0, ρmaxk ],

- a congested state if ρ ∈ ]ρmaxk , ρjamk ].

We also define

ωi = ωi(ρ̄i)
.
=

 fi(ρ̄i) if ρ̄i is a free state,

fmaxi if ρ̄i is a congested state,
i ∈ I ,

the maximum possible flux at the end of an incoming road. Notice that this is the
largest flux fj(ρ) among all states ρ that can be connected to ρ̄i with a wave of
negative speed.
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Similarly, we define

ωj = ωj(ρ̄j)
.
=


fj(ρ̄j) if ρ̄j is a congested state,

fmaxj if ρ̄j is a free state,
j ∈ O ,

the maximum possible flux at the beginning of an outgoing road. This is the largest
flux fj(ρ) among all states ρ that can be connected to ρ̄j with a wave of positive
speed.

We consider two different sets of equations relating the incoming and outgoing
fluxes f̄i and f̄j , depending on the drivers’ choices θ̄ij and on the lengths qj of
the queues in the buffer. As proved in [6], both models lead to well posed Cauchy
problems within the general class of L∞ data.

In the first model, the junction contains one single buffer of size M . Incoming
cars are admitted at a rate depending of the amount of free space left in the buffer,
regardless of their destination. Once they are within the intersection, cars flow out
at the maximum rate allowed by the outgoing road of their choice. As usual, if the
queue size qj is nonzero, drivers respect their place in the queue: first-in-first-out.

Single Buffer Junction (SBJ). Consider a constant M > 0, describing the
maximum number of cars that can occupy the intersection at any given time, and
constants ci > 0, i ∈ I, accounting for priorities given to different incoming roads.

We then require that the incoming fluxes f̄i satisfy

f̄i = min

ωi , ci(M −∑
j∈O

qj

) , i ∈ I , (2.13)

while the outgoing fluxes f̄j satisfy
if qj > 0, then f̄j = ωj,

if qj = 0, then f̄j = min
{
ωj ,

∑
i∈I f̄iθij

}
,

j ∈ O . (2.14)

In our second model, there are n buffers, one for each outgoing road. Incoming
drivers are admitted at a rate depending on the length of the queue at the entrance
of the road of their choice. Once they are within the intersection, cars flow out at
the maximum possible rate, respecting their place in the queue: first-in-first-out.

Multiple Buffer Junction (MBJ) Consider constants Mj, j ∈ O, describing
the size of the buffer at the entrance of the j-th outgoing road, and constants ci > 0,
i ∈ I, accounting for priorities given to different incoming roads.

We then require that the incoming fluxes f̄i satisfy

f̄i = min

{
ωi ,

ci(Mj − qj)
θij

, j ∈ O
}
, i ∈ I , (2.15)

while the outgoing fluxes f̄j satisfy (2.14).
We now consider the Cauchy problem for the system of equations (2.9), (2.10),

(2.12), assuming that at each node the boundary conditions (2.13)-(2.14) or (2.15)-
(2.14) are satisfied. We allow the possibility that the conditions (SBJ) hold at
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some nodes, while (MBJ) hold at other nodes. The initial data have the form
ρk(0, x) = ρ♦k (x) k ∈ I ∪ O ,

θij(0, x) = θ♦ij(x) i ∈ I, j ∈ O ,

qj(0) = q♦j j ∈ O .

(2.16)

By an admissible solution of the above system we mean a family of functions
(ρk, θij , qj), with

ρk ∈ [0, ρjamk ] , θij ∈ [0, 1],
∑
j∈O

θij = 1 , (2.17)

qj ≥ 0,


∑
j∈O qj < M, in case of (SBJ) ,

qj < Mj for every j ∈ O, in case of (MBJ) ,
(2.18)

and with the following properties.

(i) The functions ρk provide entropy-weak solutions to the conservation laws in
(2.9).

(ii) The functions θij provide solutions to the linear transport equations in (2.10).
(iii) The functions qj are Lipschitz continuous and satisfy the ODEs (2.12).
(iv) The initial values of ρk, θij and qj satisfy (2.16).
(v) The boundary values ρ̄k(t), f̄k(t), θ̄ij(t) in (2.11) are well defined in the sense

of traces, and satisfy the boundary conditions (2.13)-(2.14) or (2.15)-(2.14)
for a.e. t ≥ 0.

IV - Dynamics on the entire network. The models studied in [6] dealt with
one single intersection. In that case, the drivers’ turning choices θij at (2.10) had
to be assigned only on incoming roads i ∈ I. To model traffic flow on an entire
network, we also need to keep track of how many drivers choose the path Γp to
reach destination. For this purpose, we denote by

ρi`,p = θp · ρi` (2.19)

the density of cars on road γi` that follow path Γp. To avoid a heavy notation, we
here write θp = θi`,p, but it should be clear that each arc γi` leads to a different
function θp. If γi` is not part of the path Γp, then on this arc θp ≡ 0. Moreover, by
definition one always has

θp(t, x) ∈ [0, 1] ,
∑
p

θp(t, x) = 1 .

Notice that the coefficients θp are passive scalars, transported along the flow. Along
any arc γi`, they satisfy the linear transport equations

(θp)t + vi`(ρi`) · (θp)x = 0 . (2.20)

Along the road γi`, the fraction θij(t, x) of drivers traveling on road γi` who will
turn into road γ`j is recovered from the coefficients θp by

θij =
∑

γ`j∈Γp

θp .

Indeed a driver currently on the arc γi`, after reaching the intersection A` will
turn into the road γ`j iff this road is part of the path Γp that he is using to reach
destination.
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Thanks to the finite propagation speed, all the equations can be solved iteratively
in time. Indeed, the positive quantity

∆min
.
=

1

2
·min
ij

Lij

f ′ij(0)− f ′ij(ρ
jam
ij )

(2.21)

provides a lower bound on the time needed for characteristic to travel half way across
any arc γij of the network. Given the departure rates uk,p, if the densities ρij and
the queues q` are known at time τ , one can uniquely determine the solution also for
t ∈ [τ , τ + ∆min], by solving separately the Cauchy problem in a neighborhood of
each node. Indeed, for any given time τ ∈ IR the following holds.

1) Let A` be a departure node, with outgoing arc γ`j . Let the departure rates
uk,p(t) be given, for t ∈ [τ, τ+∆min]. Moreover, let the traffic densities ρ`j,p = θp·ρ`j
be given at time τ , along the entire arc γ`j . Then these initial and boundary
data uniquely determine the traffic density ρ`j,p(t, x), for t ∈ [τ, τ + ∆min] and
x ∈ [0, L`j/2].

2) Let A` be an exit node, with incoming arc γi`. Let the traffic density ρi`(τ, ·)
be given at time τ , along the entire arc γi`. Then these initial conditions uniquely
determine the traffic density ρi`(t, x), for t ∈ [τ, τ + ∆min] and x ∈ [Li`/2 , Li`].

3) Let A` be a transit node, with incoming arcs γi`, i ∈ I`, and outgoing arcs
γ`j , j ∈ O`. Let the traffic densities ρi`,p(τ, ·) be given at time τ , along each of the
the above arcs γi`, γ`j , together with the sizes of the queues qj , j ∈ O`. Then, for
t ∈ [τ, τ + ∆min], these initial conditions uniquely determine the traffic densities
ρi`(t, x) for i ∈ I`, x ∈ [Li`/2 , Li`], and ρ`j(t, x), for j ∈ O`, x ∈ [0, L`j/2].

To complete the inductive step, and determine the traffic densities ρ`j,p = θp ·ρ`j
for all times, we still need a formula to determine the fraction θp of drivers following
path Γp, along the outgoing roads j ∈ O`.

To fix the ideas, consider a node A` and let γi∗` and γ`j∗ be consecutive arcs in
the path Γp (see Fig. 4, left). Let qj∗(t) be the length of the queue at the entrance
of road γ`j∗ . To keep track of the composition of this queue, at each given time t
let ξ ∈ [0, qj∗(t)] be a Lagrangian variable labeling drivers in this queue. Moreover,
call Θ`,p : [0, qj∗(t)] 7→ [0, 1] the fraction of these drivers that follow the path Γp to
reach their eventual destination (Fig. 4, right). Recalling (2.11) the function Θ`,p

can be determined by solving the linear boundary value problem

Θ`,p(t, 0) =
f̄i∗(t)θ̄i∗,p(t)∑
i∈I`

f̄i(t)θ̄ij(t)
, (2.22)

∂

∂t
Θ`,p(t, ξ) +

(∑
i∈I`

f̄i(t)θ̄ij(t)

)
∂

∂ξ
Θ`,p(t, ξ) = 0 . (2.23)

Indeed, on the right hand side of (2.22) the numerator is the rate at which p-
drivers (i.e., those following Γp to reach destination) join the queue qj∗ , while the
denominator is the rate at which drivers of all types join this same queue. Call ξ(t)
the position of a particular driver inside this queue, i.e. the number of cars behind
him, in the queue. Clearly, ξ(t0) = 0 at the first time t0 when this driver joins the
queue, while ξ(τ) = qj∗(τ) at the time τ when he reaches the end of the queue.
Since the map t 7→ Θ`,p(t, ξ(t)) is constant, this yields (2.23).

On the outgoing road γ`j∗ , the boundary value for θp is now determined by

θp(t, 0+) = Θ`,p(t, qj∗(t)). (2.24)
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Figure 4. Left: a node A` along the path Γp. Right: the function
ξ 7→ Θ`,p(t, ξ), determining the distribution of p-drivers within the queue

qj∗ .

2.3. The optimal decision problems. Let Gk,p be the total number of drivers
of the k-th group who travel along the path Γp. The admissibility condition implies
Gk,1 + · · · + Gk,N = Gk. We use the Lagrangian variable β ∈ [0, Gk,p] to label a
particular driver in the subgroup Gk,p of k-drivers traveling along the path Γp. The
departure and arrival time of this driver will be denoted by τdk,p(β) and τak,p(β),

respectively. Let Udepartk,p (t) = Uk,p(t) denote the amount of drivers of the subgroup

Gk,p who have departed before time t. Similarly, let Uarrivek,p (t) be the amount of

Gk,p-drivers who have arrived at destination before time t. For a.e. β ∈ [0, Gk,p] we
then have

τdk,p(β) = inf
{
t ; Udepartk,p (t) ≥ β

}
, τak,p(β) = inf

{
t ; Uarrivek,p (t) ≥ β

}
.

(2.25)
With this notation, the definition of globally optimal and of Nash equilibrium so-
lution can be more precisely formulated.

Definition 2′. An admissible family of departure distributions {Uk,p} is a globally
optimal solution if it provides a global minimum to the functional

J
.
=
∑
k,p

∫ Gk,p

0

(
ϕk(τdk,p(β)) + ψk(τak,p(β))

)
dβ . (2.26)

Definition 3′. An admissible family of departure distributions {Uk,p} is a Nash
equilibrium solution if there exist constants c1, . . . , cn such that:

(i) For almost every β ∈ [0, Gk,p] one has

ϕk(τdk,p(β)) + ψk(τak,p(β)) = ck . (2.27)

(ii) For all τ ∈ IR, there holds

ϕk(τ) + ψk(T arrivalk,p (τ)) ≥ ck . (2.28)

Here T arrivalk,p (τ) is the arrival time of a driver that starts at time τ from the node
Ad(k) and reaches the node Aa(k) traveling along the path Γp.

In other words, condition (i) states that all k-drivers bear the same cost ck.
Condition (ii) means that, regardless of the starting time τ , no k-driver can achieve
a cost < ck.

3. Continuity properties of the flow. The well posedness results proved in [6]
apply to the Cauchy problem, where initial data are assigned on every road of
the network at a given time t = t0. On the other hand, to study optimal traffic
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assignment and users equilibria, we need to consider boundary conditions describing
the departure rates uk,p(t), for any t ∈ ]−∞, +∞[ . The results in [6] on the well
posedness of the Cauchy problem must therefore be adapted to this somewhat
different situation. In particular, we need to study the continuous dependence of
solutions w.r.t. weak convergence of the departure rates. Let (uk,p) be an admissible
family of departure rates. For every arc γij , contained in some path Γp, we consider
the following functions:
Vij(t, x) = total amount of cars that have crossed the point x ∈ [0, Lij ] before

time t.
Vij,p(t, x) = total amount of cars that have crossed the point x ∈ [0, Lij ] before

time t and follow the path Γp to reach their destination.
Clearly, Vij(t, x) =

∑
p Vij,p(t, x). Given a sequence (uνk,p)ν≥1 of departure rates,

the corresponding functions V νij , V
ν
ij,p are defined in the same way. In addition, we

introduce

Definition 4. A sequence uν = (uνk,p) of admissible departure rates is tight if, for
every ε > 0, there exists Tε such that∑

k,p

(∫ −Tε
−∞

uνk,p(t) dt+

∫ ∞
Tε

uνk,p(t) dt

)
< ε for all ν ≥ 1. (3.1)

According to (3.1), for every ν the total number of drivers departing before time
−Tε or after Tε is < ε.

The next lemma shows that, if the total number of cars traveling on the network
is sufficiently small, all roads remain in a free state and no queue is formed at any
intersection.

Lemma 3.1. There exists ε0 > 0 small enough and a travel time ∆T such that the
following holds. Assume that the total amount of drivers departing before a given
time T is ∑

k,p

∫ T

−∞
uk,p(t) dt ≤ ε0 . (3.2)

Then

(i) For t < T all queues at all intermediate nodes are empty.
(ii) Every driver departing at a time τd ≤ T − ∆T reaches destination at time

τ q ≤ T .
(iii) Consider a second family of departure rates ũp,k, satisfying (3.2) together with

ũp,k(t) = up,k(t) for all k, p and all t > T −∆T . (3.3)

Then the corresponding densities and queues satisfy ρij(t, x) = ρ̃ij(t, x), qj(t)
= q̃j(t) for all i, j, x ∈ [0, Lij ], and t > T .

Proof. 1. Consider the quantities

ρ]
.
=

1

2
min
ij

ρmaxij , δ]
.
= min

ij
f ′ij(ρ

]) > 0 .

Notice that, if the density satisfies ρ(t, x) ≤ ρ] then on any road γij , the character-
istic speed is

f ′ij(ρ) ≥ f ′ij(ρ
]) ≥ δ].
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We claim that, given ρ[ > 0, there exists ε0 > 0 such that the following holds. If
at any entrance node A` the total amount of drivers is ≤ ε0, on the first arc [0, L`j ]
the density satisfies

ρ`j(t, x) ≤ ρ[ for all t and all x ∈ [L`j/2 , L`j ]. (3.4)

Indeed, set

δmin
.
=

1

2
·min
ij

Lij
f ′ij(0)

< ∆min.

For any (t0, x0) ∈ R× [L`j/2, L`j ], two cases are considered:

Case 1. There exists y0 ∈ [0, L`j [ such that

V`j(t0, x0) = V`j(t0 − δmin, y0)− δmin · g`j
(y0 − x0

δmin

)
,

and

f ′`j(ρ`j(t0, x0)) =
y0 − x0

δmin
.

In this case we have

g`j

(
f ′`j(ρ`j(t0, x0))

)
= −V`j(t0, x0)− V`j(t0 − δmin, y0)

δmin
≥ − ε0

δmin
.

Choosing ε0 > 0 sufficiently small, this yields (3.4).

Case 2. There exists τ ∈ ]t0 − δmin, t0[ such that

V`j(t0, x0) = V`j(τ, L`j)− (t0 − τ) · g`j
(x0 − L`j
t0 − τ

)
.

Assume that A`0 is the exit node of road γ`j . From [6], we have

V`j(τ, L`j) ≥ δmin ·min
{
fmax
ij , cj

(
M −

∑
k∈O`

‖qk‖L∞[t0−δmin,t0]

)}
in case of (SBJ) ,

and

V`j(τ, L`j) ≥ δmin ·min
{
fmax
ij , cj ·

Mk − ‖qk‖L∞[t0−δmin,t0]

θjk(t)
; k ∈ O`

}
in case of (MBJ) .

On the other hand, we also have that V`j(τ, L`j) ≤ ε0 and qk(τ) ≤ Kε0 for all τ .
Thus, it yields a contradiction if ε0 > 0 is small enough.

Then by induction, if ρ[ is chosen sufficiently small and (3.4) holds for every
entrance arc, then no queue is ever formed and the maximum density is ρij(t, x) ≤ ρ]
one every other arc of the network. In particular, this achieves the proof of (i).

2. From step 1, for 0 < ε0 < 1 small enough, one can see that on any arc γij the
flow is always free at any time t < T , i.e. ρij(t, x) ≤ ρmaxij . This yields the uniform
bound

vij(ρij(t, x)) ≥ vmin
.
= inf

ij
vij(ρ

max
ij ) > 0 for all t < T .

On the other hand, the waiting time in the queue at any entrance node A` of each
driver who departs before time T is less than ε0

minij fmax
ij

< 1
minij fmax

ij
. Define

∆T
.
=

1

minij fmax
ij

+

∑
ij Lij

vmin
.



730 ALBERTO BRESSAN AND KHAI T. NGUYEN

Then the total traveling time of any driver who departs before time T −∆T is less
than ∆T . This yields (ii).

3. Notice that

vij(ρ) ≥ f ′ij(ρ) .

By (ii) and the non-crossing of backward characteristics, the value of ρij(T, x) for
x ∈ [0, Lij [ depends only on the value of {uk,p} in [T −∆T, T ]. Thus, from (3.3),
one has that

ρ̃ij(T, x) = ρij(T, x), x ∈ [0, Lij [ .

Recalling that for t ∈ ] −∞, T ] there is no queue at any transit node, we obtain
(iii).

We recall here our main notation. Given a node A`, the incoming arcs will be
denoted by γi`, with i ∈ I`, while outgoing arcs are γ`j , j ∈ O`. At the node A`, we
denote by q`j(t) the length of the queue of cars waiting to enter the outgoing road
γ`j . The functions Vij , Vij,p, and V νij,p, counting how many drivers have crossed
a point x ∈ [0, Lij ] within a given time, were introduced at the beginning of this
section. Relying on the analysis in [6], we now prove

Lemma 3.2. Consider a tight sequence of admissible departure rates uν = (uνk,p)
which satisfy the uniform bounds

0 ≤ uνk,p(t) ≤ M0 for all t ∈ IR . (3.5)

for some constants M0 and all k, p, ν. Then, by possibly taking a subsequence, as
ν →∞ one has the weak convergence

uνk,p ⇀ u∗k,p (3.6)

for some admissible family (u∗k,p) of departure rates. In addition, one has

(i) For any T > 0, as ν →∞ one has the convergence

V νij(t, x)→ V ∗ij(t, x) , (3.7)

V νij,p(t, x)→ V ∗ij,p(t, x), (3.8)

qν`j(t)→ q∗`j(t), (3.9)

uniformly for all x ∈ [0, Lij ] and t ∈ ]−∞, T ]. In turn, for every t one has

ρνij(t, ·) → ρ∗ij(t, ·) in L1([0, Lij ]). (3.10)

(ii) If all drivers reach their destination before some fixed time T ∗ > T , then there
exists a constant vmin > 0 such that all velocities vνij on all roads satisfy the
uniform lower bound

vνij(t, x) ≥ vmin (3.11)

for all t, x, ν.

Proof. Because of the tightness assumption, a standard compactness argument
yields the existence of a subsequence converging to an admissible family of departure
rates (u∗k,p). For clarity of exposition, we first prove (i)-(ii) assuming that all uνk,p(t)
vanish for t < −T . At the end, we describe the modifications needed to cover the
general case.

1. We start by proving (i), assuming that no driver departs before time −T . For
t ≤ −T all functions ρνij , V

ν
ij , q

ν
`j are thus identically zero and the result is trivially

true. Recalling (2.21), consider the times

τn = −T + n∆min .
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By induction, assume that the convergence in (3.7)-(3.10) holds on every arc γij
and every t ≤ τn.

2. For each departure node A` ∈ Nd, consider the initial-boundary value problem
with initial data given at t = τn and boundary data at x = 0 given for t ∈ [τn, τn+1].
By finite propagation speed these data uniquely determine the solution on the do-
main t ∈]τn, τn+1] and x ∈ [0, L`j/2]. Call u`,p the rate of departures from node A`
of drivers who follow the path Γp. The total number of departures up to time t is
computed by

U`(t)
.
=
∑
p

U`,p(t) , U`,p(t)
.
=

∫ t

−∞
u`,p(τ) dτ .

For every ν ≥ 1, the Lax type formula derived in [6] yields

V ν`j(t, x) = min

{
min
y≥0

{
V ν`j(τn, y)− (t− τn) · g`j

(
x− y
t− τn

)}
,

min
τn≤s≤t

{
Uν` (s)− (t− s) · g`j

(
x

t− s

)}}
.

(3.12)

We recall that g`j is the Legendre transform of the flux function f`j , as in (2.3).
As ν → ∞, the assumptions (3.5)-(3.6) imply the uniform convergence Uν` → U∗` ,
while the inductive assumption yields the uniform convergence

V ν`j(τn, x) → V ∗`j(τn, x) x ∈ [0, L`j ].

By (3.12) this yields the convergence

V ν`j(t, x) → V ∗`j(t, x), (t, x) ∈ [τn, τn+1]× [0, L`j/2]. (3.13)

In turn, since

(V ν`j)x = −ρν`j , (V ∗`j)x = −ρ∗`j ,

(3.13) implies the weak convergence

ρν`j(t, ·) ⇀ ρ∗`j(t, ·) on [0, L`j/2] (3.14)

for t ∈ [τn, τn+1]. We now observe that, by Oleinik’s estimates, the functions
ρν`j(t, ·) have uniformly bounded variation on any subinterval of the form [ε, L`j/2],

with ε > 0. Therefore, as ν → ∞ the weak convergence (3.14) implies the strong
convergence

‖ρν`j(t, ·)− ρ∗`j‖L1([0,L`j/2]) → 0. (3.15)

It remains to prove the uniform convergence in (3.8), for each path Γp. For this
purpose, given t ∈ [τn, τn+1] and x ∈ [0, L`j/2], consider the departure time of the
driver who reaches point x on the road γ`j at time t, namely

τν(t, x) = inf
{
s ≤ t ; Uν` (s) = V νj`(t, x)

}
,

τ∗(t, x) = inf
{
s ≤ t ; U∗` (s) = V ∗j`(t, x)

}
.

By the uniform convergence V νj` → V ∗j` and Uν` → U∗` it follows

lim inf
ν→∞

τν(t, x) ≥ τ∗(t, x). (3.16)



732 ALBERTO BRESSAN AND KHAI T. NGUYEN

Therefore

lim inf
ν→∞

∑
p

∫ τ∗(t,x)

−∞
uν`,p(s)ds ≤ lim inf

ν→∞

∑
p

∫ τν(t,x)

−∞
uν`,p(s)ds

= lim inf
ν→∞

V ν`j(t, x) = V ∗`j(t, x) ≤
∑
p

∫ τ∗(t,x)

−∞
u∗`,p(s)ds .

Recalling that uν`,p ⇀ u∗`,p, we have limν→∞
∫ τ∗(t,x)

−∞ uν`,p(s)ds =
∫ τ∗(t,x)

−∞ u∗`,p(s)ds.
Therefore,

lim
ν→∞

∑
p

∫ τ∗(t,x)

−∞
uν`,p(s)ds = lim

ν→∞

∑
p

∫ τν(t,x)

−∞
uν`,p(s)ds =

∑
p

∫ τ∗(t,x)

−∞
u∗`,p(s)ds .

For every p this implies

lim
ν→∞

V ν`j,p(t, x) = lim
ν→∞

∫ τν(t,x)

−∞
uν`,p(s)ds =

∫ τ∗(t,x)

−∞
u∗`,p(s)ds = V ∗`j,p(t, x) ,

proving the convergence (3.8). Since all functions V ν`j,p are uniformly Lipschitz
continuous, the convergence holds uniformly on bounded sets.

3. A similar argument is valid for a terminal arc γi`, ending at some arrival
node A`. Indeed, consider the Cauchy problem with initial data given at t = τn for
x ∈ [0, Li`]. By the Lax formula,

Vj`(t, x) = min
y≥0

{
Vj`(τn, y)− (t− τn) · gj`

(
x− y
t− τn

)}
, (3.17)

these data uniquely determine the solution on the domain t ∈ [τn, τn+1] and x ∈
[Li`/2 , Li`]. As ν →∞, the inductive assumption yields the uniform convergence

V νj`(τn, x) → V ∗j`(τn, x) , x ∈ [0, Li`]. (3.18)

Using (3.18) in (3.17) we obtain in turn the uniform convergence

V νi`(t, x) → V ∗i`(t, x) (t, x) ∈ [τn, τn+1]× [Li`/2 , Li`],

the weak convergence ρνj`(t, ·) ⇀ ρ∗j`(t, ·) on [Li`/2 , Li`], and finally the strong

convergence ‖ρν`j(t, ·)− ρ∗`j(t, ·)‖L1([L`j/2 , L`j ]) → 0, for every t ∈ [τn, τn+1].

To prove the convergence (3.8) for every p, we argue as follows. Fix any (t, x) ∈
[τn, τn+1]× [Lj`/2, Lj`] and define

τν(t, x) = inf
{
s ≤ t ; V νj`(s, 0+) = V νj`(t, x)

}
,

τ∗(t, x) = inf
{
s ≤ t ; V ∗j`(s, 0+) = V ∗j`(t, x)

}
.

Observe that τ(t, x) ≤ τn. Since V νj`(t, x) → V ∗j`(t, x) and V νj`(·, 0+) → V ∗j`(·, 0+)

uniformly for t ≤ τn, the inequality (3.16) again holds. Therefore,

lim inf
ν→∞

∑
p

V νj`,p(τ
∗(t, x), 0+) ≤ lim inf

ν→∞

∑
p

V νj`,p(τ
ν(t, x), 0+)

= lim inf
ν→∞

∑
p

V νj`,p(t, x) = lim inf
ν→∞

V νj`(t, x) = V ∗j`(t, x) =
∑
p

V ∗j`,p(t, x) .

On the other hand, by the inductive assumption, we also have

lim inf
ν→∞

∑
p

V νj`,p(τ
∗(t, x), 0+) =

∑
p

V ∗j`,p(τ
∗(t, x), 0+) =

∑
p

V ∗j`,p(t, x) .
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Therefore, for all p it holds

lim
ν→∞

V νj`,p(t, x) = V ∗j`,p(t, x) .

4. Next, consider a transit node A`. By the inductive assumption, at time τn
we have the strong convergence

‖ρνi`(τn, ·)− ρ∗i`(τn, ·)‖L1([0,Li`]) → 0 i ∈ I` ,

‖ρν`j(τn, ·)− ρ∗`j(τn, ·)‖L1([0,L`j ]) → 0 j ∈ O` ,
(3.19)

together with the convergence of the queue sizes

qν`j(τn) → q∗`j(τn) , (3.20)

and, for every p, the uniform convergence
V νi`,p(τn, x) → V ∗i`,p(τn, x) on [0, Li`] i ∈ I` ,

V ν`j,p(τn, x) → V ∗`j,p(τn, x) on [0, L`j ] j ∈ O` .
(3.21)

By (3.21) we also have the weak convergence

ρνi`(τn, ·) · θνij(τn, ·) ⇀ ρ∗i`(τn, ·) · θ∗ij(τn, ·) on [0, Li`] i ∈ I` . (3.22)

Notice, however, that here the strong convergence in L1 may not hold, because the
coefficients θij satisfy a linear transport equation and their total variation can blow
up in finite time (see Example 4 in [7]). For all t ∈ [τn, τn+1], according to Theorem
2 in [6] one has the weak convergence

ρνi`(t, ·) ⇀ ρ∗i`(t, ·) on [Li`/2, Li`] i ∈ I` ,

ρν`j(t, ·) ⇀ ρ∗`j(t, ·) on [0, L`j/2] j ∈ O` ,
(3.23)

together with the uniform convergence of the queue sizes

qν`j(t) → q∗`j(t). (3.24)

For any i ∈ I` and (t, x) ∈ [τn, τn+1]× [Li`/2 , Li`], let

τ∗(t, x) = inf
{
s ≤ t ; V ∗i`(s, 0+) = V ∗i`(t, x)

}
.

With the same argument in step 3, one can show that

lim
ν→∞

∑
p

V νi`,p(τ
∗(t, x), 0+) = lim

ν→∞

∑
p

V νi`,p(τ
ν(t, x), 0+) =

∑
p

V ∗(τ∗(t, x), 0+) .

Thus, for all p and i ∈ I`, it holds

lim
ν→∞

V νi`,p(t, x) = V ∗i`,p(t, x) for all (t, x) ∈ [τn, τn+1]× [Li`/2 , Li`] .

To complete this step, we need to show that, for every j ∈ O` and every p one has

lim
ν→∞

V ν`j,p(t, x) = V ∗`j,p(t, x) for all (t, x) ∈ [τn, τn+1]× [0, L`j/2] . (3.25)

Indeed, for any (t, x) ∈ [τn, τn+1]× [0, , L`j/2]] and i ∈ I`, let

τ(t, x) = inf
{
τ ≤ t ; Vi`(τ, Pi`) = V`j(t, x)

}
,

one has

lim
ν→∞

∑
p

V νi`,p(τ
∗(t, x), Pi`) = lim

ν→∞

∑
p

V νi`,p(τ
ν(t, x), Pi`) =

∑
p

V ∗(τ∗(t, x), Pi`) .

This implies (3.25).
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5. The proof of the convergence (3.7) is now achieved by induction on n. Since
all functions Vij are uniformly Lipschitz continuous w.r.t. both t, x, it is clear that
the convergence is uniform for t, x in bounded sets.

In turn, this implies the weak convergence

ρνij(t, ·) ⇀ ρ∗ij(t, ·) (3.26)

for every time t. Since the flux function fij is strictly concave, by Oleinik’s esti-
mate the restriction of ρνij(t, ·) to each compact subinterval of ]0, Lij [ has uniformly
bounded variation. Therefore, the weak convergence (3.26) implies the strong con-
vergence (3.10).

6. In this step we remove the assumption that uνk,p(t) = 0 for all k, p and t < −T .
For this purpose, for each integer N ≥ 1 consider the truncated functions

uν,Nk,p (t) =

{
uνk,p(t) if t ≥ −N,

0 if t < −N.

Let V ν,Nij , V ∗,Nij , etc. . . be the corresponding functions, obtained by replacing uνk,p
with uν,Nk,p . Recalling Lemma 3.1, consider any ε ∈ ]0, ε0] and consider any two

integers N,N ′ such that Tε + ∆T < N < N ′. By Lemma 3.1, for every t > Tε we
have

ρν,Nij (t, x) = ρν,N
′

ij (t, x)

for every road γij . Hence, the position of any driver departing after time Tε will

be exactly the same in the two solutions with departure rates uν,Nk,p and uν,N
′

k,p . This
implies

|V ν,Nij (t, x)− V ν,N
′

ij (t, x)| ≤ ε, |V ν,Nij,p (t, x)− V ν,N
′

ij,p (t, x)| ≤ ε,

for all i, j, p, t, x, provided that Tε < N < N ′. Since ε > 0 was arbitrary, letting
N →∞ we obtain the convergence in (3.7)-(3.8).

7. Toward a proof of (ii), consider any transit node A` ∈ Nt. By assumption,
for t < −T all roads and all buffers qj are empty. For t ∈ [−T, T ∗], the queues q`,j
may be strictly positive. However, the buffers never become completely full.

More precisely, assume first that the flow at the node A` is governed by (SBJ),
where M is the size of the single buffer. Then, by Remark 1 in [6], there exists a
constant C > 0 such that, for all ν, j ∈ O` and t ∈ [−T, T ∗] one has

M −
∑
j∈O`

qνj (t) ≥ C . (3.27)

Next, assume that the flow at the node A` is governed by (MBJ), with buffers of
sizes Mj , j ∈ O`. Again by Remark 1 in [6], there exists a constant C > 0 such
that, for all ν, j ∈ O` and t ∈ [−T, T ∗] one has

Mj − qνj (t) ≥ C . (3.28)

8. On an exit arc γj` the flow is always free, i.e. ρj`(t, x) ≤ ρmaxj` . This yields

the uniform bound vj` ≥ vj`(ρmaxj` ) > 0.

Next, consider any arc γi` ending at the transit node A`. Fix any x ∈ ]0, Li`[ ,
t ∈ [−T, T ∗]. Two cases can be considered.

Case 1. (t, x) is a free state, i.e. ρi`(t, x)) ∈ [0, ρmaxi` ]. Then we trivially have
vi` ≥ vi`(ρmaxi` ) > 0.
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Case 2. (t, x) is a congested state, hence the characteristic through (t, x) has nega-
tive speed f ′i`(ρi`(t, x)) < 0. In this case, this characteristic originates at some point
(τ, Li,`), for some τ < t ≤ T ∗. By (3.27) or (3.28), the flux f̄i`(τ)

.
= fi`(τ, Li`−)

exiting from road γi` is strictly positive. Indeed, for a single buffer we have

f̄i`(τ) = ci

(
M −

∑
j∈O`

qj(τ)
)
≥ ci C ,

while in the case of multiple buffer we have

f̄i`(τ) = min
j∈O`

ci(Mj − qj(τ))

θij
≥ ci C .

Since both the density and the flux are constant along characteristics, this implies

fi`(ρi`(t, x)) = f̄i`(τ) ≥ ciC .

Observing that vi`(ρ) = fi`(ρ)/ρ, we obtain the uniform lower bound

vi`(ρi`(t, x)) ≥ ciC

ρjami`

> 0 .

Assuming that the vehicle speed vij(ρ) remains uniformly positive on every road,
the following lemma shows that the arrival time of any car depends Hölder contin-
uously on the departure time.

Lemma 3.3. Let all departure rates uk,p(t) be uniformly bounded as in (3.5), and
assume that the speed v(ρ) remains uniformly positive, on all roads. Then, for every
viable path Γ, there exist constants K > 0 and 0 < α < 1 such that the following
holds. For any two cars departing at times τ < τ̃ and traveling along Γ, the arrival
times T a(τ) < T a(τ̃) satisfy

T a(τ̃)− T a(τ) ≤ K(τ̃ − τ)α. (3.29)

Proof. 1. Consider two drivers, joining the queue at the entrance of a given road

γ at times Tqueue < T̃queue. Call Tdepart < T̃depart the times where they clear the
queue and start traveling along γ. Since the total flux of cars joining the queue is
uniformly bounded, and the rate at which cars flow out of the queue is uniformly
positive, the difference between the departure times can be bounded as

T̃depart − Tdepart ≤ C ′ · (T̃queue − Tqueue) , (3.30)

for some uniform constant C ′.
Next, consider two drivers traveling along the road γ, departing at times Tdepart <

T̃depart. Call Tarrive < T̃arrive the times when they arrive at the end of road γ.
To estimate the difference between these arrival times, let L be the length of the
road and call p(t), p̃(t) ∈ [0, L] respectively the positions of the two cars at time t.
Observe that p, p̃ satisfy the ODE with discontinuous right hand side

ṗ(t) = v
(
ρ(t, p(t))

)
t ∈ [Tdepart , Tarrive] . (3.31)

By assumption, v is bounded and uniformly positive. Hence the distance between
the two drivers at the time when the second one departs is bounded by

p(T̃depart)− p̃(T̃depart) = p(T̃depart) ≤ vmax · (T̃depart − Tdepart).
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Since the time difference Tarrive − Tdepart is a priori bounded, by Theorem 2.2 in
[11] the distance between the two drivers at time t = Tarrive when the first one
arrives can be estimated as

p(Tarrive)− p̃(Tarrive) ≤ C ·
(
p(T̃depart)− p̃(T̃depart)

)α
, (3.32)

for some constants C,α > 0. Since the second driver travels with uniformly positive
speed v ≥ vmin > 0, his arrival time will satisfy

T̃arrive − Tarrive ≤
p(Tarrive)− p̃(Tarrive)

vmin

≤ C

vmin
·
(
p(T̃depart)− p̃(T̃depart)

)α
≤ C

vmin
·
(
vmax · (T̃depart − Tdepart)

)α
.

(3.33)
2. After a relabeling, it is not restrictive to assume that Γ is the concatenation

of N − 1 arcs, joining the nodes A1, A2, . . . , AN . Namely,

Γ =
(
γ

12
, . . . , γ

N−1, N

)
. (3.34)

Consider a driver starting his journey at A1 at time τ . For k = 1, 2, . . . , N , define:
T 1
queue = τ = time when the car joins the queue at the entrance of the first arc

γ
12

,

T k−1
arrive = T kqueue = time when the car arrives at the node Ak, joining the queue

to enter γ
k,k+1

,

T kdepart = time when the queue at node Ak is cleared, and the car starts moving
along γ

k,k+1
,

TNarrive = T a(τ) = time when the car arrives at the final node AN .

Define the corresponding times T̃ k−1
arrive = T̃ kqueue, T̃

k
depart, for a driver starting at

time τ̃ .
By (3.30), for every k there exists a constant C ′k such that

T̃ kdepart − T kdepart ≤ C ′k · (T̃ kqueue − T kqueue) . (3.35)

By (3.33), for every k there exist constants Ck, αk such that

T̃ karrive − T karrive ≤ Ck (T̃ kdepart − T kdepart)αk . (3.36)

Since the composition of Hölder continuous maps is Hölder continuous, by induction
on k = 1, . . . , N we obtain (3.29).

The next lemma states the uniform convergence of the travel times along any
path Γ.

Lemma 3.4. Consider a sequence of departure rates uν = (uνk,p) satisfying the

uniform bounds (3.5). Assume that, as ν → ∞, one has the weak convergence
uνk,p ⇀ u∗k,p for all k, p. In addition, assume that the car speed remains uniformly

positive, on all roads, say vνij(ρ(t, x)) ≥ vmin > 0.
Let Γ be any viable path, and call τν(t), τ∗(t) the corresponding arrival times of

a driver who departs at time t and travels along Γ. One then has the convergence

lim
ν→∞

τν(t) = τ∗(t), (3.37)

uniformly for t in bounded sets.
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Proof. 1. By taking a subsequence, we can assume:

(i) The uniform convergence of the queue sizes at each node A`

qν`,j(t) → q∗`,j(t) j ∈ O` . (3.38)

(ii) The uniform convergence of the functions Vij , namely

V νij(t, x) → V ∗ij(t, x) x ∈ [0, Lij ]. (3.39)

(iii) The L1 convergence of the densities on each arc γij :

ρνij(t, ·) → ρ∗ij(t, ·) in L1([0, Lij ]). (3.40)

2. After a relabeling, we can assume that Γ has the form (3.34). For each
k = 1, . . . , N − 1, consider a driver arriving at the node Ak at time t. Denote by

T ν,kdepart(t) ≥ t the time when this driver starts moving on the following road γk,k+1,

possibly after spending some time in the queue. Notice that these functions T ν,kdepart
are uniformly Lipschitz continuous, for t in bounded sets. By (i)-(ii), as ν →∞ we
have the convergence

T ν,kdepart(t) → T ∗,kdepart(t), (3.41)

uniformly for t in bounded sets.
3. Next, consider a driver starting to move along the road γk,k+1 at time t.

Denote by T ν,karrive(t) ≥ t the time when this driver reaches the end of this road. By
(iii), using Theorem 2.2 in [11], we obtain the pointwise convergence

T ν,karrive(t) → T ∗,karrive(t) . (3.42)

Since all functions T ν,karrive are uniformly Hölder continuous, the convergence is uni-
form for t in bounded sets.

4. We now observe that, with the previous notation, the arrival time of a driver
starting at time t and traveling along the path Γ in (3.34) can be written as the
composition

τν(t) = T ν,Narrive ◦ T
ν,N
depart ◦ · · · ◦ T

ν,k
arrive ◦ T

ν,k
depart ◦ · · · ◦ T

ν,1
arrive(t).

The convergence τν(t) → τ∗(t) thus follows from (3.41)-(3.42), by an inductive
argument.

4. Globally optimal solutions. In this section we establish the existence of a
globally optimal solution. The proof follows the direct method of the Calculus
of Variations, constructing a minimizing sequence of solutions and showing that a
subsequence converges to the optimal one.

Theorem 4.1. (existence of a globally optimal solution). Let the flux func-
tions fij and the cost functions ϕk, ψk satisfy the assumptions (A1)-(A2). Then,
for any n-tuple (G1, . . . , Gn) of positive numbers, there exists an admissible family
of departure rates uk,p ∈ L∞(IR) which yield a globally optimal solution of the traffic
flow problem.

Proof. 1. By possibly adding a constant, because of (A2) it is not restrictive to
assume that ϕk(t) + ψk(t) ≥ 0 for every time t. Calling m0 the infimum of the
total costs in (2.26), taken among all admissible departure rates {uk,p}, this implies
m0 ≥ 0.

We first claim that m0 < +∞. Indeed, let G =
∑
kGk be the total number of

drivers. Let ε0 be the constant introduced in Lemma 3.1 and choose an integer N
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large enough so that G/N ≤ ε0. We can then partition the set of all drivers into
N subgroups, each with size ≤ ε0. We let all drivers of the first group start at
time t0 = 0. By Lemma 3.1, these drivers will all arrive at destination within time
t1 = ∆T . We then let all drivers of the second group depart at time t1. In turn,
they will all arrive within time t2 = 2 ∆T . Continuing by induction, we let the
drivers of the N -th group depart at time tN−1 = (N − 1) ·∆T . By Lemma 3.1, all
of these drivers will arrive within time tN = N ·∆T . The total cost of this strategy
is bounded by

G·max
k

(
max

t∈[0,N ·∆T ]
ϕk(t) + max

t∈[0,N ·∆T ]
ψk(t)

)
≤ G·max

k

(
ϕk(0)+ψk(N ∆T )

)
< ∞.

Recalling Definitions 1 and 4, consider a minimizing sequence of departure rates
uνk,p, and let

Uνk,p(t)
.
=

∫ t

−∞
uνk,p(t) dt .

Gνk,p =

∫ ∞
−∞

uνk,p(t) dt.

By choosing a subsequence, we can assume

lim
ν→∞

Gνk,p = Gk,p with
∑
p

Gk,p = Gk . (4.1)

2. Fix ε > 0. By (A2), there is Tε > 0 such that for all k ∈ {1, 2, ..., n} it holds

ϕk(t) + ψk(t) ≥ m0 + 1

ε
for all t ∈]−∞,−Tε[ ∪ ]Tε,∞[ . (4.2)

For β ∈ [0, Gνk,p], let

β 7→ τd,νk,p (β) and β 7→ τa,νk,p (β)

describe the departure and arrival time of the β-driver, in the subgroup Gk,p. From
(A2), we have

ϕk(τd,νk,p (β)) + ϕk(τa,νk,p (β)) ≥ ϕk(τd,νk,p (β)) + ϕk(τd,νk,p (β)) .

Thus,∫ Uνk,p(−Tε)

0

ϕk(τd,νk,p (β)) + ϕk(τa,νk,p (β)) dβ

≥
∫ Uνk,p(−Tε)

0

ϕk(τd,νk,p (β)) + ϕk(τd,νk,p (β)) dβ ≥ Uνk,p(−Tε) ·
m0 + 1

ε
.

Since the total cost approaches the infimum m0, there exists N0 > 0 sufficiently
large such that for all ν > N0

Uνk,p(−Tε) =

∫ −Tε
−∞

uνk,p(t) dt ≤ ε . (4.3)

On the other hand, from (A2), we also have

ϕk(τd,νk,p (β)) + ϕk(τa,νk,p (β)) ≥ ϕk(τa,νk,p (β)) + ϕk(τa,νk,p (β)) .

Set

Tεa,ν
.
= sup

{
t ∈ R ; τa,νk,p (Uνk,p(t)) ≤ Tε

}
. (4.4)
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Thus,∫ Gνk,p

Uνk,p(Tεa,ν )

ϕk(τd,νk,p (β)) + ϕk(τa,νk,p (β)) dβ

≥
∫ Gνk,p

Uνk,p(Tεa,ν )

ϕk(τa,νk,p (β)) + ϕk(τa,νk,p (β)) dβ ≥ (Gνk,p − Uνk,p(Tεν,a)) · m0 + 1

ε
.

Since the total cost approaches the infimum m0, there exists N0 > 0 sufficiently
large such that for all ν > N0

Gνk,p − Uνk,p(Tεν,a) ≤ ε . (4.5)

3. We claim that it is not restrictive to assume

uνk,p(t) ≤ max
ij

fmaxij for a.e. t . (4.6)

Indeed, if one of these departure rates does not satisfy (4.6), then a queue is
formed at some entrance node. But this is certainly not optimal. We can construct
a second departure rate ũνk,p where each driver departs at exactly the same time
where he would have cleared the queue in the original configuration. The departure
time of each driver is later, while the arrival time is exactly the same. Hence the
family {ũνk,p} yields a total cost which is no greater than {uνk,p}.

4. Choosing a subsequence, we can assume the weak convergence uνk,p ⇀ uk,p.

This implies the uniform convergence Uνk,p → Uk,p. From (4.3) and (4.5), the limit

family of departure rates {uk,p} is admissible.
5. To complete the proof, we show that the family of departure rates {uk,p} is

optimal. From (4.3), (4.5) one has that

τd,νk,p (β), τa,νk,p (β) ∈ [−Tε, Tε] for all β ∈ [ε,Gk,p − ε] ,

for a constant Tε > 0. Moreover, the map β 7→ τd,νk,p (β) is nondecreasing. By Helly’s
compactness theorem, we can assume that

τd,νk,p (β) → τdk,p(β) for a.e. β ∈ [ε,Gk,p − ε] .

On the other hand, by Lemma (3.2), for ε > 0 sufficiently small, we have that
V νij,p(t, x) → V ∗ij,p(t, x) uniformly for all x ∈ [0, Lij ] and t ∈] − ∞, Tε[. Thus, by
using again Helly’s theorem we obtain

τa,νk,p (β) → τak,p(β) for a.e. β ∈ [ε,Gk,p − ε] .
Therefore,∑

k,p

∫ Gk,p−ε

ε

ϕk(τdk,p(β)) + ψk,p(τ
a
k,p(β)) dβ

= lim
ν→∞

∑
k,p

∫ Gk,p−ε

ε

ϕk(τd,νk,p (β)) + ψk,p(τ
a,ν
k,p (β)) dβ

≤ lim
ν→∞

∑
k,p

∫ Gk,p

0

ϕk(τd,νk,p (β)) + ψk,p(τ
a,ν
k,p (β))dβ = m0 .

Since ε > 0 was arbitrary, this implies∑
k,p

∫ Gk,p

0

ϕk(τdk,p(β)) + ψk,p(τ
a
k,p(β))dβ ≤ m0 ,
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completing the proof.

5. Nash equilibria. In this section we prove the existence of a Nash equilibrium
solution for traffic flow on a network. Toward this goal, in addition to (A1)-(A2), we
need an additional assumption ruling out the possibility that drivers remain stuck
in traffic for an arbitrarily large time.

(A3) Given the n-tuple (G1, . . . , Gn), there exists a sufficiently large constant
K such that, for every admissible family of departure rates {uk,p} satisfying (1.4),
the time spent on the road by every driver is ≤ K.

Theorem 5.1. (existence of a Nash equilibrium). Let the flux functions fij
and the cost functions ϕk, ψk satisfy the assumptions (A1)-(A2). Fix any n-tuple
(G1, . . . , Gn) and assume that (A3) holds. Then

(i) There exists at least one admissible family of departure rates {u∗k,p} which
yields a Nash equilibrium solution.

(ii) In every Nash equilibrium solution, all departure rates are uniformly bounded
and have compact support.

Proof. Thanks to the continuity results proved in the previous sections, the proof
can rely on the same ideas used in [4].

1. There exists a time interval I0 = [−T0, T0] so large that, in any Nash equi-
librium, no driver will depart or arrive at a time t /∈ I0. Indeed, assume that a
k-driver departs at time t = 0. Let T1 be an upper bound on the time he needs to
reach destination, under the worst possible traffic conditions. Then the total cost
to this driver will be not larger than ϕk(0) + ψk(T1). By the assumptions (2.2) on
the cost functions, there exists T0 large enough so that

ϕk(−T0) > ϕk(0) + ψk(T1), ψk(T0) > ϕk(0) + ψk(T1). (5.1)

Hence it is never convenient to depart at a time t /∈ [−T0, T0]. This proves (ii).
2. Let fmax

.
= maxi,j f

max
ij be an upper bound for the fluxes over all arcs, and

define

ϕ′max
.
= max

1≤k≤n
max
t∈I0

|ϕ′k(t)| , ψ′min
.
= min

1≤k≤n
min
t∈I0

ψ′k(t).

The same argument used in the proof of Theorem 2 in [4] shows that, in a Nash
equilibrium, all departure rates uk,p must satisfy the a priori bound

uk,p(t) ≤ κ
.
=

ϕ′max · fmax
ψ′min

for a.e. t . (5.2)

3. Let κ be as in (5.2) and let G
.
=
∑n
k=1Gk be total number of drivers.

Choosing the time

T
.
= T0 +

G

κ
, (5.3)

we consider the family of admissible departure rates

U .
=

{
(uk,p)1≤k≤n, 1≤p≤N ; uk,p : IR 7→ [0, 4κ] , uk,p(t) = 0 for t /∈ [−T, T ] ,

∑
p∈Vk

∫
uk,p(t) dt = Gk for every k ∈ {1, 2, ..., n}

}
,

(5.4)
which is a closed convex subset of L1(IR; IRn×N ).
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For each fixed ν ≥ 1, we consider a finite dimensional subset Uν ⊂ U consisting
of all u = (uk,p) which are piecewise constant on time intervals of length T/ν, i.e.,

Uν
.
=
{
u = (uk,p) ∈ U ;

every function uk,p is constant on each subinterval Iν`
.
= ]tν`−1, t

ν
` ]
}
,

(5.5)
where

tν`
.
=

`

ν
T , −ν ≤ ` ≤ ν .

4. Given u = (uk,p) ∈ U , let τq(t) be the arrival time of a driver starting at
time t and traveling along the path Γq. Clearly, this arrival time depends on the
overall traffic conditions, hence on all functions uk,p. If this driver belongs to the
j-th family, his total cost is

Φ
(u)
j,q (t) = ϕj(t) + ψj(τq(t)) .

We now observe that, for each ν ≥ 1, the domain Uν is a finite dimensional, compact,

convex subset of L2([−T, T ]; IRn×N ). Moreover, by Lemma 3.4 the map u 7→ Φ
(u)
k,p(·)

are continuous from Uν into L2. Hence, by the theory of variational inequalities [27],
there exists a function ūν = (ūνj,q) ∈ Uν which satisfies∑

j,q

∫ T

−T
Φ

(ūν)
j,q (t) ·

(
vj,q(t)− ūνj,q(t)

)
dt ≥ 0 for all v ∈ Uν . (5.6)

5. We now let ν →∞. By the previous steps, there exists a sequence of piecewise
constant functions ūν = (ūνk,p) ∈ Uν such that (5.6) holds for every ν ≥ 1. Since all

functions ūνk,p are uniformly bounded and supported inside the interval I = [−T, T ],
by taking a subsequence we can assume the weak convergence

(ūνk,p) ⇀ (u∗k,p) (5.7)

for some function u∗ = (u∗k,p) ∈ U . From Lemma 3.4 and Lemma 3.3, by Ascoli’s
compactness theorem we can assume that

τνk,p(t) → τ∗k,p(t) for all k, p, uniformly for t ∈ [−T, T ], (5.8)

By the continuity of ϕ(·) and ψ(·), we also get

Φ
(ūν)
k,p (·) → Φ

(u∗)
k,p (·) for all k, p uniformly for t ∈ [−T, T ] .

We claim that the departure rates u∗k,p yield a Nash equilibrium solution. More
precisely:

(NE) Given any k ∈ {1, 2, ..., n}, p ∈ Vk, any t1 ∈ Supp(u∗k,p), t2 ∈ IR and any path
Γq with the same initial and final nodes as Γp, one has

Φ
(u∗)
k,p (t1) ≤ Φ

(u∗)
k,q (t2). (5.9)

Indeed, (5.9) implies that no k-driver can lower his own cost by switching to the
time t2 or choosing the alternative path Γq to reach destination. We recall that t is

in the support of a function f ∈ L1 if and only if
∫ t+ε
t−ε |f(s)| ds 6= 0 for every ε > 0.

6. If (5.9) fails, then by continuity there exists δ > 0 such that

Φ
(u∗)
k,p (t) > Φ

(u∗)
k,q (t′) + 2δ whenever |t− t1| ≤ 2δ, |t′ − t2| ≤ 2δ . (5.10)



742 ALBERTO BRESSAN AND KHAI T. NGUYEN

j

I
ν
I

i

4κ

ν

ν

j

ν
I j

ν

I I

ν

4κ
ν

I
j

ν I
i

ν

4κ

I
ν

i

ν

*
t

k,p
u

Φ
k,p

t

Φ
k,p

t

uk,p

u
k,p

Φ
k,p

_1j

Figure 5. Proving that the limit departure rates {u∗k,p} provide a Nash
equilibrium. If (NE) fails, different cases are considered. In Case 1 (top
left) the average of the cost Φk,p on the interval Iνi is higher than on the
interval Iνj . To obtain a contradiction with (5.6) we simply move some
of the mass from Iνi to Iνj . In Case 2a (top right) one cannot increase
the value of uνk,p on the interval Iνj because of the constraint u ≤ 4κ.
However, some mass can be moved from Iνi to the previous interval Iνj−1.
In Case 2b (bottom) there are several adjacent intervals where uνk,p ≡ 4κ.
In this case, if Iνj∗ is the first interval to the left of Iνj where uνk,p < 4κ,
we argue that (i) tνj∗ > −T , and (ii) the average of the cost Φk,p on Iνj∗
is strictly less than on Iνj . In this last case, to obtain a contradiction
with (5.6) we move some mass from Iνj to Iνj∗ .

By uniform convergence, for all ν large enough we have

Φ
(ūν)
k,p (t) > Φ

(ūν)
k,q (t′) + δ whenever |t− t1| ≤ 2δ, |t′ − t2| ≤ 2δ . (5.11)

Observe that it is not restrictive to assume that t2 ∈ [−T0, T0]. Indeed, if (5.9) fails
for some t2 /∈ [−T0, T0], then (5.1) implies

Φ
(u∗)
k,p (t1) > Φ

(u∗)
k,q (t2) > Φ

(u∗)
k,q (0),

and we can simply replace t2 with zero.
The weak convergence (5.7), together with the assumption on the support of the

function u∗k,p, now implies

lim
ν→∞

∫ t1+δ

t1−δ
ūνk,p(t) dt =

∫ t1+δ

t1−δ
u∗k,p(t) dt > 0 .

Therefore, for every ν sufficiently large we can find two intervals

Iνi = ]tνi−1, t
ν
i ] ⊂ [t1−δ , t1+δ], Iνj = ]tνj−1, t

ν
j ] ⊂ [t2−δ , t2+δ] (5.12)

with tνj > t2 and ūνk,p(t) > 0 for t ∈ Iνi .
7. We now derive a contradiction, showing that, for ν sufficiently large, the

departure rates ūνk,p do not satisfy the variational inequality (5.6). Two possibilities

can arise (see Fig. 5).
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Case 1. ūνk,q,j < 4κ. In this case we define a new set of departure rates vε =

(vεk,p) ∈ Uν by setting

vεk,p(t) = uνk,p(t)− ε if t ∈ Iνi ,

vεk,q(t) = uνk,q(t) + ε if t ∈ Iνj ,
and setting vεh,r(t) = uνh,r(t) in all other cases. Notice that, if ε = min{uνk,p,i, 4κ−
uνk,q,j} then these new departure rates are still admissible. By (5.11) and (5.12),
this construction yields∑
h,r

∫ T

−T
Φ

(ūν)
h,r (t) ·

(
vεh,r(t)− ūνh,r(t)

)
dt = ε

∫
Iνj

Φ
(ūν)
k,q (t) dt− ε

∫
Iνi

Φ
(ūν)
k,p (t) dt ≤ −2εδ ,

(5.13)

providing a contradiction with (5.6).

Case 2. ūνk,q,j = 4κ. If this equality holds, consider the index

j∗
.
= max {i < j ; ūνk,q,i < 4κ} .

Notice that tνj∗ > −T . Indeed, by construction t2 > −T0. If tνj∗ ≤ −T , by (5.3) this
would imply

ūνk,q(t) = 4κ for all t ∈ [tνj∗ , t
ν
j ] ⊇ [−T, −T0] ,∫

ūνk,q(t) dt ≥ 4κ(tνj − tνj∗) ≥ 4κ(T − T0) > G ,

reaching a contradiction. We consider two subcases.

Case 2a. j∗ = j − 1. In this case, since it is not restrictive to assume T
ν < δ

4 , we
have Iνj−1 = [tνj−2, t

ν
j−1] ⊂ [t2 − δ, t2 + δ]. We can thus derive a contradiction as in

CASE 1, simply replacing j by j − 1.

Case 2b. j∗ ≤ j − 2. Observe that, for all s1 < s2,

τνk,q(s2)− τνk,q(s1) ≥ 1

fmax

∫ s2

s1

ūνk,q(ξ) dξ . (5.14)

In particular, for any s1 ∈ Iνj∗ and s2 ∈ Iνj we have

τνk,q(s2)− τνk,q(s1) ≥ 1

fmax

∫ s2

s1

ūνk,q(ξ) dξ ≥
1

fmax
4κ [tj−1− tj∗ ] ≥

4κ(s2 − s1)

3fmax
.

(5.15)
This yields the estimate

ψk
(
τνk,q(s2)

)
− ψk

(
τνk,q(s1)

)
≥ ψ′min

(
τνk,q(s2)− τνk,q(s1)

)
≥ ψ′min ·

4κ(s2 − s1)

3fmax
.

(5.16)
On the other hand, we have

ϕk(s2)− ϕk(s1) ≥ −ϕ′max(s2 − s1) . (5.17)

Recalling the definition of the constant κ in (5.2), from (5.16)-(5.17) we obtain

Φū
ν

k,q(s2)− Φū
ν

k,q(s1) ≥
(

4κψ′min
3fmax

− ϕ′max
)

(s2 − s1) =
1

3
ϕ′max · (s2 − s1) (5.18)

for all s1 ∈ Iνj∗ and s2 ∈ Iνj .
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We now choose the departure rates vε = (vεk,p) ∈ Uν by setting

vεk,p(t) = uνk,q(t)− ε if t ∈ Iνj ,
vεk,q(t) = uνk,q(t) + ε if t ∈ Iνj∗ ,

(5.19)

and setting vεh,r(t) = uνh,r(t) in all other cases. Notice that, if ε = min{uνk,q,j , 4κ−
uνk,q,j∗} then these new departure rates are still admissible.

Using (5.18) with s1 = t, s2 = t+ tνj − tνj∗ we compute∑
h,r

∫ T

−T
Φ

(ūν)
h,r (t) ·

(
vεh,r(t)− ūνh,r(t)

)
dt = ε

(∫
Iν
j∗

Φ
(ūν)
k,q (t) dt−

∫
Iνj

Φ
(ūν)
k,q (t) dt

)

= ε

∫
Iν
j∗

(
Φ

(ūν)
k,q (t)− Φ

(ūν)
k,q (t+ tνj − tνj∗)

)
dt ≤ −ε

3
ϕ′max · (tνj − tνj∗) < 0 .

(5.20)
Once again we reached a contradiction with (5.6), completing the proof.

6. Stuck traffic. In this section we discuss the key assumption (A3) used in The-
orem 5.1. Namely, regardless of the departure rates {uk,p}, the travel time of every
driver should remain uniformly bounded.

We begin with an example showing that, in some cases, (A3) can fail. A similar
situation was considered in [9] in connection with a traffic circle.

Example 1. Consider a network with 9 arcs, as in Fig. 6, left. Assume there are
three groups of drivers:

• G1, departing at node 1, arriving at node 7,
• G2, departing at node 2, arriving at node 8,
• G3, departing at node 3, arriving at node 9.

Assume that, at each of the transit nodes 4,5,6, the two incoming arcs are given
equal priority. In other words, if both incoming roads are congested, then cars are
admitted to the intersection at equal rate from the two roads. With reference to
the junction model (SBJ), this is achieved simply by choosing the constants ci in
(2.13) all equal to each other.

Assume that the maximum flux on every road is fmax = 1, and assume that
for t > 0, cars depart from nodes 1, 2, 3 at unit rate. Call ∆ the triangle of roads
joining the intermediate nodes 4,5,6. At each time t > 0, at each intermediate node
the rate at which cars enter ∆ is at least twice as the rate at which cars exit from
∆. We thus conclude that

For each t > 0, the total number of drivers that have reached their destination
within time t is smaller than the number of drivers that at time t are still
located within the triangle of roads ∆, including the buffers at the nodes 4, 5, 6.

Since the total amount of cars that can be contained in the triangle of roads ∆ and
in the buffers at the nodes 4,5,6, is finite, this implies that only a fixed number of
drivers will reach their destination in finite time, while all the others will be stuck
in traffic forever.

In the following, by a cycle we mean a path such as (1.2) with i(0) = i(N), so
that the initial and terminal nodes coincide.

Lemma 6.1. If the network of roads does not contain any cycle, then for every
n-tuple (G1, . . . , Gn) the assumption (A3) is satisfied.
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Figure 6. Left: a network where the traffic can become completely
stuck. For some departure rates, part of the drivers never reach their
destination. Right: a network that does not contain cycles. In this case,
for any departure rates, all drivers will eventually reach their destina-

tions.

Proof. 1. Call G = G1 + · · ·+Gn the total number of drivers. Let A = {γα ; α ∈ I}
be the set of all the arcs in the network. We say that γα precedes γβ , and write
γα ≺ γβ , if there exist a chain of arcs Γ where γα is the first arc and γβ is the last
one. In other words, γα ≺ γβ if it is possible to drive first along γα and then along
γβ .

If the network has no cycles, the ordering “≺” is strict. We can thus partition
the set A of all arcs into disjoint classes, say

A = A1 ∪ · · · ∪ Am ,

in such a way that

γα ∈ Ai , γβ ∈ Aj , i ≤ j

implies that γβ does not precede γα.
2. To prove an upper bound on the travel time, it suffices to prove a uniformly

positive lower bound on the speed v, on all roads. This will be achieved by backward
induction on i = m,m− 1, . . . , 2, 1.

Exit arcs γα ∈ Am are never congested. Hence on these arcs the speed is v ≥
vα(ρmaxα ) > 0.

By induction, assume that for h ∈ {k, k + 1, . . . ,m} the speed of cars over every
arc γα ∈ Ah satisfies a uniform lower bound:

vα ≥ vminh > 0. (6.1)

In particular, this implies that, if the road γα is in a congested state, then the flux
fα is bounded below. Namely, there exists a constant Fk > 0 such that

ρ > ρmaxα =⇒ fα = ρ vα(ρ) ≥ Fk (6.2)

for all roads γα ∈ Ak ∪ Ak+1 ∪ · · · ∪ Am
Consider an arc γβ ∈ Ak−1. To fix the ideas, let γβ = γi` be an arc reaching the

node A`. Then for each j ∈ O`, the outgoing arc γ`j lies in Ak∪Ak+1∪· · ·∪Am. By
the inductive assumption, on all these outgoing arcs the speed v`j remains uniformly
positive, as in (6.1).

3. We now derive an upper bound on the length of the queue qj at the entrance
of γ`j . Two cases must be considered.
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(i) Assume that the node A` is governed by (SBJ), where M is the size of the
single buffer. Then, by (2.13) the flux of cars at the end of road γi` is

f̄i`(t) ≤ ci ·
(
M −

∑
j∈O`

qj(t)
)
, for all i ∈ I` .

If at least one of the queues is nonempty, i.e. if
∑
j∈O` qj(t) > 0, then (2.12)

implies

d

dt

∑
j∈O`

qj(t) =
∑
i∈I`

f̄i`(t)−
∑
j∈O`

f̄`j(t) ≤
(∑
i∈I`

ci

)
·
(
M −

∑
j∈O`

qj(t)
)
− Fk .

Indeed, if some qj > 0, then the corresponding outgoing road γ`j is in a
congested state. Hence the outgoing flux is f̄`j(t) ≥ Fk. In turn, this implies

d

dt

(
M − qj(t)

)
≥ Fk −

(∑
i∈I`

ci

)
·
(
M −

∑
j∈O`

qj(t)
)
.

Therefore, for every time t we have the uniform lower bound

M −
∑
j∈O`

qj(t) ≥
Fk∑
i∈I` ci

> 0 . (6.3)

(ii) Next, assume that the node A` is governed by (MBJ), with buffers of sizes
Mj , j ∈ O`. Then, by (2.15),

f̄i`(t)θ̄ij(t) ≤ ci · (Mj − qj(t)), i ∈ I`, j ∈ O` .
Recalling (2.12), we thus obtain that for all j ∈ O`,

q̇j(t) =
∑
i∈I

f̄i`(t)θ̄ij(t)− f̄`j(t) ≤
(∑
i∈I`

ci

)
· (Mj − qj(t))− Fk .

Hence,

d

dt

(
Mj − qj(t)

)
≥ Fk −

(∑
i∈I`

ci

)
· (Mj − qj(t)) .

For every time t this yields the uniform lower bound

Mj − qj(t) ≥
Fk∑
i∈I` ci

> 0 . (6.4)

4. From (6.3)-(6.4), a lower bound on the speed vi` on the incoming road γi` ∈
Ak−1 is obtained as follows. At a point (t, x) where the road is not congested we
have the trivial bound

vi`(ρ(t, x)) ≥ vi,`(ρ
max
i` ) > 0.

Next, consider a point (t̄, x̄) where the road is congested, i.e. ρ(t̄, x̄) > ρmaxi` . Then
the characteristic t 7→ x(t) through this point has negative speed. Let τ ≤ t be
the time when this characteristic reaches the end of the arc γi`, so that x(τ) = Li`.
Since the flux is constant along characteristics, we have

fi`(ρ(t̄, x̄)) = ρ(t̄, x̄) vi`(ρ(t̄, x̄)) = f̄i`(τ) ≥ ci ·
Fk∑
h∈I` ch

> 0.

This provides a uniform lower bound on vi`(ρ(t̄, x̄)). Since γi` was an arbitrary arc
in the set Ak−1, the induction step is complete.

5. By backwards induction on i = m,m− 1, . . . , 2, 1, the above arguments show
that the speed of cars remains uniformly positive at all times on all roads. In
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addition, if a queue is present, the flux at the entrance of each road remains strictly
positive. This yields a uniform a priori bound on the time that every driver needs
to reach destination.
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